Need more information on these mechanical aspects of programming - visual-studio

I recently noticed that in fuel stations when the petrol attendant gives out petrol through the pumps the computers inside the filling station already get to know the amount that has been filled in.
I would like to know:
What type of programming and any additional devices (if any) are used and if there is a special name given for this kind of programming and if it can be done through Visual Basic or I need to get another programming software to do it.
Also I think that to make such programs there will be a need to get data from a tangible source (such as the fuel pump and how much it has filled) (and even giving instructions to robotic arms and the like). So I would like to know if there is a converter of some sort in the middle to allow connection or must the program be made to suite the existing equipment.
In the case of the robotic arm what is needed, in terms of, programming languages that these commands can be done on or for the fuel pump "How the computer will read the information from the pumps"
I thought that most programs like point of sale programs and other accounting program take values from us and return us values, the result and the calculations seem completely virtual but that programming where we can make mechanical things such as robotic arms and fuel pumps work (physically) to our commands and/or return values based on what they just did is very alien to me.
If there is a relevant book you know or websites please inform me about it.

You can write such a program in Visual Basic (I'm embarrassed to admit that I have written code to control something similar to a robotic arm in Visual Basic).
Take the example of the gas pump. Somewhere in the pump is a digital flow meter with some kind of hardware interface. I did a google search ("flow meter USB") and found some that communicate with USB, but I imagine a decent amount are still available with RS-232 connectors (this was the common serial port on the back of computers before USB).
Most likely the vendor will provide some sort of API for accessing the information on the device. If you are lucky, it will be something that is easy to use in Visual Basic. If you are unlucky, it will be a C API, and you will have to write a small wrapper library to use unmanaged code that you can then use in Visual Basic.
In the example of the robot arm, you might have a USB interface, an RS-232 interface, or something stranger. I've had something built by a grad student that was controlled via a special TTL board in the computer (lots of individual wires were coming out of the back of the computer). The problem is no different, structurally. You write a small wrapper library that deals with the unmanaged code, then you use that wrapper library in Visual Basic.
If you are lucky, and there's always a dotNet (or COM+) API for the devices you are interested in working with, you could do quite a bit only knowing Visual Basic. If no such API is available, and you want to tackle the problem on your own, you'll probably have to learn a little bit of C and even assembly (The most recent book I own on the subject, "Embedded Systems Programming in C and Assembly," still has a 3.5" disk in the front cover. You'll probably want something a little more recent). A google search for "embedded systems visual basic" actually turned up some interesting references. Similarly, "visual basic robots" returned several interesting references.
Unfortunately, I don't know of any specific references I could recommend. Most embedded systems books that I've encountered were for C and/or assembly. Most of those assumed a Unix environment (QNX). You might still find code written in some flavor of Basic, but using Basic's peek and poke commands for memory access. This is only of limited value. Visual Basic doesn't have peek and poke, and you'd probably want an API that's a bit higher level than that anyway.

Related

Cooperation between multiple programming languages

I'm a fairly advanced hobby programmer. I consider myself capable at Objective-C, Java, some straight C, Python, and general MVC design.
I've written quite a few programs but they have all been relatively self-contained, using external libraries occasionally.
When reading about larger projects, and/or more complicated programs, I hear a lot of language thrown around about "Writing one part in X, and writing this part in Y."
Since I have a lack of experience with this, I was wondering if someone could point me in the right direction. What general designs/mechanisms are employed for applications or projects written in more than one language? What is involved in a "scriptable" design?
Thanks for any guidance on the topic!
-Chase
There is no single "right way". A multitude of approaches exist, including the .NET-way, where all the languages are hosted inside a common runtime environment with well-specified interoperability constraints, and a good old Unix-way, where all the components are supposed to communicate via pipes or sockets, using simple text-based protocols.
For the latter you can read a classic book: http://en.wikipedia.org/wiki/The_Unix_Programming_Environment
Depends on what you need to do. For example if you want to build a poker game online then, most probably you would use java for the application and flash/flex for the interface. Java has the power of the libraries and the flash/flex are quite generally available and offer a rich interface.
If you have a software that receives input from an online application and offers output on a specific output (label printer for example) then your online-ready software (Java/PHP/Python) would best communicate with a specially designed program on the target computer. A program for which I'd use C++ for it's technical power, rigurosity and speed compared to java.
The idea is to identify the languages that suit your purpose best. In my opinion it is ideal that you use one language to do all the stuff, that is why I like java as it seems to fit everything although it has a more or less bad renown for slowness.
I see things in a kind of this way:
1. Engineered, machine oriented stuff then it is C++ (and languages of it's kind)
2. Mobile multifunctional stuff (middle-ware mainly) Java
3. Online , browser based stuff PHP especially for B2C(people oriented) applications
4. Python,Ruby etc are from my point of view somewhere between java and PHP but I never really worked with them so I can not give an exact opinion
You can link them together depending on your needs.

