Replacing pixels by custom images in Mathematica? - image

How can I replace the pixels of a binarized image with a custom image in Mathematica?
I figured that once I have a matrix M of 0 or 1 entries depending on a pixel being white or black (which I can obtain by using Binarize and manipulating the output a bit), I can use Graphics[] to place a custom image with square boundary in a grid wherever there's a 1 and a flat background when there's a 0, but I'm not exactly sure how to do this.
Thank you in advance :)

Here's one way:
mat = RandomInteger[1, {10, 10}];
Graphics[MapIndexed[If[#1 == 1, Disk, Circle][#2, 0.4] &, mat, {2}]]
I like to use various versions of MapIndexed for this. Instead of Disk or Circle you can use any other graphics object. Just make a function that will take a position as its argument and will produce that object.

If M is your matrix containing 0's and 1's and image0/image1 are the images you want to display:
image0 = Graphics[{Red, Disk[]}, ImageSize -> 10];
image1 = Graphics[{Blue, Rectangle[]}, ImageSize -> 10];
M = {{0, 1, 0}, {1, 1, 1}, {1, 0, 0}};
You can just do this:
GraphicsGrid[M /. {0 -> image0, 1 -> image1}]
or, if you want the 0's to be blank:
GraphicsGrid[M /. {0 -> "", 1 -> image1}]

Related

Matlab: Material on image color processing [duplicate]

I have a image(png format) in hand. The lines that bound the ellipses (represent the nucleus) are over straight which are impractical. How could i extract the lines from the image and make them bent, and with the precondition that they still enclose the nucleus.
The following is the image:
After bending
EDIT: How can i translate the Dilation And Filter part in answer2 into Matlab language? I can't figure it out.
Ok, here is a way involving several randomization steps needed to get a "natural" non symmetrical appearance.
I am posting the actual code in Mathematica, just in case someone cares translating it to Matlab.
(* A preparatory step: get your image and clean it*)
i = Import#"http://i.stack.imgur.com/YENhB.png";
i1 = Image#Replace[ImageData[i], {0., 0., 0.} -> {1, 1, 1}, {2}];
i2 = ImageSubtract[i1, i];
i3 = Inpaint[i, i2]
(*Now reduce to a skeleton to get a somewhat random starting point.
The actual algorithm for this dilation does not matter, as far as we
get a random area slightly larger than the original elipses *)
id = Dilation[SkeletonTransform[
Dilation[SkeletonTransform#ColorNegate#Binarize#i3, 3]], 1]
(*Now the real random dilation loop*)
(*Init vars*)
p = Array[1 &, 70]; j = 1;
(*Store in w an image with a different color for each cluster, so we
can find edges between them*)
w = (w1 =
WatershedComponents[
GradientFilter[Binarize[id, .1], 1]]) /. {4 -> 0} // Colorize;
(*and loop ...*)
For[i = 1, i < 70, i++,
(*Select edges in w and dilate them with a random 3x3 kernel*)
ed = Dilation[EdgeDetect[w, 1], RandomInteger[{0, 1}, {3, 3}]];
(*The following is the core*)
p[[j++]] = w =
ImageFilter[ (* We apply a filter to the edges*)
(Switch[
Length[#1], (*Count the colors in a 3x3 neighborhood of each pixel*)
0, {{{0, 0, 0}, 0}}, (*If no colors, return bkg*)
1, #1, (*If one color, return it*)
_, {{{0, 0, 0}, 0}}])[[1, 1]] (*If more than one color, return bkg*)&#
Cases[Tally[Flatten[#1, 1]],
Except[{{0.`, 0.`, 0.`}, _}]] & (*But Don't count bkg pixels*),
w, 1,
Masking -> ed, (*apply only to edges*)
Interleaving -> True (*apply to all color chanels at once*)]
]
The result is:
Edit
For the Mathematica oriented reader, a functional code for the last loop could be easier (and shorter):
NestList[
ImageFilter[
If[Length[#1] == 1, #1[[1, 1]], {0, 0, 0}] &#
Cases[Tally[Flatten[#1, 1]], Except[{0.` {1, 1, 1}, _}]] & , #, 1,
Masking -> Dilation[EdgeDetect[#, 1], RandomInteger[{0, 1}, {3, 3}]],
Interleaving -> True ] &,
WatershedComponents#GradientFilter[Binarize[id,.1],1]/.{4-> 0}//Colorize,
5]
What you have as input is the Voronoi diagram. You can recalculate it using another distance function instead of the Euclidean one.
Here is an example in Mathematica using the Manhattan Distance (i3 is your input image without the lines):
ColorCombine[{Image[
WatershedComponents[
DistanceTransform[Binarize#i3,
DistanceFunction -> ManhattanDistance] ]], i3, i3}]
Edit
I am working with another algorithm (preliminary result). What do you think?
Here is what I came up with, it is not a direct translation of #belisarius code, but should be close enough..
%# read image (indexed image)
[I,map] = imread('http://i.stack.imgur.com/YENhB.png');
%# extract the blobs (binary image)
BW = (I==1);
%# skeletonization + dilation
BW = bwmorph(BW, 'skel', Inf);
BW = imdilate(BW, strel('square',2*1+1));
%# connected components
L = bwlabel(BW);
imshow(label2rgb(L))
%# filter 15x15 neighborhood
for i=1:13
L = nlfilter(L, [15 15], #myFilterFunc);
imshow( label2rgb(L) )
end
%# result
L(I==1) = 0; %# put blobs back
L(edge(L,'canny')) = 0; %# edges
imshow( label2rgb(L,#jet,[0 0 0]) )
myFilterFunc.m
function p = myFilterFunc(x)
if range(x(:)) == 0
p = x(1); %# if one color, return it
else
p = mode(x(x~=0)); %# else, return the most frequent color
end
end
The result:
and here is an animation of the process:

