Dijkstra linear running time on dense graph with Binary Heap - algorithm

First: The general running time of Dijkstras Shortest Path algorithm is
where m is the number of edges and n the number of vertices
Second: the number of expected decreasekey operations is the following
Third: The expected running time of dijkstra with a binary Heap which allows all operations in log(n) time is
But why is the running time on dense graphs linear if we consider a graph dense if
Can someone help with the O-notation and log calculations here?

First it isn't hard to show that if m is big omega of n log(n) log(log(n)) then log(n) is big omega of log(m). Therefore you can show that m is big omega of n log(m) log(log(m)).
From this you can show that n is big omega of m / (log(m) log(log(m))).
Substitute this back into the expression you have in the third point and we get that the expected running time is:
O(m + n log(m/n) log(n))
m m
= O(m + (------------------) log(log(m) log(log(m))) log(------------------)
log(m) log(log(m)) log(m) log(log(m))
From here you can expand all of the logs of products into sums of logs. You'll get a lot of terms. And then it is just a question of demonstrating that every one is O(m) or o(m). Which is straightforward, though tedious.

my solution is now the following

Related

big O of two nested binary search trees

I need to compute the big O of my algorithm.
It is contained from two nested for, each of them have binary search tree.
the complexity of binary search tree is O(log n)
How can i compute the right complexity of my algorithm ?
Does it O(log(n)log(m)) or O(log(nm)) ?
As you said, one binary search has a complexity of O(log n). You could imagine log(n) as the (maximum) number of steps that your algorithm need. For each of these steps your algorithm performs a nested binary search. That means, you could imagine this as log(n) times log(m) steps.
So you are right with O(log(n) x log(m)).
If for example n is bigger than m, then you have O((log(n))^2).
But normally we don't distinguish between different inputs. We consider them together as "the one" input of size n. Then your complexity is just O((log(n))^2).
Not distinguishing different inputs at least makes sense for polynomial algorithms. To see this consider an example: You have two inputs of sizes n and m with m <= n. Your total input size is therefore n+m. Let's see what happens for different complexities.
O(n+m) <= 2*O(n). Normally when talking about complexity we are not interested in constant factors. so we can say, we have O(n).
O(log(n+m)) <= O(log(2n)). Now we remember the logarithm rules from school. They say log(2n) = log(2) + log(n). Normally when talking about complexity we are not interested in constants. So we can say, we have O(log(n))
O((n+m)^2) = O(n^2+2nm+m^2) <= O(n^2+2nn+n^2) = O(4n^2). Again we are not interested in constant factors and just say, we have O(n^2).

How to handle Big O when one variable is known to be smaller than another one?