Finding programming challenge for a (probably) Qt project with tight time frame (interview level)

What would you suggest would be a good challenge for a programmer to show us her/his skills? I'm thinking of a small demo implementation of a GUI program which would not take too much time to do.
Here are the circumstances: (this should not imply the intention to find programmers here, I think there'd be other forums to do that)
We are planning a project which has a tight time frame but apparently we are short on resources so we want to pull in external developers. The project is targetted to be Qt based (although this is not yet finally set) on the Windows platform. We'd prefer Qt as this allows to use own resources later when features need to be added to the software and we are familiar with the Qt platform.
The project needs to interface with HID USB hardware (writing some data blocks out, reading back the result, within to be guaranteed time frames) and a GUI showing graphs of the analyses.
The main intention however is not to find a Qt programmer (although we would prefer that) but a capable programmer - thus the important part of this question is about the challenge.
Don't ask programmers to write something from scratch as an interview task. It's far too suspect.
Think of the qualities that you want in a developer and then write an application that has all of those things done wrong, and ask them to fix it. For example, if you want an Object Oriented developer, give them an application with the data tables directly bound to the UI and ask them to make it OO - it means they can show you in a few minutes that they have OO skills.
By starting with a sample application that is "fixed up" with all the problems, it makes it really easy to compare the results and it will be a much faster test than if you ask people to write something from scratch.
Don't forget to make the test measurable. Score each thing you are testing as well as how long it takes.

Can a software engineer create an embedded system?