How to annotate multiple datasets in ListPlots

Frequently I have to visualize multiple datasets simultaneously, usually in ListPlot or its Log-companions. Since the number of datasets is usually larger than the number of easily distinguishable line styles and creating large plot legends is still somewhat unintuitiv I am still searching for a good way to annotate the different lines/sets in my plots. Tooltip is nice when working on screen, but they don't help if I need to pritn the plot.
Recently, I played around with the Mesh option to enumerate my datasets and found some weird stuff
GraphicsGrid[Partition[Table[ListPlot[
Transpose#
Table[{Sin[x], Cos[x], Tan[x], Cot[x]}, {x, 0.01, 10, 0.1}],
PlotMarkers -> {"1", "2", "3", "4"}, Mesh -> i, Joined -> True,
PlotLabel -> "Mesh\[Rule]" <> ToString[i], ImageSize -> 180], {i,
1, 30}], 4]]
The result looks like this on my machine (Windows 7 x64, Mathematica 8.0.1):
Funnily, for Mesh->2, 8 , and 10 the result looks like I expected it, the rest does not. Either I don't understand the Mesh option, or it doesn't understand me.
Here are my questions:
is Mesh in ListPLot bugged or do I use it wrongly?
how could I x-shift the mesh points of successive sets to avoid overprinting?
do you have any other suggestions how to annotate/enumerate multiple datasets in a plot?
You could try something along these lines. Make each line into a button which, when clicked, identifies itself.
plot=Plot[{Sin[x],Cos[x]},{x,0,2*Pi}];
sinline=plot[[1,1,3,2]];
cosline=plot[[1,1,4,2]];
message="";
altplot=Append[plot,PlotLabel->Dynamic[message]];
altplot[[1,1,3,2]]=Button[sinline,message="Clicked on the Sin line"];
altplot[[1,1,4,2]]=Button[cosline,message="Clicked on the Cos line"];
altplot
If you add an EventHandler you can get the location where you clicked and add an Inset with the relevant positioned label to the plot. Wrap the plot in a Dynamic so it updates itself after each button click. It works fine.
In response to comments, here is a fuller version:
plot = Plot[{Sin[x], Cos[x]}, {x, 0, 2*Pi}];
sinline = plot[[1, 1, 3, 2]];
cosline = plot[[1, 1, 4, 2]];
AddLabel[label_] := (AppendTo[plot[[1]],
Inset[Framed[label, Background -> White], pt]];
(* Remove buttons for final plot *)
plainplot = plot;
plainplot[[1, 1, 3, 2]] = plainplot[[1, 1, 3, 2, 1]];
plainplot[[1, 1, 4, 2]] = plainplot[[1, 1, 4, 2, 1]]);
plot[[1, 1, 3, 2]] = Button[sinline, AddLabel["Sin"]];
plot[[1, 1, 4, 2]] = Button[cosline, AddLabel["Cos"]];
Dynamic[EventHandler[plot,
"MouseDown" :> (pt = MousePosition["Graphics"])]]
To add a label click on the line. The final annotated chart, set to 'plainplot', is printable and copyable, and contains no dynamic elements.
[Later in the day] Another version, this time generic, and based on the initial chart. (With parts of Mark McClure's solution used.) For different plots 'ff' and 'spec' can be edited as desired.
ff = {Sin, Cos, Tan, Cot};
spec = Range[0.1, 10, 0.1];
(* Plot functions separately to obtain line counts *)
plots = Array[ListLinePlot[ff[[#]] /# spec] &, Length#ff];
plots = DeleteCases[plots, Line[_?(Length[#] < 3 &)], Infinity];
numlines = Array[Length#Cases[plots[[#]], Line[_], Infinity] &,
Length#ff];
(* Plot functions together for annotation plot *)
plot = ListLinePlot[##spec & /# ff];
plot = DeleteCases[plot, Line[_?(Length[#] < 3 &)], Infinity];
lbl = Flatten#Array[ConstantArray[ToString#ff[[#]],
numlines[[#]]] &, Length#ff];
(* Line positions to substitute with buttons *)
linepos = Position[plot, Line, Infinity];
Clear[line];
(* Copy all the lines to line[n] *)
Array[(line[#] = plot[[Sequence ## Most#linepos[[#]]]]) &,
Total#numlines];
(* Button function *)
AddLabel[label_] := (AppendTo[plot[[1]],
Inset[Framed[label, Background -> White], pt]];
(* Remove buttons for final plain plot *)
plainplot = plot;
bpos = Position[plainplot, Button, Infinity];
Array[(plainplot[[Sequence ## Most#bpos[[#]]]] =
plainplot[[Sequence ## Append[Most#bpos[[#]], 1]]]) &,
Length#bpos]);
(* Substitute all the lines with line buttons *)
Array[(plot[[Sequence ## Most#linepos[[#]]]] = Button[line[#],
AddLabel[lbl[[#]]]]) &, Total#numlines];
Dynamic[EventHandler[plot,
"MouseDown" :> (pt = MousePosition["Graphics"])]]
Here's how it looks. After annotation the plain graphics object can be found set to the 'plainplot' variable.
One approach is to generate the plots separately and then show them together. This yields code that is more like yours than the other post, since PlotMarkers seems to play the way we expect when dealing with one data set. We can get the same coloring using ColorData with PlotStyle. Here's the result:
ff = {Sin, Cos, Tan, Cot};
plots = Table[ListLinePlot[ff[[i]] /# Range[0.1, 10, 0.1],
PlotStyle -> {ColorData[1, i]},
PlotMarkers -> i, Mesh -> 22], {i, 1, Length[ff]}];
(* Delete the spurious asymptote looking thingies. *)
plots = DeleteCases[plots, Line[ll_?(Length[#] < 4 &)], Infinity];
Show[plots, PlotRange -> {-4, 4}]
Are you going to be plotting computable curves or actual data?
If it's computable curves, then it's common to use a plot legend (key).
You can use different dashings and thicknesses to differentiate between the lines on a grayscale printer. There are many examples in the PlotLegends documentation.
If it's real data, then normally the data is sparse enough that you can use PlotMarkers for the actual data points (i.e. don't specify Mesh). You can use automatic PlotMarkers, or you can use custom PlotMarkers including BoxWhisker markers to indicate the various uncertainties.