We have 4 algorithms, all of them with complexity depending on m and n, like:
Alg1: O(m+n)
Alg2: O(mlogm + nlogn)
Alg3: O(mlogn + nlogm)
Alg4: O(m+n!) (ouch, this one sucks, but whatever)
Now, how do we handle this if we now that n>m? My first thought is: Big O notation "discard" constant and smaller variables because it doesn't matter when, but sooner or later the "bigger term" will overwhelm all the others, making them irrelevant in the computation cost.
So, can we rewrite Alg1 as O(n), or Alg2 as O(mlogm)? If so, what about the others?
yes you can rewrite it if you know that it is always the case that n>m. Formally, have a look at this
if we know that n>m (always) then it follows that
O(m+n) < O(n+n) which is O(2n) = O(n) (we don't really care about the 2)
also we can say the same thing about the other algorithms as well
O(mlogm + nlogn) < O(nlogn + nlogn) = O(2nlogn) = O(nlogn)
I think you can see where the rest of them are going. But if you do not know that n > m then you cannot say the above.
EDIT: as #rici nicely pointed out, you also need to be careful as well, since it'll always depend on the given function. (Note that O((2n)!) can not be simplified to O(n!))
With a bit of playing around you can see how this is not true
(2n)! = (2n) * (2n-1) * (2n-2)... < 2(n) * 2(n-1) * 2(n-2) ...
=> (2n)! = (2n) * (2n-1) * (2n-2)... < 2^n * n! (After combining all of the 2 coefficients)
Thus we can see that O((2n)!) is more like O(2^n * n!) to get a more accurate calculation you can see this thread here Are the two complexities O((2n + 1)!) and O(n!) equal?
Consider the problem of finding the k largest elements of an array. There's a nice O(n log k)-time algorithm for solving this using only O(k) space that works by maintaining a binary heap of at most k elements. In this case, since k is guaranteed to be no bigger than n, we could have rewritten these bounds as O(n log n) time with O(n) memory, but that ends up being less precise. The direct dependency of the runtime and memory usage on k makes clear that this algorithm takes more time and uses more memory as k changes.
Similarly, consider many standard graph algorithms, like Dijkstra's algorithm. If you implement Dijkstra's algorithm using a Fibonacci heap, the runtime works out O(m + n log n), where m is the number of nodes and n is the number of edges. If you assume your input graph is connected, then the runtime also happens to be O(m + m log m), but that's a less precise bound than the one that we had.
On the other hand, if you implement Dijkstra's algorithm with a binary heap, then the runtime works out to O(m log n + n log n). In this case (again, assuming the graph is connected), the m log n term strictly dominates the n log n term, and so rewriting this as O(m log n) doesn't lose any precision.
Generally speaking, you'll want to give the most precise bounds that you can in the course of documenting the runtime and memory usage of a piece of code. If you have multiple terms where one clearly strictly dominates the other, you can safely discard those lower terms. But otherwise, I wouldn't recommend discarding one of the variables, since that loses precision in the bound you're giving.

How can an algorithm have two worst case complexities?

Steven Skiena's The Algorithm design manual's chapter 1 exercise has this question:
Let P be a problem. The worst-case time complexity of P is O(n^2) .
The worst-case time complexity of P is also Ω(n log n) . Let A be an
algorithm that solves P. Which subset of the following statements are
consistent with this information about the complexity of P?
A has worst-case time complexity O(n^2) .
A has worst-case time complexity O(n^3/2).
A has worst-case time complexity O(n).
A has worst-case time complexity ⍬(n^2).
A has worst-case time complexity ⍬(n^3) .
How can an algorithm have two worst-case time complexities?
Is the author trying to say that for some value of n (say e.g. 300) upper bound for algorithm written for solving P is of the order of O(n^2) while for another value of n (say e.g. 3000) the same algorithm worst case was Ω(n log n)?
The answer to your specific question
is the author trying to say that for some value of n (say e.g. 300) upper bound for algorithm written for solving P is of the order of O(n^2) while for another value of n (say e.g. 3000) the same algorithm worst case was Ω(n log n)?
is no. That is not how complexity functions work. :) We don't talk about different complexity classes for different values of n. The complexity refers to the entire algorithm, not to the algorithm at specific sizes. An algorithm has a single time complexity function T(n), which computes how many steps are required to carry out the computation for an input size of n.
In the problem, you are given two pieces of information:
The worst case complexity is O(n^2)
The worst case complexity is Ω(n log n)
All this means is that we can pick constants c1, c2, N1, and N2, such that, for our algorithm's function T(n), we have
T(n) ≤ c1*n^2 for all n ≥ N1
T(n) ≥ c2*n log n for all n ≥ N2
In other words, our T(n) is "asymptotically bounded below" by some constant time n log n and "asymptotically bounded above" by some constant times n^2. It can itself be anything "between" an n log n style function and an n^2 style function. It can even be n log n (since that is bounded above by n^2) or it can be n^2 (since that's bounded below by n log n. It can be something in between, like n(log n)(log n).
It's not so much that an algorithm has "multiple worst case complexities" in the sense it has different behaviors. What are you seeing is an upper bound and a lower bound! And these can, of course, be different.
Now it is possible that you have some "weird" function like this:
def p(n):
if n is even:
print n log n stars
else:
print n*2 stars
This crazy algorithm does have the bounds specified in the problem from the Skiena book. And it has no Θ complexity. That might have been what you were thinking about, but do note that it is not necessary for a complexity function to be this weird in order for us to say the upper and lower bounds differ. The thing to remember is that upper and lower bounds are not tight unless explicitly stated to be so.