I want to create an embedded system using Linux similar to E book reader using ARM9 processor. I am not an electronics expert but I would love to learn it. I know basics of electronics like transistors, flip-flops, multiplexers. etc. I love software and would like to create something like an E book reader. Is it possible for a software engineer to create an embedded system? I do not want to buy single board computer available in market, I want to create it myself.
Where do I get some kind of tutorial?
Is my knowledge of operating systems enough to create such a system?
Building a system requires knowledge from multiple engineering disciplines. You can only achieve such a task by buying off-the-shelf modular components and assemble them, and in the case of an e-book putting together the modular components won't be pleasant.
Also learning any of the single disciplines needed will take you a long and concentrated effort.
To (loosely) indicate the problem areas:
you need a computing platform of the right form-factor with all the right chipsets (Apple integrate their own single CPU, as of recently, using hardware designs from multiple companies). You will not find a suitable computing platform of the right form-factor.(Electronic Engineer: Digitial designer, Analog Designer)
You need to try to attach an LCD to the right platform, and other peripherals such as USB/ charging port/ WIFI etc etc.
(Electronic Engineer, Product Designer)
You need to build a case for the platform.
(Product Designer)
You need to get a embedded operating system (potentially real-time) (working on your platform) that fits your needs.
(Embedded programmer, Kernel Programmer)
You need to extend said operating system to behave the way you want it.
(Application Programmer, Graphics Programmer)
The most important part is the platform, and getting a suitable one is very hard and very expensive. The original iphone had a platform created by a third party that apple bought and used to apply points 2-5 -- and it still took their best engineers a long time to make a prototype.
Not really; hardware engineering is a degree-level subject in it's own right, and you need at least three different specialities to do that job. Not to mention that CAD software and CNC machines cost a heck of a lot more than gcc, so hardware engineers' overheads are huge.
However, you can hire that done, for a substantial fee. Or you can use embedded boards and get the case design done for you.
For example, a beagleboard with these accessories in a custom case.
Or, a Gumstix overo with one of these and one of these in a custom case.
In either case, running some embedded linux.
Development boards save a lot of time and money, but in both cases, if you have the capital you can get those boards boiled down into a custom board that will do just what you need for your application, and cost less in large numbers.
Do not underestimate the case design; you're looking at the thick end of a hundred thousand dollars just for the tooling to manufacture a plastic, die-cast metal or stamped metal case, without paying for the design work.
Creating embedded hardware from scratch requires a lot of expertise and resources. It would be better to start off with a low-cost evaluation board in order to learn the basics of embedded programming and interfacing first. That should keep you busy for a few months. Beyond that, embedded CPU suppliers typically have reference designs that you can incorporate into your own embedded product, but at this point you will need to start investing a lot of time, effort and money into tooling up for hardware design and development.
There is basically no need to create (I mean to solder) the embedded system. A good approach may be to buy some controller board like this this or this. You need to be careful with the board but there is nothing about it a software engineer could not manage; it has the familiar serial, USB and RJ45 ports and normally already boots Linux. Finding enclosure, connecting peripherials (including analog/digital converters, or adding some relays to the output ports) is fully in the range of capabilities of someone who wants also some work with hardware. Expect to develop in C.
You can buy off the shelf hardware for embedded software development.
PC 104 Boards

How can I learn about cross platform game development?