Mathematica: 3D wire frames

Does Mathematica support hidden line removal for wire frame images? If this isn't the case, has anybody here ever come across a way to do it? Lets start with this:
Plot3D[Sin[x+y^2], {x, -3, 3}, {y, -2, 2}, Boxed -> False]
To create a wire frame we can do:
Plot3D[Sin[x+y^2], {x, -3, 3}, {y, -2, 2}, Boxed -> False, PlotStyle -> None]
One thing we can do to achieve the effect is to color the all the surfaces white. This however, is undesirable. The reason is because if we export this hidden line wire frame model to pdf we will have all of those white polygons that Mathematica uses to render the image. I want to be able to obtain a wire frame with hidden line removal in pdf and/or eps format.
UPDATE:
I have posted a solution to this problem. The problem is that the code runs very slow. In its current state it is unable to generate the wireframe for the image in this question. Feel free to play with my code. I added a link to it at the end of my post. You can also find the code in this link
Here I present a solution. First I will show how to use the function that generates the wire frame, then I will proceed to explain in detail the rest of the functions that compose the algorithm.
wireFrame
wireFrame[g_] := Module[{figInfo, opt, pts},
{figInfo, opt} = G3ToG2Info[g];
pts = getHiddenLines[figInfo];
Graphics[Map[setPoints[#] &, getFrame[figInfo, pts]], opt]
]
The input of this function is a Graphics3D object preferably with no axes.
fig = ListPlot3D[
{{0, -1, 0}, {0, 1, 0}, {-1, 0, 1}, {1, 0, 1}, {-1, 1, 1}},
Mesh -> {10, 10},
Boxed -> False,
Axes -> False,
ViewPoint -> {2, -2, 1},
ViewVertical -> {0, 0, 1},
MeshStyle -> Directive[RGBColor[0, 0.5, 0, 0.5]],
BoundaryStyle -> Directive[RGBColor[1, 0.5, 0, 0.5]]
]
Now we apply the function wireFrame.
wireFrame[fig]
As you can see wireFrame obtained most of the lines and its colors. There is a green line that was not included in the wireframe. This is most likely due to my threshold settings.
Before I proceed to explain the details of the functions G3ToG2Info, getHiddenLines, getFrame and setPoints I will show you why wire frames with hidden line removal can be useful.
The image shown above is a screenshot of a pdf file generated by using the technique described in rasters in 3D graphics combined with the wire frame generated here. This can be advantageous in various ways. There is no need to keep the information for the triangles to show a colorful surface. Instead we show a raster image of the surface. All of the lines are very smooth, with the exception of the boundaries of the raster plot not covered by lines. We also have a reduction of file size. In this case the pdf file size reduced from 1.9mb to 78kb using the combination of the raster plot and the wire frame. It takes less time to display in the pdf viewer and the image quality is great.
Mathematica does a pretty good job at exporting 3D images to pdf files. When we import the pdf files we obtain a Graphics object composed of line segments and triangles. In some cases this objects overlap and thus we have hidden lines. To make a wire frame model with no surfaces we first need to remove this overlap and then remove the polygons. I will start by describing how to obtain the information from a Graphics3D image.
G3ToG2Info
getPoints[obj_] := Switch[Head[obj],
Polygon, obj[[1]],
JoinedCurve, obj[[2]][[1]],
RGBColor, {Table[obj[[i]], {i, 1, 3}]}
];
setPoints[obj_] := Switch[Length#obj,
3, Polygon[obj],
2, Line[obj],
1, RGBColor[obj[[1]]]
];
G3ToG2Info[g_] := Module[{obj, opt},
obj = ImportString[ExportString[g, "PDF", Background -> None], "PDF"][[1]];
opt = Options[obj];
obj = Flatten[First[obj /. Style[expr_, opts___] :> {opts, expr}], 2];
obj = Cases[obj, _Polygon | _JoinedCurve | _RGBColor, Infinity];
