3D randomized generation of planets - algorithm

For a project, I'm doing creation of planets in 3D space, based around a center "homeworld", that are randomly generated in all directions from the origin.
I've looked at procedural generation and Perlin noise, but I couldn't find a decent way to make them applicable, but I'm new to randomized generation of any kind.
Any good starting points for an algorithm for 3D-point generation, centered around the origin, preferably based on a seed (so the same seed makes the same universe).
Thanks!

Try using a set of different random numbers rather than trying for a specific algorithm to do this with a single seed.
first one is 1-360 is the rotation around the y axis
second one is 1-180 is the deviation from the y axis (wobble)
third one is 1-<really big number> is the distance from your centre point (homeworld)
fourth (optional) one is to randomize the radius of the planet
fifth (optional) is to randomize the colour of the object
To plot your planet then it's just some simple trigonometry to work out the location in 3d space (x,y,z) from your origin (homeworld).
And so long as your seed values for each are the same you will be able to generate a very large planet space.
If you want to do this with a single seed, then use that seed to generate 'random' seed numbers for all the subsequent random number generators.

I had an idea in the long time it took to load this page which I don't see represented yet.
You could start with a tetrahedron and then, for a specified number of iterations,
select a triangular face at random
replace the face with a new tetrahedron erected on that base.
With a completely uniform random number distribution, this should approximate a sphere. With a deterministic PRNG, the result should be reproducible by using the same initial seed.

Related

Construct lines from multiple 2D points and measure the distance between those lines

Multiple points on a 2D plane are given. They represent a window frame of mostly rectangular form with some possible variations. The points which are part of each side are not guaranteed to form a perfect line. Each side of the window should be measured.
A rotating electronic device attached to a window measures the distance in all directions providing a 360 degree measurements. By using the rotation angle and the distance, a set of points are plotted on a 2D coordinate system. So far so good.
Now comes the harder part. The measured window frame could have some variations. The points should be converted to straight lines and the length of each line should be measured.
I imagine that the following steps are required:
Group the different points into straights lines. This means approximating each line “between” the points that form it.
Drawing those lines, getting rid of the separate points used to construct the lines.
Find the points where each two lines intersect.
Measure the distance between those points. However not all distances between all points are interesting. For example diagonals within a frame are irrelevant.
Any Java libraries dealing with geometry that could solve the problem are acceptable. I will write the solution in Kotlin/Java, but any algorithmic insights or code examples and ideas in any other languages or pseudo code are welcome.
Thank you in advance!
New Image
I would solve this in 2 stages:
Data cleaning: round the location (X, Y) of each point to its nearest multiple of N (vary N for varying degrees of precision)
Apply the gift-wrapping algorithm (also known as Jarvis March)
You now have only those points that are not co-linear, and the lines between them, and the order in which they need to be traversed to form the perimeter.
Iterate over the points in order, take point Px and P(x+1), and calculate the distance between them.

Algorithm for distributing points evenly but randomly in a rectangle

I want to place some points in a rectangle randomly.
Generating random x, y coordinates it's not a good idea, because many times happens that the points are mainly distributed on the same area instead cover the whole rectangle.
I don't need an algorithm incredibly fast or the best cover position, just something that could run in a simple game that generate random (x, y) that cover almost the whole rectangle.
In my particular case I'm trying to generate a simple sky, so the idea is to place almost 40/50 stars in the sky rectangle.
Could someone point me some common algorithm to do that?
There is a number of algorithms to pseudo-randomly fill a 2d plane. One of them is Poisson Disk Sampling which places the samples randomly, but then checks that any two are not too close. The result would look something like this:
You can check some articles describing this algorithm. And even some implementations are available.
The problem though is that the resulting distribution looks nothing like the actual stars in the sky. But it gives a good tool to start with - by controlling the Poisson radius we can create very naturally looking looking patterns. For example in this article they use Perlin Noise to control the radius of the Poisson Disk Sampling:
You would also want to adjust the brightness of the stars, but you can experiment with uniform random values or Perlin noise.
Once I have used a completely different approach for a game. I took real positions of the stars in cartesian system from HYG database by David Nash and transformed them to my viewpoint. With this approach you can even create the exact view that can be seen from where you are on Earth.
I once showed this database to the girl I wanted to date, saying "I want to show you the stars… in cartesian coordinate system".
Upd. It’s been over seven years now and we are still together.
Just some ideas which might make your cover to appear "more uniform". These approaches don't necessarily provide an efficient way to generate a truly uniform cover, but they might be good enough and worth looking at in your case.
First, you can divide the original rectangle in 4 (or 10, or 100 - as long as performance allows you) subrectangles and cover those subrectangles separately with random points. By doing so you will make sure that no subrectangle will be left uncovered. You can generate the same number of points for each subrectangle, but you can also vary the number of points from one subrectangle to another. For example, for each subrectangle you can first generate a random number num_points_in_subrectangle (which can come from a uniform random distribution on some interval [lower, upper]) and then randomly fill the subrectangle with this many points. So all subrectangles will contain random number of points and will probably look less "programmatically generated".
Another thing you can try is to generate random points inside the original rectangle and for each generated point check if there already exists a point within some radius R. If there is such point, you reject the candidate and generate the new one. Again, here you can vary the radius from one point to another by making R a random variable.
Finally, you can combine several approaches. Generate some random number n of points you want in total. First, divide the original rectangle in subrectangles and cover those in such a way that there are n / 3 points in total. Then generate next n / 3 points by selecting the random point inside the original rectangle without any restrictions. After this, generate the last n / 3 points randomly with checks for neighbors within the radius.
Using a uniform drawing of X, Y, if you draw 40 points, the probability of having all points in the same half is about one over a trillion (~0.0000000000009).