How do companies like Valve manage to release games to all three major gaming platforms? I am interested in the best-practices regarding code sharing specifically between Windows, Xbox360 and PS3, since the ideal solution is to reuse as much code as possible instead of rewriting the whole thing for every platform.
It's not any different than writing platform-independent code in other contexts. Hide platform-specific details (input, window interaction, the main event loop, threading, etc) behind generic interfaces, and test regularly on all the platforms you intend to support.
Note that the Cell's threading model is unusual enough that doing threading "generically" takes some care. I am not a Valve employee and I know none of their secrets, but it's my understanding that most game developers who want to target the PS3 use a job queue that the individual cell processors grab tasks off of as needed. This isn't necessarily the best way to use the Cell, but it generalizes nicely to more conventional threading models (like, frex, the one that thet PC and the 360 both use).
There's a bunch of Game Developer Magazine articles and GDC talks on the subject. In fact, since you mentioned Valve, they delivered a talk describing their approach at GDC08.
This is really a huge subject that I could (and have) talk about for hours upon hours, but elevator summary is:
Determine which parts of the engine are completely platform-specific and put them behind an abstraction. File and asset loading, for example, need to be rewritten for each console; but you can hide that behind an IFileSystem interface which provides a uniform API that the game code talks to.
The PS3 makes this hard because its abstraction point has to be someplace completely different from the other platforms. Even game features like collision and nav will have to be written differently for the Cell.
Try to keep leaf game code (entities, AI, sim) as platform-agnostic as possible...
But accept that even the leafiest of game code will sometimes need some platform-specific #ifdefs for perf or memory or TCR reasons. A lot of UI will have to be rewritten because the manufacturers have conflicting certification requirements.
Anyone who says the words "I'm not worried about performance" or "memory isn't an issue" shouldn't be on the payroll.
This question can be divided up into two separate questions. "How can I write portable code?" and "What are the divergent requirements of mainstream gaming platforms?".
The first question is relatively easy to answer. Best practices for abstracting your non-portable code are covered in Write Portable Code:
http://books.google.ca/books?id=4VOKcEAPPO0C&printsec=frontcover
Turning theory into practice, the Quake 3 source code does a pretty good job of dividing out different platforms into separate areas for a C codebase, available at http://www.idsoftware.com/business/techdownloads/ However, it does not demonstrate C++ patterns such as abstract interfaces, implemented once per platform.
The second part of your question, "What are the divergent requirements of mainstream gaming platforms?" is tougher. However, it is notable that your largest areas of change are still your renderer, your audio subsystem and your networking.
Each console platform has a series of certification requirements, available under an agreement with the respective console owners. The requirements drive consistency in user experience and are not focused on gameplay or qualitative, high level issues. For instance, your game may need to display a reasonably interesting animating loading screen, and black screens are unacceptable.
Getting your hands on this documentation as soon as possible is key to making the right choices in developing for a specific console platform.
Finally, if you can't get your hands on a console devkit, I suggest you port your code to the Mac from Windows. The Mac gets you an OS port ensuring you are not tied to Windows as well as a processor port if you support universal binaries. This ensures your code is endian agnostic.
If you support both PC and Mac, you will be well positioned to support a third platform, should you gain access to it in the future.
Addendum You wrote:
the ideal solution is to reuse as much
code as possible instead of rewriting
the whole thing for every platform
In many game porting scenarios, the ideal solution is not to reuse as much code as possible, but to write the optimal code for each platform. Code can be reused between projects and is relatively inexpensive as compared to the content that the engine takes in. A more reasonable goal is to aim for lowest common denominator content that runs on all platforms without modification (a build phase that packs the content for media is okay).
It's great to do simultaneous development. You find all kinds of bugs you wouldn't find doing just one platform.
I remember that programmers in DOS had null pointers all the time because writing to low memory didn't immediately crash them. When you ported to an Amiga, Atari ST, or Macintosh, boom! I remember telling a DOS programmer that he had a couple null pointers on an aready-shipped game. He thought for a couple seconds and grinned, "That explains a few things."
Now that games have such large budgets, it's important to ship them all at the same time so you don't waste marketing and ad budgets.
My advice on simultaneous development is to pick one lead platform, but never let the other platform(s) get more than a week behind. It will become obvious as you program which parts of the code are common to all platforms and which are different. Pull out the differences into one or more platform-specific areas.
My experience is in C/C++. It's a bigger problem if you have to port against different languages (say, Java and Objective-c).
A few years ago the Opera CEO said in an interview that the key to developing for independent platforms is to move away from any single OS/platform libraries. He went on and said that they developed their own libraries that improve OS performance.
My assumption is that big companies will have a common, Xbox, PS, windows, FooOS, separate teams. Each platform needs to be tweaked differently and requires different implementation methods. I don't think they do one source for all platforms; rather, they build one for each OS thereby, improving efficiencies. I remember EA used to release some console games earlier than the PC versions and vice versa.
Another issue is that different consoles have different hardware thus requiring different programming techniques.
there are two extremes, build one source that fits all (java for instance) but you run the risk of inefficiency or write 40 versions; one optimized for each platform
Back when I had a friend into educational computer games (before The Learning Company gutted the field), he was a great fan of creating cross-platform libraries for doing everything.
This is easier for games than other apps. If you have a word processing app to run on the Mac and Windows, for example, it really does need to look and behave like a Mac app on the Mac, and a Windows app on Windows. Write a game, and it doesn't have to conform to the native behavior, look, and feel.
If you want open source examples, you could look at source code of Quake 1, 2 and 3 engines. They are structured quite portably. (Of course, no ps3 or xbox360 support, but same principles apply)
http://www.idsoftware.com/business/techdownloads/

