When dealing with a fully associative cache, why is it necessary to use an offset (or word), if the entire cache is being searched anyway what will the offset do for you?
Offset bits will allow more addresses to share the same block , when you increase the block size
it will store more words by removing offset bits
Related
Given a cache with 256 blocks, and 16 bytes per block, how can I determine the value of the tag field of a cache block that holds the 24-bit address 0x3CFBCF? Would there be any differences depending on whether the cache was direct-mapped, fully associative, or n-way set-asscociative?
This gives a great overview on finding the SET, TAG, and OFFSET of an address.
I've read several topics about this theme but I could not get the answer. So my question is:
1) How is the block offset calculated?
I want to know not the formula but the concept of it. As I know it is quantity of cases which a block can store the address. For example If there is a block with 8 byte storage and has to store 2 byte addresses. Does its block offset is 2 bit?(So there is 4 cases to store the address (the diagram below might make easier to see what I am saying).
The block offset is simply calculated as log2 cache_line_size.
The reason is that all system that I know of are byte addressable. So you need enough bits to index any byte in the block. Although most systems have a word size that is larger than a single byte, they still support offsets of a single byte gradulatrity, even if that is not the common case.
So for the example you mentioned of an 8-byte block size with 2-byte word, you would still need 3 bits in order to allow accessing any byte. If you had a system that was not byte addressable then you could use just 2 bits for the block offset. But in practice all systems that I know of are byte addressable.
I am studying an old exam for an upcoming exam, and the final questions consist of what the title describes. Now, I am familiar with assembly language instructions and I somewhat know what the code means. But, what the exam question actually wants me to do is confusing. I would really appreciate if someone could explain this question.
The question:
I am given a cache-memory which has room for 512 bytes and every row is 8 bytes long. The memory is direct-mapped and an "address" is 32 bits long. Also, the cache-memory is empty from the start.
After that, I get some instructions and am supposed to explain if it becomes a cache-hit or cache-miss. It should also be assumed that the instructions are all sequential and all data that is added/modified in an instruction still exists for the next instruction.
The instructions I get are
movia r8, 0xBEDA12C4
ldw r10, 0( r8 )
ldw r11, 8( r8 )
stw r10, 16( r8 )
ldw r10, 24(r8)
ldw r18, 32(r8)
Now I would really appreciate if someone could explain the details to me:
The cache-memory has room for a total of 512 bytes. What is this? Is it the total memory the cache is able to store? Also, I heard from somewhere that this is how you calculate rows in cache. For example, 512 bytes of memory and every row is 16 bytes. 512/16 = 32 rows in cache. For this example 512/8 = 64 rows. Which one is it? What does this mean!?
It also states that every row is 16 bytes long. I've seen the example with TAG, ROW, BYTE where they try to illustrate the cache. But how do I understand the 16 bytes per row? At least it doesn't seem to take part of the length on TAG, ROW, BYTE. What is this for?
Direct-mapped cache. I understand this somewhat. It's just a big row of slots of order which are empty or not, yeah? I found some information on this here.
http://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Memory/direct.html
*Updated link: https://web.archive.org/web/20150213025748/http://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Memory/direct.html
Now to the main part. How do I calculate for each instruction if it will be a cache miss or hit? My guess is that the first instruction ought to be a miss, since the question said that the cache memory is empty from the start. The second instruction also must be a cache miss but from this point on I am not sure how to calculate if the instruction generates a cache hit or miss. To be honest, I am not even sure what a hit would be.
I would really appreciate if someone could show me how to calculate each step and how I know whether an instruction creates a cache hit or miss. The instructions we get for calculating this are really confusing. Thank you so much!
Generally you have to look at it as at a separate memory space, with only 512 bytes, addressable, readable and writable as arrays 8 bytes each. If you need byte 2, the address will be 0, you read the whole array and select byte 3 from it. If you need byte 8, the address will be 1, and you select byte 0 from the array. Such small memory have one huge advantage - it is fast. It alone can store the contents of some larger memory space, only first 512 bytes. If you store something to address 1 of larger memory space, it will go to that smaller memory instead, the address will become 0 and offset 1, internally for that small amount of memory. If you access beyond that, for example, 1000, you will have to wait more. In this case it would be just memory mapped "registers" - it would be actually faster and better in some cases, than "cache" - unfortunately for some reason processor makers generally won't let you use the cache in that way (probably marketing and support reasons - to sell other products as a separate market share, with higher price).
If you add some more space to each array to store some other value, you can store a part of address there. Without hardware support you could store there virtually anything, that second part is called tag. Now if you have some address fffff000, you can read the second space (assuming that you have the commands to do so), from address 0 - for simplicity and speed you can obtain the address from the primary memory space by masking all the bits except bits 3..8 and 0-2 (which are used to obtain offset in 8 byte array), and check the tag part from that address. One bit in that tag may be used to indicate whether there is something stored there, the other bits may be used to store the part of address from main memory. If you want to save something cached there, you set the bit indicating that the array is not "empty", and assign the upper bits of the main address there, and copy the 8 bytes from the main memory. Next time, before reading something within that range in memory, you read the tag part of the smaller memory array first, then decide whether to read from slow main memory, or from that smaller but faster part (and it would be cache hit).