obj = Map[getPoints[#] &, obj];
{obj, opt}
]
This code is for Mathematica 8 in version 7 you would replace JoinedCurve in the function getPoints by Line. The function getPoints assumes that you are giving a primitive Graphics object. It will see what type of object it recieves and then extract the information it needs from it. If it is a polygon it gets a list of 3 points, for a line it obtains a list of 2 points and if it is a color then it gets a list of a single list containing 3 points. This has been done like this in order to maintain consistency with the lists.
The function setPoints does the reverse of getPoints. You input a list of points and it will determine if it should return a polygon, a line or a color.
To obtain a list of triangles, lines and colors we use G3ToG2Info. This function will use
ExportString and ImportString to obtain a Graphics object from the Graphics3D version. This info is store in obj. There is some clean up that we need to perform, first we get the options of the obj. This part is necessary because it may contain the PlotRange of the image. Then we obtain all the Polygon, JoinedCurve and RGBColor objects as described in obtaining graphics primitives and directives. Finally we apply the function getPoints on all of these objects to get a list of triangles, lines and colors. This part covers the line {figInfo, opt} = G3ToG2Info[g].
getHiddenLines
We want to be able to know what part of a line will not be displayed. To do this we need to know point of intersection between two line segments. The algorithm I'm using to find the intersection can be found here.
lineInt[L_, M_, EPS_: 10^-6] := Module[
{x21, y21, x43, y43, x13, y13, numL, numM, den},
{x21, y21} = L[[2]] - L[[1]];
{x43, y43} = M[[2]] - M[[1]];
{x13, y13} = L[[1]] - M[[1]];
den = y43*x21 - x43*y21;
If[den*den < EPS, Return[-Infinity]];
numL = (x43*y13 - y43*x13)/den;
numM = (x21*y13 - y21*x13)/den;
If[numM < 0 || numM > 1, Return[-Infinity], Return[numL]];
]
lineInt assumes that the line L and M do not coincide. It will return -Infinity if the lines are parallel or if the line containing the segment L does not cross the line segment M. If the line containing L intersects the line segment M then it returns a scalar. Suppose this scalar is u, then the point of intersection is L[[1]] + u (L[[2]]-L[[1]]). Notice that it is perfectly fine for u to be any real number. You can play with this manipulate function to test how lineInt works.
Manipulate[
Grid[{{
Graphics[{
Line[{p1, p2}, VertexColors -> {Red, Red}],
Line[{p3, p4}]
},
PlotRange -> 3, Axes -> True],
lineInt[{p1, p2}, {p3, p4}]
}}],
{{p1, {-1, 1}}, Locator, Appearance -> "L1"},
{{p2, {2, 1}}, Locator, Appearance -> "L2"},
{{p3, {1, -1}}, Locator, Appearance -> "M1"},
{{p4, {1, 2}}, Locator, Appearance -> "M2"}
]
Now that we know how to far we have to travel from L[[1]] to the line segment M we can find out what portion of a line segment lies within a triangle.
lineInTri[L_, T_] := Module[{res},
If[Length#DeleteDuplicates[Flatten[{T, L}, 1], SquaredEuclideanDistance[#1, #2] < 10^-6 &] == 3, Return[{}]];
res = Sort[Map[lineInt[L, #] &, {{T[[1]], T[[2]]}, {T[[2]], T[[3]]}, {T[[3]], T[[1]]} }]];
If[res[[3]] == Infinity || res == {-Infinity, -Infinity, -Infinity}, Return[{}]];
res = DeleteDuplicates[Cases[res, _Real | _Integer | _Rational], Chop[#1 - #2] == 0 &];
If[Length#res == 1, Return[{}]];
If[(Chop[res[[1]]] == 0 && res[[2]] > 1) || (Chop[res[[2]] - 1] == 0 && res[[1]] < 0), Return[{0, 1}]];
If[(Chop[res[[2]]] == 0 && res[[1]] < 0) || (Chop[res[[1]] - 1] == 0 && res[[2]] > 1), Return[{}]];
res = {Max[res[[1]], 0], Min[res[[2]], 1]};
If[res[[1]] > 1 || res[[1]] < 0 || res[[2]] > 1 || res[[2]] < 0, Return[{}], Return[res]];
]