Does it still make sense to learn low level WinAPI programming? [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 10 years ago.
Does it make sense, having all of the C#-managed-bliss, to go back to Petzold's Programming Windows and try to produce code w/ pure WinAPI?
What can be learn from it? Isn't it just too outdated to be useful?
This question is bordering on religious :) But I'll give my thoughts anyway.
I do see value in learing the Win32 API. Most, if not all, GUI libraries (managed or unmanaged) result in calls to the Win32 API. Even the most thorough libraries don't cover 100% of the API, and hence there are always gaps which need to be plugged by direct API calls or P/invoking. Some of the names of the wrappers around the API calls have similar names to the underlying API calls, but those names aren't exactly self-documenting. So understanding the underlying API, and the terminology used therein, will aid in understanding the wrapper APIs and what they actually do.
Plus, if you understand the nature of the underlying APIs that are used by frameworks, then you will make better choices with regards to which library functionality you should use in a given scenario.
Cheers!
I kept to standard C/C++ for years before learning Win32 API, and to be quite blunt, the "learning Win32 API" part is not the best technical experience of my life.
In one hand Win32 API is quite cool. It's like an extension of the C standard API (who needs fopen when you can have CreateFile. But I guess UNIX/Linux/WhateverOS have the same gizmo functions. Anyway, in Unix/Linux, they have the "Everything is a file". In Windows, they have the "Everything is a... Window" (no kidding! See CreateWindow!).
In the other hand, this is a legacy API. You will be dealing with raw C, and raw C madness.
Like telling one's structure its own size to pass through a void * pointer to some Win32 function.
Messaging can be quite confusing, too: Mixing C++ objects with Win32 windows lead to very interesting examples of Chicken or Egg problem (funny moments when you write a kind of delete this ; in a class method).
Having to subclass a WinProc when you're more familiar with object inheritance is head-splitting and less than optimal.
And of course, there is the joy of "Why in this fracking world they did this thing this way ??" moments when you strike your keyboard with your head once too many and get back home with keys engraved in your forehead, just because someone thought it more logical to write an API to enable the changing of the color of a "Window", not by changing one of its properties, but by asking it to its parent window.
etc.
In the last hand (three hands ???), consider that some people working with legacy APIs are themselves using legacy code styling. The moment you hear "const is for dummies" or "I don't use namespaces because they decrease the runtime speed", or the even better "Hey, who needs C++? I code in my own brand of object-oriented C!!!" (No kidding... In a professional environment, and the result was quite a sight...), you'll feel the kind of dread only condemned feel in front of the guillotine.
So... All in all, it's an interesting experience.
Edit
After re-reading this post, I see it could be seen as overly negative. It is not.
It is sometimes interesting (as well as frustrating) to know how the things work under the hood. You'll understand that, despite enormous (impossible?) constraints, the Win32 API team did wonderful work to be sure everything, from you "olde Win16 program" to your "last Win64 over-the-top application", can work together, in the past, now, and in the future.
The question is: Do you really want to?
Because spending weeks to do things that could be done (and done better) in other more high-level and/or object-oriented API can be quite de-motivational (real life experience: 3 weeks for Win API, against 4 hours in three other languages and/or libraries).
Anyway, you'll find Raymond Chen's Blog very interesting because of his insider's view on both Win API and its evolution through the years:
https://blogs.msdn.microsoft.com/oldnewthing/
Absolutely. When nobody knows the low level, who will update and write the high level languages? Also, when you understand the low level stuff, you can write more efficient code in a higher level language, and also debug more efficiently.
The native APIs are the "real" operating system APIs. The .NET library is (with few exceptions) nothing more than a fancy wrapper around them. So yes, I'd say that anybody who can understand .NET with all its complexity, can understand relatively mundane things like talking to the API without the benefit of a middle-man.
Just try to do DLL Injection from managed code. It can't be done. You will be forced to write native code for this, for windowing tweaks, for real subclassing, and a dozen other things.
So yes: you should (must) know both.
Edit: even if you plan to use P/Invoke.
On the assumption that you're building apps targeted at Windows:
it can sure be informative to understand lower levels of the system - how they work, how your code interacts with them (even if only indirectly), and where you have additional options that aren't available in the higher-level abstractions