Which algorithm is faster O(N) or O(2N)?

Talking about Big O notations, if one algorithm time complexity is O(N) and other's is O(2N), which one is faster?
The definition of big O is:
O(f(n)) = { g | there exist N and c > 0 such that g(n) < c * f(n) for all n > N }
In English, O(f(n)) is the set of all functions that have an eventual growth rate less than or equal to that of f.
So O(n) = O(2n). Neither is "faster" than the other in terms of asymptotic complexity. They represent the same growth rates - namely, the "linear" growth rate.
Proof:
O(n) is a subset of O(2n): Let g be a function in O(n). Then there are N and c > 0 such that g(n) < c * n for all n > N. So g(n) < (c / 2) * 2n for all n > N. Thus g is in O(2n).
O(2n) is a subset of O(n): Let g be a function in O(2n). Then there are N and c > 0 such that g(n) < c * 2n for all n > N. So g(n) < 2c * n for all n > N. Thus g is in O(n).
Typically, when people refer to an asymptotic complexity ("big O"), they refer to the canonical forms. For example:
logarithmic: O(log n)
linear: O(n)
linearithmic: O(n log n)
quadratic: O(n2)
exponential: O(cn) for some fixed c > 1
(Here's a fuller list: Table of common time complexities)
So usually you would write O(n), not O(2n); O(n log n), not O(3 n log n + 15 n + 5 log n).
Timothy Shield's answer is absolutely correct, that O(n) and O(2n) refer to the same set of functions, and so one is not "faster" than the other. It's important to note, though, that faster isn't a great term to apply here.
Wikipedia's article on "Big O notation" uses the term "slower-growing" where you might have used "faster", which is better practice. These algorithms are defined by how they grow as n increases.
One could easily imagine a O(n^2) function that is faster than O(n) in practice, particularly when n is small or if the O(n) function requires a complex transformation. The notation indicates that for twice as much input, one can expect the O(n^2) function to take roughly 4 times as long as it had before, where the O(n) function would take roughly twice as long as it had before.
It depends on the constants hidden by the asymptotic notation. For example, an algorithm that takes 3n + 5 steps is in the class O(n). So is an algorithm that takes 2 + n/1000 steps. But 2n is less than 3n + 5 and more than 2 + n/1000...
It's a bit like asking if 5 is less than some unspecified number between 1 and 10. It depends on the unspecified number. Just knowing that an algorithm runs in O(n) steps is not enough information to decide if an algorithm that takes 2n steps will complete faster or not.
Actually, it's even worse than that: you're asking if some unspecified number between 1 and 10 is larger than some other unspecified number between 1 and 10. The sets you pick from being the same doesn't mean the numbers you happen to pick will be equal! O(n) and O(2n) are sets of algorithms, and because the definition of Big-O cancels out multiplicative factors they are the same set. Individual members of the sets may be faster or slower than other members, but the sets are the same.
Theoretically O(N) and O(2N) are the same.
But practically, O(N) will definitely have a shorter running time, but not significant. When N is large enough, the running time of both will be identical.
O(N) and O(2N) will show significant difference in growth for small numbers of N, But as N value increases O(N) will dominate the growth and coefficient 2 becomes insignificant. So we can say algorithm complexity as O(N).
Example:
Let's take this function
T(n) = 3n^2 + 8n + 2089
For n= 1 or 2, the constant 2089 seems to be the dominant part of function but for larger values of n, we can ignore the constants and 8n and can just concentrate on 3n^2 as it will contribute more to the growth, If the n value still increases the coefficient 3 also seems insignificant and we can say complexity is O(n^2).
For detailed explanation refer here
O(n) is faster however you need to understand that when we talk about Big O, we are measuring the complexity of a function/algorithm, not its speed. And we measure this complexity asymptotically. In lay man terms, when we talk about asymptotic analysis, we take immensely huge values for n. So if you plot the graph for O(n) and O(2n), the values will stay in some particular range from each other for any value of n. They are much closer compared to the other canonical forms like O(nlogn) or O(1), so by convention we approximate the complexity to the canonical form O(n).