This function returns the the portion of the line L that needs to be deleted. For instance, if it returns {.5, 1} this means that you will delete 50 percent of the line, starting from half the segment to the ending point of the segment. If L = {A, B} and the function returns {u, v} then this means that the line segment {A+(B-A)u, A+(B-A)v} is the section of the line that its contained in the triangle T.
When implementing lineInTri you need to be careful that the line L is not one of the edges of T, if this is the case then the line does not lie inside the triangle. This is where rounding erros can be bad. When Mathematica exports the image sometimes a line lies on the edge of the triangle but these coordinates differ by some amount. It is up to us to decide how close the line lies on the edge, otherwise the function will see that the line lies almost completely inside the triangle. This is the reason of the first line in the function. To see if a line lies on an edge of a triangle we can list all the points of the triangle and the line, and delete all the duplicates. You need to specify what a duplicate is in this case. In the end, if we end up with a list of 3 points this means that a line lies on an edge. The next part is a little complicated. What we do is check for the intersection of the line L with each edge of the triangle T and store this the results in a list. Next we sort the list and find out what section, if any, of the line lies in the triangle. Try to make sense out of it by playing with this, some of the tests include checking if an endpoint of the line is a vertex of the triangle, if the line is completely inside the triangle, partly inside or completely outside.
Manipulate[
Grid[{{
Graphics[{
RGBColor[0, .5, 0, .5], Polygon[{p3, p4, p5}],
Line[{p1, p2}, VertexColors -> {Red, Red}]
},
PlotRange -> 3, Axes -> True],
lineInTri[{p1, p2}, {p3, p4, p5}]
}}],
{{p1, {-1, -2}}, Locator, Appearance -> "L1"},
{{p2, {0, 0}}, Locator, Appearance -> "L2"},
{{p3, {-2, -2}}, Locator, Appearance -> "T1"},
{{p4, {2, -2}}, Locator, Appearance -> "T2"},
{{p5, {-1, 1}}, Locator, Appearance -> "T3"}
]
lineInTri will be used to see what portion of the line will not be drawn. This line will most likely be covered by many triangles. For this reason, we need to keep a list of all the portions of each line that will not be drawn. These lists will not have an order. All we know is that this lists are one dimensional segments. Each one consisting of numbers in the [0,1] interval. I'm not aware of a union function for one dimensional segments so here is my implementation.
union[obj_] := Module[{p, tmp, dummy, newp, EPS = 10^-3},
p = Sort[obj];
tmp = p[[1]];
If[tmp[[1]] < EPS, tmp[[1]] = 0];
{dummy, newp} = Reap[
Do[
If[(p[[i, 1]] - tmp[[2]]) > EPS && (tmp[[2]] - tmp[[1]]) > EPS,
Sow[tmp]; tmp = p[[i]],
tmp[[2]] = Max[p[[i, 2]], tmp[[2]]]
];
, {i, 2, Length#p}
];
If[1 - tmp[[2]] < EPS, tmp[[2]] = 1];
If[(tmp[[2]] - tmp[[1]]) > EPS, Sow[tmp]];
];
If[Length#newp == 0, {}, newp[[1]]]
]
This function would be shorter but here I have included some if statements to check if a number is close to zero or one. If one number is EPS apart from zero then we make this number zero, the same applies for one. Another aspect that I'm covering here is that if there is a relatively small portion of the segment to be displayed then it is most likely that it needs to be deleted. For instance if we have {{0,.5}, {.500000000001}} this means that we need to draw {{.5, .500000000001}}. But this segment is very small to be even noticed specially in a large line segment, for all we know those two numbers are the same. All of this things need to be taken into account when implementing union.
Now we are ready to see what needs to be deleted from a line segment. The next requires the list of objects generated from G3ToG2Info, an object from this list and an index.