Optimally filling a 3D sphere with smaller spheres

I'm trying to optimally fill a 3D spherical volume with "particles" (represented by 3D XYZ vectors) that need to maintain a specific distance from each other, while attempting to minimize the amount of free space present in-between them.
There's one catch though- The particles themselves may fall on the boundary of the spherical volume- they just can't exist outside of it. Ideally, I'd like to maximize the number of particles that fall on this boundary (which makes this a kind of spherical packing problem, I suppose) and then fill the rest of the volume inwards.
Are there any kinds of algorithms out there that can solve this sort of thing? It doesn't need to be exact, but the key here is that the density of the final solution needs to be reasonably accurate (+/- ~5% of a "perfect" solution).
There is not a single formula which fills a sphere optimally with n spheres. On this wikipedia page you can see the optimal configurations for n <= 12. For the optimal configurations for n <= 500 you can view this site. As you can see on these sites different numbers of spheres have different optimal symmetry groups.
your constraints are a bit vague so hard to say for sure but I would try field approach for this. First see:
Computational complexity and shape nesting
Path generation for non-intersecting disc movement on a plane
How to implement a constraint solver for 2-D geometry?
and sub-links where you can find some examples of this approach.
Now the algo:
place N particles randomly inside sphere
N should be safely low so it is smaller then your solution particles count.
start field simulation
so use your solution rules to create attractive and repulsive forces and drive your particles via Newton D'Alembert physics. Do not forget to add friction (so movement will stop after time) and sphere volume boundary.
stop when your particles stop moving
so if max(|particles_velocity|)<threshold stop.
now check if all particles are correctly placed
not breaking any of your rules. If yes then remember this placement as solution and try again from #1 with N+1 particles. If not stop and use last correct solution.
To speed this up you can add more particles instead of using (N+1) similarly to binary search (add 32 particles until you can ... then just 16 ... ). Also you do not need to use random locations in #1 for the other runs. you can let the other particles start positions where they were placed in last run solution.
How to determine accuracy of the solution is entirely different matter. As you did not provide exact rules then we can only guess. I would try to estimate ideal particle density and compute the ideal particle count based on sphere volume. You can use this also for the initial guess of N and then compare with the final N.

Particle Filter Resampling

I implemented a bootstrap Particle filter on C++ by reading few Papers and I first implemented a 1D mouse tracker which performed really well. I used normal Gaussian for weighting in this exam.
I extended the algorithm to track face using 2 features of Local motion and HSV 32 bin Histogram. In this example my weighing function becomes the probability of Motion x probability of Histogram. (Is this correct).
Incase if that is correct than I am confused on the resampling function. At the moment my resampling function is as follows:
For each Particle N = 50;
Compute CDF
Generate a random number (via Gaussian) X
Update the particle at index X
Repeat for all N particles.
This is my re-sampling function at the moment. Note: the second step I am using a Random Number via Gaussian distribution for get the index while my weighting function is Probability of Motion and Histogram.
My question is: Should I generate random number using the probability of Motion and Histogram or just the random number via Gaussian is ok.
In the SIR (Sequential Importance Resampling) particle filter, resampling aims to replicate particles that have gained high weight, while remove those with less weight.
So, when you have your particles weighted (typically with the likelihood you have used), one way to do resampling is to create the cumulative distribution of the weights, and then generate a random number following a uniform distribution and pick the particle corresponding to the slot of the CDF. This way there is more probability to select a particle that has more weight.
Also, don't forget to add some noise after generating replicas of particles, otherwise your point-estimate might be biased for a period of time.

Perlin\Fractal noise jump for just one unit between values

First of all sorry for my pour english.
I'm trying to make virtual world with terrain just like in simcity2000 or transport tycoon where terrain is made from tiles and tile heights can't jump more than one level between tiles, so there is no cliffs.
For terrain generation I'm using perlin\simplex noise but I'm getting to stiff slopes with that.
I've took a look on the source code of Open Transport Tycoon, and there after terrain generation all tiles on map are looped through and smoothed out to have elevation for just one unit.
But it won't work this way for me, because my map will be much bigger and I cannot afford smoothing all of it by loop. Also it's not possible to smooth just the visible part of terrain , because it will be different depending on from which tile smoothing was started.
I've tried to write my own noise function which is returning linearly interpolated value between two points with distance equal to max height of those points, that way slope can't be more than 45 degree, it worked but until you try to sum such functions together.
How can I pseudo-randomly generate terrain with mountain slopes of max 45 degrees, and aproach this other way than just smoothing out some previously generated map?
Right now I'm out of ideas, and hoping that Perlin noise may have some possible option like "max slope angle", but google didn't help me with that.
Perlin noise is inherently slope-limited, since the values within each grid cell are interpolated between four gradients that all have slope 1/gridSize (or some other fixed value depending on your implementation).
If you generate a limited number of octaves with a fairly wide grid relative to your tile size, you should be able to find a scaling factor experimentally that ensures a maximum slope of 1.

Resources