Which is better: O(n log n) or O(n^2)

Okay so I have this project I have to do, but I just don't understand it. The thing is, I have 2 algorithms. O(n^2) and O(n*log2n).
Anyway, I find out in the project info that if n<100, then O(n^2) is more efficient, but if n>=100, then O(n*log2n) is more efficient. I'm suppose to demonstrate with an example using numbers and words or drawing a photo. But the thing is, I don't understand this and I don't know how to demonstrate this.
Anyone here that can help me understand how this works?
Good question. Actually, I always show these 3 pictures:
n = [0; 10]
n = [0; 100]
n = [0; 1000]
So, O(N*log(N)) is far better than O(N^2). It is much closer to O(N) than to O(N^2).
But your O(N^2) algorithm is faster for N < 100 in real life. There are a lot of reasons why it can be faster. Maybe due to better memory allocation or other "non-algorithmic" effects. Maybe O(N*log(N)) algorithm requires some data preparation phase or O(N^2) iterations are shorter. Anyway, Big-O notation is only appropriate in case of large enough Ns.
If you want to demonstrate why one algorithm is faster for small Ns, you can measure execution time of 1 iteration and constant overhead for both algorithms, then use them to correct theoretical plot:
Example
Or just measure execution time of both algorithms for different Ns and plot empirical data.
Just ask wolframalpha if you have doubts.
In this case, it says
n log(n)
lim --------- = 0
n^2
Or you can also calculate the limit yourself:
n log(n) log(n) (Hôpital) 1/n 1
lim --------- = lim -------- = lim ------- = lim --- = 0
n^2 n 1 n
That means n^2 grows faster, so n log(n) is smaller (better), when n is high enough.
Big-O notation is a notation of asymptotic complexity. This means it calculates the complexity when N is arbitrarily large.
For small Ns, a lot of other factors come in. It's possible that an algorithm has O(n^2) loop iterations, but each iteration is very short, while another algorithm has O(n) iterations with very long iterations. With large Ns, the linear algorithm will be faster. With small Ns, the quadratic algorithm will be faster.
So, for small Ns, just measure the two and see which one is faster. No need to go into asymptotic complexity.
Incidentally, don't write the basis of the log. Big-O notation ignores constants - O(17 * N) is the same as O(N). Since log2N is just ln N / ln 2, the basis of the logarithm is just another constant and is ignored.
Let's compare them,
On one hand we have:
n^2 = n * n
On the other hand we have:
nlogn = n * log(n)
Putting them side to side:
n * n versus n * log(n)
Let's divide by n which is a common term, to get:
n versus log(n)
Let's compare values:
n = 10 log(n) ~ 2.3
n = 100 log(n) ~ 4.6
n = 1,000 log(n) ~ 6.9
n = 10,000 log(n) ~ 9.21
n = 100,000 log(n) ~ 11.5
n = 1,000,000 log(n) ~ 13.8
So we have:
n >> log(n) for n > 1
n^2 >> n log(n) for n > 1
Anyway, I find out in the project info that if n<100, then O(n^2) is
more efficient, but if n>=100, then O(n*log2n) is more efficient.
Let us start by clarifying what is Big O notation in the current context. From (source) one can read:
Big O notation is a mathematical notation that describes the limiting
behavior of a function when the argument tends towards a particular
value or infinity. (..) In computer science, big O notation is used to classify algorithms
according to how their run time or space requirements grow as the
input size grows.
Big O notation does not represent a function but rather a set of functions with a certain asymptotic upper-bound; as one can read from source:
Big O notation characterizes functions according to their growth