getSections[L_, obj_, start_ ] := Module[{dummy, p, seg},
{dummy, p} = Reap[
Do[
If[Length#obj[[i]] == 3,
seg = lineInTri[L, obj[[i]]];
If[Length#seg != 0, Sow[seg]];
]
, {i, start, Length#obj}
]
];
If[Length#p == 0, Return[{}], Return[union[First#p]]];
]
getSections returns a list containing the portions that need to be deleted from L. We know that obj is the list of triangles, lines and colors, we know that objects in the list with a higher index will be drawn on top of ones with lower index. For this reason we need the index start. This is the index we will start looking for triangles in obj. Once we find a triangle we will obtain the portion of the segment that lies in the triangle using the function lineInTri. At the end we will end up with a list of sections which we can combine by using union.
Finally, we get to getHiddenLines. All this requires is to look at each object in the list returned by G3ToG2Info and apply the function getSections. getHiddenLines will return a list of lists. Each element is a list of sections that need to be deleted.
getHiddenLines[obj_] := Module[{pts},
pts = Table[{}, {Length#obj}];
Do[
If[Length#obj[[j]] == 2,
pts[[j]] = getSections[obj[[j]], obj, j + 1]
];
, {j, Length#obj}
];
Return[pts];
]
getFrame
If you have manage to understand the concepts up to here I'm sure you know what will be done next. If we have the list of triangles, lines and colors and the sections of the lines that need to be deleted we need to draw only the colors and the sections of the lines that are visible. First we make a complement function, this will tell us exactly what to draw.
complement[obj_] := Module[{dummy, p},
{dummy, p} = Reap[
If[obj[[1, 1]] != 0, Sow[{0, obj[[1, 1]]}]];
Do[
Sow[{obj[[i - 1, 2]], obj[[i, 1]]}]
, {i, 2, Length#obj}
];
If[obj[[-1, 2]] != 1, Sow[{obj[[-1, 2]], 1}]];
];
If[Length#p == 0, {}, Flatten# First#p]
]
Now the getFrame function
getFrame[obj_, pts_] := Module[{dummy, lines, L, u, d},
{dummy, lines} = Reap[
Do[
L = obj[[i]];
If[Length#L == 2,
If[Length#pts[[i]] == 0, Sow[L]; Continue[]];
u = complement[pts[[i]]];
If[Length#u > 0,
Do[
d = L[[2]] - L[[1]];
Sow[{L[[1]] + u[[j - 1]] d, L[[1]] + u[[j]] d}]
, {j, 2, Length#u, 2 }]
];
];
If[Length#L == 1, Sow[L]];
, {i, Length#obj}]
];
First#lines
]
Final words
I'm somewhat happy with the results of the algorithm. What I do not like is the execution speed. I have written this as I would in C/C++/java using loops. I tried my best to use Reap and Sow to create growing lists instead of using the function Append. Regardless of all of this I still had to use loops. It should be noted that the wire frame picture posted here took 63 seconds to generate. I tried doing a wire frame for the picture in the question but this 3D object contains about 32000 objects. It was taking about 13 seconds to compute the portions that need to be displayed for a line. If we assume that we have 32000 lines and it takes 13 seconds to do all the computations that will be about 116 hours of computational time.
I'm sure this time can be reduced if we use the function Compile on all of the routines and maybe finding a way not to use the Do loops. Can I get some help here Stack Overflow?
For your convinience I have uploaded the code to the web. You can find it here. If you can apply a modified version of this code to the plot in the question and show the wire frame I will mark your solution as the answer to this post.
Best,
J Manuel Lopez
This isn't right, but somewhat interesting:
Plot3D[Sin[x + y^2], {x, -3, 3}, {y, -2, 2}, Boxed -> False,
PlotStyle -> {EdgeForm[None], FaceForm[Red, None]}, Mesh -> False]
With a FaceForm of None, the polygon isn't rendered. I'm not sure there's a way to do this with the Mesh lines.