there are times when your code might not be as efficient, high-performance or precise enough for your requirements
However, in more and more cases, folks like us (who never learned "unmanaged coding") will be able to pull off the programming we're trying to do without "learning" Win32.
Further, there's plenty of sites that provide working samples, code fragments and even fully-functional source code that you can "leverage" (borrow, plagiarize - but check that you're complying with any re-use license or copyright!) to fill in any gaps that aren't handled by the .NET framework class libraries (or the libraries that you can download or license).
If you can pull off the feats you need without messing around in Win32, and you're doing a good job of developing well-formed, readable managed code, then I'd say mastering .NET would be a better choice than spreading yourself thin over two very different environments.
If you frequently need to leverage those features of Windows that haven't received good Framework class library coverage, then by all means, learn the skills you need.
I've personally spent far too much time worrying about the "other areas" of coding that I'm supposed to understand to produce "good programs", but there's plenty of masochists out there that think everyone's needs and desires are like their own. Misery loves company. :)
On the assumption that you're building apps for the "Web 2.0" world, or that would be just as useful/beneficial to *NIX & MacOS users:
Stick with languages and compilers that target as many cross-platform environments as possible.
pure .NET in Visual Studio is better than Win32 obviously, but developing against the MONO libraries, perhaps using the Sharp Develop IDE, is probably an even better approach.
you could also spend your time learning Java, and those skills would transfer very well to C# programming (plus the Java code would theoretically run on any platform with the matching JRE). I've heard it said that Java is more like "write once, debug everywhere", but that's probably as true as (or even moreso than) C#.
Analogy: If you build cars for a living (programming), then its very pertinent to know how the engine works (Win32).
Simple answer, YES.
This is the answer to any question that is like.. "does it make sense to learn a low level language/api X even when a higher level language/api Y is there"
YES
You are able to boot up your Windows PC (or any other OS) and ask this question in SO because a couple of guys in Microsoft wrote 16-bit assembly code that loads your OS.
Your browser works because someone wrote an OS kernel in C that serves all your browser's requests.
It goes all the way up to scripting languages.
Big or small, there is always a market and opportunity to write something in any level of abstraction. You just have to like it and fit in the right job.
No api/language at any level of abstraction is irrelevent unless there is a better one competing at the same level.
Another way of looking at it: A good example from one of Michael Abrash's book: A C programmer was given the task of writing a function to clear the screen. Since C was a better (higher level) abstraction over assembly and all, the programmer only knew C and knew it well. He did his best - he moved the cursor to each location on the screen and cleared the character there. He optimized the loop and made sure it ran as fast as it could. But still it was slow... until some guy came in and said there was some BIOS/VGA instruction or something that could clear the screen instantly.
It always helps to know what you are walking on.
Yes, for a few reasons:
1) .net wraps Win32 code. .net is usually a superior system to code against, but having some knowledge of the underlying Win32 layer (oops, WinAPI now that there is 64-bit code too) bolsters your knowledge of what is really happening.
2) in this economy, it is better to have some advantages over the other guy when you are looking for a job. Some WinAPI experience may provide this for you.
3) some system aspects are not available through the .net framework yet, and if you want to access those features you will need to use p/invoke (see http://www.pinvoke.net for some help there). Having at least a smattering of WinAPI experience will make your p/invoke development effort a lot more efficient.
4) (added) Now that Win8 has been around for awhile, it is still built on top of the WinAPI. iOS, Android, OS/X, and Linux are all out there, but the WinAPI will still be out there for many many years.
Learning a new programming language or technology is for one of three reasons:
1. Need: you're starting a project for building a web application and you don't know anything about ASP.NET
2. Enthusiasm: you're very excited about ASP.NET MVC. why not try that?
3. Free time: but who has that anyway.
The best reason to learn something new is Need. If you need to do something that the .NET framework can't do (like performance for example) then WinAPI is your solution. Until then we keep ourself busy with learning about .NET
For most needs on the desktop you wont need to know the Win32, however there is a LOT of Win32 not in .NET, but it is in the outlaying stuff that may end up being less than 1% of your application.
USB support, HID support, Windows Media Foundation just off the top of my head. There are many cool Vista API's only available from Win32.