rates: different functions with the same growth rate may be
represented using the same O notation.
Informally, in computer-science time-complexity and space-complexity theories, one can think of the Big O notation as a categorization of algorithms with a certain worst-case scenario concerning time and space, respectively. For instance, O(n):
An algorithm is said to take linear time/space, or O(n) time/space, if its time/space complexity is O(n). Informally, this means that the running time/space increases at most linearly with the size of the input (source).
and O(n log n) as:
An algorithm is said to run in quasilinear time/space if T(n) = O(n log^k n) for some positive constant k; linearithmic time/space is the case k = 1 (source).
Mathematically speaking the statement
Which is better: O(n log n) or O(n^2)
is not accurate, since as mentioned before Big O notation represents a set of functions. Hence, more accurate would have been "does O(n log n) contains O(n^2)". Nonetheless, typically such relaxed phrasing is normally used to quantify (for the worst-case scenario) how a set of algorithms behaves compared with another set of algorithms regarding the increase of their input sizes. To compare two classes of algorithms (e.g., O(n log n) and O(n^2)) instead of
Anyway, I find out in the project info that if n<100, then O(n^2) is
more efficient, but if n>=100, then O(n*log2n) is more efficient.
you should analyze how both classes of algorithms behaves with the increase of their input size (i.e., n) for the worse-case scenario; analyzing n when it tends to the infinity
As #cem rightly point it out, in the image "big-O denote one of the asymptotically least upper-bounds of the plotted functions, and does not refer to the sets O(f(n))"
As you can see in the image after a certain input, O(n log n) (green line) grows slower than O(n^2) (orange line). That is why (for the worst-case) O(n log n) is more desirable than O(n^2) because one can increase the input size, and the growth rate will increase slower with the former than with the latter.
First, it is not quite correct to compare asymptotic complexity mixed with N constraint. I.E., I can state:
O(n^2) is slower than O(n * log(n)), because the definition of Big O notation will include n is growing infinitely.
For particular N it is possible to say which algorithm is faster by simply comparing N^2 * ALGORITHM_CONSTANT and N * log(N) * ALGORITHM_CONSTANT, where ALGORITHM_CONSTANT depends on the algorithm. For example, if we traverse array twice to do our job, asymptotic complexity will be O(N) and ALGORITHM_CONSTANT will be 2.
Also I'd like to mention that O(N * log2N) which I assume logariphm on basis 2 (log2N) is actually the same as O(N * log(N)) because of logariphm properties.
We have two way to compare two Algo
->first way is very simple compare and apply limit
T1(n)-Algo1
T2(n)=Alog2
lim (n->infinite) T1(n)/T2(n)=m
(i)if m=0 Algo1 is faster than Algo2
(ii)m=k Both are same
(iii)m=infinite Algo2 is faster
*Second way pretty simple as compare to 1st there you just take a log of both but do not neglet multi constant
Algo 1=log n
Algo 2=sqr(n)
keep log n =x
Any poly>its log
O(sqr(n))>o(logn)
I am a mathematician so i will try to explain why n^2 is faster than nlogn for small values of n , with a simple limit , while n-->0 :
lim n^2 / nlogn = lim n / logn = 0 / -inf = 0
so , for small values of n ( in this case "small value" is n existing in [1,99] ) , the nlogn is faster than n^2 , 'cause as we see limit = 0 .
But why n-->0? Because n in an algorithm can take "big" values , so when n<100 , it is considered like a very small value so we can take the limit n-->0.

Resources