Is it possible to create polar CountourPlot/ListCountourPlot/DensityPlot in Mathematica?

I am looking to plot something like the whispering gallery modes -- a 2D cylindrically symmetric plot in polar coordinates. Something like this:
I found the following code snippet in Trott's symbolics guidebook. Tried running it on a very small data set; it ate 4 GB of memory and hosed my kernel:
(* add points to get smooth curves *)
addPoints[lp_][points_, \[Delta]\[CurlyEpsilon]_] :=
Module[{n, l}, Join ## (Function[pair,
If[(* additional points needed? *)
(l = Sqrt[#. #]&[Subtract ## pair]) < \[Delta]\[CurlyEpsilon], pair,
n = Floor[l/\[Delta]\[CurlyEpsilon]] + 1;
Table[# + i/n (#2 - #1), {i, 0, n - 1}]& ## pair]] /#
Partition[If[lp === Polygon,
Append[#, First[#]], #]&[points], 2, 1])]
(* Make the plot circular *)
With[{\[Delta]\[CurlyEpsilon] = 0.1, R = 10},
Show[{gr /. (lp : (Polygon | Line))[l_] :>
lp[{#2 Cos[#1], #2 Sin[#1]} & ###(* add points *)
addPoints[lp][l, \[Delta]\[CurlyEpsilon]]],
Graphics[{Thickness[0.01], GrayLevel[0], Circle[{0, 0}, R]}]},
DisplayFunction -> $DisplayFunction, Frame -> False]]
Here, gr is a rectangular 2D ListContourPlot, generated using something like this (for example):
data = With[{eth = 2, er = 2, wc = 1, m = 4},
Table[Re[
BesselJ[(Sqrt[eth] m)/Sqrt[er], Sqrt[eth] r wc] Exp[
I m phi]], {r, 0, 10, .2}, {phi, 0, 2 Pi, 0.1}]];
gr = ListContourPlot[data, Contours -> 50, ContourLines -> False,
DataRange -> {{0, 2 Pi}, {0, 10}}, DisplayFunction -> Identity,
ContourStyle -> {Thickness[0.002]}, PlotRange -> All,
ColorFunctionScaling -> False]
Is there a straightforward way to do cylindrical plots like this?.. I find it hard to believe that I would have to turn to Matlab for my curvilinear coordinate needs :)
Previous snippets deleted, since this is clearly the best answer I came up with:
With[{eth = 2, er = 2, wc = 1, m = 4},
ContourPlot[
Re[BesselJ[(Sqrt[eth] m)/Sqrt[er], Sqrt[eth] r wc] Exp[I phi m]]/.
{r ->Norm[{x, y}], phi ->ArcTan[x, y]},
{x, -10, 10}, {y, -10, 10},
Contours -> 50, ContourLines -> False,
RegionFunction -> (#1^2 + #2^2 < 100 &),
ColorFunction -> "SunsetColors"
]
]
Edit
Replacing ContourPlot by Plot3D and removing the unsupported options you get:
This is a relatively straightforward problem. The key is that if you can parametrize it, you can plot it. According to the documentation both ListContourPlot and ListDensityPlot accept data in two forms: an array of height values or a list of coordinates plus function value ({{x, y, f} ..}). The second form is easier to deal with, such that even if your data is in the first form, we'll transform it into the second form.
Simply, to transform data of the form {{r, t, f} ..} into data of the form {{x, y, f} ..} you doN[{#[[1]] Cos[ #[[2]] ], #[[1]] Sin[ #[[2]] ], #[[3]]}]& /# data, when applied to data taken from BesselJ[1, r/2] Cos[3 t] you get
What about when you just have an array of data, like this guy? In that case, you have a 2D array where each point in the array has known location, and in order to plot it, you have to turn it into the second form. I'm partial to MapIndexed, but there are other ways of doing it. Let's say your data is stored in an array where the rows correspond to the radial coordinate and the columns are the angular coordinate. Then to transform it, I'd use
R = 0.01; (*radial increment*)
T = 0.05 Pi; (*angular increment*)
xformed = MapIndexed[
With[{r = #2[[1]]*R, t = #2[[1]]*t, f = #1},
{r Cos[t], r Sin[t], f}]&, data, {2}]//Flatten[#,1]&
which gives the same result.
If you have an analytic solution, then you need to transform it to Cartesian coordinates, like above, but you use replacement rules, instead. For instance,
ContourPlot[ Evaluate[
BesselJ[1, r/2]*Cos[3 t ] /. {r -> Sqrt[x^2 + y^2], t -> ArcTan[x, y]}],
{x, -5, 5}, {y, -5, 5}, PlotPoints -> 50,
ColorFunction -> ColorData["DarkRainbow"], Contours -> 25]
gives
Two things to note: 1) Evaluate is needed to ensure that the replacement is performed correctly, and 2) ArcTan[x, y] takes into account the quadrant that the point {x,y} is found in.