You will do yourself a large favor by learning how to do interop with a Win32 API, if you do desktop programing, because when you do need to call Win32, and you will, you won't spend weeks scratching your head.
Personally I don't really like the Win32 API but there's value in learning it as the API will allow more control and efficiency using the GUI than a language like Visual Basic, and I believe that if you're going to make a living writing software you should know the API even if you don't use it directly. This is for reasons similar to the reasons it's good to learn C, like how a strcpy takes more time than copying an integer, or why you should use pointers to arrays as function parameters instead of arrays by value.
Learning C or a lower level language can definitely be useful. However, I don't see any obvious advantage in using the unmanaged WinAPI.
I've seen low level Windows API code... it ain't pretty... I wish I could unlearn it. I think it benefits to learn low level as in C, as you gain a better understanding of the hardware architecture and how all that stuff works. Learning old Windows API... I think that stuff can be left to the people at Microsoft who may need to learn it to build higher level languages and API... they built it, let them suffer with it ;-)
However, if you happen to find a situation where you feel you just can't do what you need to do in a higher level language (few and far between), then perhaps start the dangerous dive into that world.
yes. take a look at uTorrent, an amazing piece of software efficiency. Half of it's small size is due to the fact that much of it's core components were re-written to not use gargatuian libraries.
Much of this couldn't be done without understanding how these libraries interface with the lower level API's
It's important to know what is available with the Windows API. I don't think you need to crank out code with it, but you should know how it works. The .NET Framework contains a lot of functionality, but it doesn't provide managed code equivalents for the entire Windows API. Sometimes you have to get a bit closer to the metal, and knowing what's down there and how it behaves will give you a better understanding of how to use it.
This is really the same as the question, should I learn a low level language like C (or even assembler).
Coding in it is certainly slower (though of course the result is much faster), but its true advantage is you gain an insight into what is happening at close to the system level, rather than than just understanding someone else's metaphor for what is going on.
It can also be better when things won't work well, or fast enough or with the sort of granularity that you need. (And do at least some subclassing and superclassing.)
I'll put it this way. I don't like programming to the Win32 API. It can be a pain compared to managed code. BUT, I'm glad I know it because I can write programs that otherwise I wouldn't be able to. I can write programs that other people can't. Plus it gives you more insight into what your managed code is doing behind the scenes.
The amount of value you get out of learning the Win32 API, (aside from the sorts of general insights you get from learning about how the nuts and bolts of the machine fit together) depends on what you're trying to achieve. A lot of the Win32 API has been wrapped nicely in .NET library classes, but not all of it. If for instance you're looking to do some serious audio programming, that portion of the Win32 API would be an excellent subject of study because only the most basic of operations are available from .NET classes. Last I checked even the managed DirectX DirectSound library was awful.
At the risk of shameless self-promotion....
I just came across a situation where the Win32 API was my only option. I want to have different tooltips on each item in a listbox. I wrote up how I did it on this question.
Even in very very high level languages you still make use of the API. Why? Well not every aspect of the API has been replicated by the various libraries, frameworks, etc. You need to learn the API for as long as you will need the API to accomplish what you are trying to do. (And no longer.)
Apart from some very special cases when you need direct access to APIs, I would say NO.
There is considerable time and effort required to learn to implement the native API calls correctly and the returning value is just not worth it. I would rather spend the time learning some new hot technology or framework that will make your life easier and programming less painful. Not decades-old obsolete COM libraries that nobody really uses anymore (sorry to COM users).
Please don't stone me for this view. I know a lot of engineers here have really curious souls and there is nothing wrong with learning how things work. Curiousity is good and really helps understanding. But from a managerial point of view, I would rather spend a week learning how to develop Android apps than how to calls OLEs or COMs.
If you planning to develop a cross platform application, If you use win32, then your application could easily run on linux through WINE. This results in a highly maintainable application. This is one of the advantages of learning win32.

Resources