If you write something with an address of (+-)x512 bytes in main memory, you would have to read the already mentioned array of 8 bytes, copy it into main memory, whole 8 bytes, and write what you want into the very same cell, and then modify the address with a new value. But you would lose the previous copy of your data in the smaller memory area (but faster). If you need the previous value again (any of those 8 bytes), you would have to copy it again from main memory (cache miss).
The same goes for all other arrays of that "cache" memory. So we have a sequence of cache checking, writing, reading and copying the data to or from main memory.
That is called 1 way associativity, for 2 ways there would be one more array (same) of 512 bytes, which can store different addresses though (with the step of 512 from main memory), the tags of those 2 arrays may be checked simultaneously, and if some array has the copy of that memory range it can return it instead of reading it from main memory. Without tag checking (extra cycles for that), the "cache" is essentially a small amount of memory.
I am trying to learn some stuff about caches. Lets say I have a 4 way 32KB cache and 1GB of RAM. Each cache line is 32 bytes. So, I understand that the RAM will be split up into 256 4096KB pages, each one mapped to a cache set, which contains 4 cache lines.
How many cache ways do I have? I am not even sure what a cache way is. Can someone explain that? I have done some searching, the best example was
http://download.intel.com/design/intarch/papers/cache6.pdf
But I am still confused.
Thanks.
The cache you are referring to is known as set associative cache. The whole cache is divided into sets and each set contains 4 cache lines(hence 4 way cache). So the relationship stands like this :
cache size = number of sets in cache * number of cache lines in each set * cache line size
Your cache size is 32KB, it is 4 way and cache line size is 32B. So the number of sets is
(32KB / (4 * 32B)) = 256
If we think of the main memory as consisting of cache lines, then each memory region of one cache line size is called a block. So each block of main memory will be mapped to a cache line (but not always to a particular cache line, as it is set associative cache).
In set associative cache, each memory block will be mapped to a fixed set in the cache. But it can be stored in any of the cache lines of the set. In your example, each memory block can be stored in any of the 4 cache lines of a set.
Memory block to cache line mapping
Number of blocks in main memory = (1GB / 32B) = 2^25
Number of blocks in each page = (4KB / 32B) = 128
Each byte address in the system can be divided into 3 parts:
Rightmost bits represent byte offset within a cache line or block
Middle bits represent to which cache set this byte(or cache line) will be mapped
Leftmost bits represent tag value
Bits needed to represent 1GB of memory = 30 (1GB = (2^30)B)
Bits needed to represent offset in cache line = 5 (32B = (2^5)B)
Bits needed to represent 256 cache sets = 8 (2^8 = 256)
So that leaves us with (30 - 5 - 8) = 17 bits for tag. As different memory blocks can be mapped to same cache line, this tag value helps in differentiating among them.
When an address is generated by the processor, 8 middle bits of the 30 bit address is used to select the cache set. There will be 4 cache lines in that set. So tags of the all four resident cache lines are checked against the tag of the generated address for a match.
Example
If a 30 bit address is 00000000000000000-00000100-00010('-' separated for clarity), then
offset within the cache is 2
set number is 4
tag is 0
In their "Computer Organization and Design, the Hardware-Software Interface", Patterson and Hennessy talk about caches. For example, in this version, page 408 shows the following image (I have added blue, red, and green lines):
Apparently, the authors use only the term "block" (and not the "line") when they describe set-associative caches. In a direct-mapped cache, the "index" part of the address addresses the line. In a set-associative, it indexes the set.
This visualization should get along well with #Soumen's explanation in the accepted answer.
However, the book mainly describes Reduced Instruction Set Architectures (RISC). I am personally aware of MIPS and RISC-V versions. So, if you have an x86 in front of you, take this picture with a grain of salt, more as a concept visualization than as actual implementation.
If we divide the memory into cache line sized chunks(i.e. 32B chunks of memory), each of this chunks is called a block. Now when you try to access some memory address, the whole memory block(size 32B) containing that address will be placed to a cache line.
No each set is not responsible for 4096KB or one particular memory page. Multiple memory blocks from different memory pages can be mapped to same cache set.
Recently I was reading some material on cpu cache. I am wondering how does the cpu lookup the L1 and L2 cache and in what format is the data in the cpu cache stored?
I think a linear scan of the cache would be inefficient, are there any better solutions?
Thanks.
It uses index bits and tags extracted from the address it is looking up.
Say you are accessing some 32 bit address ADDR
ADDR will have bits: 31--------------------------0, [------tag|index|offset]
Then depending on the size of your cache:
Let's say you have a 32K, Direct Mapped cache with 32bytes per block.
Offset bits are used to find the data within each line because 8bytes is a minimum data size to be brought into the cache (well you always get the full 32bytes, but within the 32bytes you will have your data.)
This accounts for a cache with 1024 lines or sets, again each line with 32bytes. In order to index the 1024 sets you need 10bits. Thus the 10 bits from your address are used as an index into the cache. The offset bits are used to see where inside that line your data is , and the tag bits are used to match the address that you are looking up since two or more addresses will map into the same line of the cache.
Makes sense?
I do not know your answer, but I can recommend a good book that might lead you to one - The Essentials Of Computer Organization and Architecture