Mathematica ListcontourPlot3D

I have data in the form { {x,y,z,f}...} I am using ListContourPlot3D but all I get is an empty box with dimensions -1 to 1 in each direction. Here is my code:
ListContourPlot3D[data5, PlotRange -> All,
AxesLabel -> {"[Beta]", "[Omega]", "Vo"}, Contours -> {1500}].
These are the first 5 points of my data:( the whole set has 55 points)
{{200, 20000 10^(1/3), 2000, 1226},
{200, 20000 10^(1/3), 2600, 1422},
{200, 20000 10^(1/3), 3200, 1581},
{200, 20000 10^(1/3), 3800, 1761},
{200, 20000 10^(1/3), 4400, 1872}}
Dimensions[data5] returns {55,4}
If I do IntegerPart[data5] it does it correctly so it must recognize the numbers in my data.
I appreciate any ideas.
Thank you.
It's hard to tell without having the entire dataset, but I am betting there is a problem with your Contours -> {1500} setting. What happens if you omit it altogether or use a different value?
Contours -> num
Plots num equally spaced levels contours.
Contours -> {num}
Plots the f[x,y,z] = num contour.
Did you mean the former? I doubt ListContourPlot3D can plot your data if it is too sparse or to localized. For the data sample you gave us x and y do not vary at all. Does x and y vary enough in you final data set to well populate coordinate space?
#Davorak's suggestion that the data set, as written, does not seem to vary may be the cause of the problem. Assuming that is not the case, try rotating the resulting graphic, and if you see a black plane appear, then it is the color scheme that is off. By default, ListContourPlot3D produces an opaque white surface, and I've had issues where it did not seem to produce anything, but it was just invisible. The solution: add a ContourStyle option, and set it to something like Red.
The problem is using the {x,y,z,f} form of ListContourPlot3D at low resolution.
I stumbled over this a few weeks ago as well, here is a minimal example of the bug:
xyzfdata[r_] := Flatten[#, 2] &#Table[{x, y, z, x^2 + y^2 + z^2 - 1},
{x, -2, 2, r}, {y, -2, 2, r}, {z, -2, 2, r}];
(* Low resolution {x,y,z,f} fails *)
ListContourPlot3D[xyzfdata[1], Contours -> {0}]
The solution in my case (I had my data on a grid) was to use the grid form and DataRange:
fdata[r_] := Table[x^2 + y^2 + z^2 - 1,
{z, -2, 2, r}, {y, -2, 2, r}, {x, -2, 2, r}];
(* Low resolution works ok for array data *)
ListContourPlot3D[fdata[1], Contours -> {0},
DataRange -> 2 {{-1, 1}, {-1, 1}, {-1, 1}}]
I think the issue is that for the {x,y,z,f} form, the implementation uses interpolation in a way that fails at low resolution. Upping the resolution in the first example, everything works:
(* Higher resolution {x,y,z,f} works *)
ListContourPlot3D[xyzfdata[.2], Contours -> {0}]

Resources