Automatically see high-level instructions when stopped by breakpoint in GDB? - debugging

How can I automatically see current 10 instructions whenever my program stopped by breakpoint in gdb?
(not machine instruction but high level instruction e.g
int a = 10;
int b = 12;
...
print("a = %d, b = %d\n");
To do this manually, I have to use 'list' command to see the instructions.
What command should I use?
Thanks

In addition to using tui or an Emacs gud mode, you could define hook-stop:
(gdb) define hook-stop
>list
>end

Related

How to break on the entry point of a program when debug in kernel mode with windbg?

I want to debug a program in kernel mode, and I want to break on the entry point of the program like ollydbg. But I can't break it with bp because the program is not start and the symbol can't be loaded. I have found some way to do it but I think it's not so good.
1.Break on the CreateProcess function in kernel. But I don't know which function exactly should I break and I think there is a long way between CreateProcess and the entry point of the program.
2.Change the entry point of the program with cc. But it needs other tools and I should change the code where the byte changed back. I think it is annoying.
3.With the help of ollydbg. Debugging the program with ollydbg in a virtual machine which is debugged with windbg. I don't think that it is a good idea.
4.Use sxe ld. It can be found on Listing 3.29 in <<Advanced Windows Debugging>>. I have tried it but I found that it only works on the first time. And I don't know what exactly should I do after the break.
5.Break on the entry function with bu. But I don't know what exactly I should do either. For example, how to load the symbol?
6.Use .create. I don't know whether it is properly or not to do what I said.
I think that it is a common use to break on the entry point of a program when debug in kernel mode with windbg , and I think that there must be a good way to do that with the powerful windbg. What's the best way to do it?
By the way, I want to debug a program in kernel mode because I want to get the token vaule of the program. I found that the windbg can identify the token with !token in user mode, but I don't know how to get the value of token in user mode. It seems that I can only get the value of token in the kernel mode, right or wrong?
you can run any exe in the target via ntsd -d to debug it from the kernel mode debugger running in the host
assuming you are running a virtual machine mytarget inside myhost
install windbg in myhost
set symbol path for myhost viz srv*x:\xxxx*http:\xxxxxxxxxxxx
create a kernel connection in the host (choose the best shown below is a serial connnection)
X:\xxxx\windbg.exe -k com:pipe,port=\\.\pipe\debugPipe,resets=0,reconnect
install windbg in mytarget
open a shared folder z:\ pointing to the symbolcache folder in myhost
set symbolpath in mytarget pointing to the shared folder
run ntsd -d calc.exe
kd will break on $exentry of calc.exe with Input Prompt
as long as Input prompt is shown you are using kd like a native usermode debugger
so if you set a bp calc!Winmain and issue g kd will break on calc.exe winmain
to get to kd session use .breakin
messy stuff but will work well once you get accustomed (ie memorizing the docs)
a sample run
kd> g <-------------- kd session running in myhost
CommandLine: calc.exe
Symbol search path is: srv*z:\
*http://msdl.microsoft.com/download/symbols
ntdll!DbgBreakPoint:
7c90120e cc int 3
.sympath
NOTE: The symbol path for this ntsd is relative to where
ntsd.exe is running, not where kd.exe is running.
Symbol search path is: srv*z:\
*http://msdl.microsoft.com/download/symbols
Expanded Symbol search path is: srv*z:\
*http://msdl.microsoft.com/download/symbols
.reload /f calc.exe
lm m calc
start end module name
01000000 0101f000 calc (pdb symbols) z:\calc.pdb\3B7D84101\calc.pdb
0:000> version <--------------------usermode session in kd via ntsd -d
version
Windows XP Version 2600 (Service Pack 3) UP Free x86 compatible
Live user mode: <Local>
command line: 'ntsd -d calc.exe' Debugger Process 0x3F8
? $exentry;? calc!WinmainCrtstartup
Evaluate expression: 16852085 = 01012475
Evaluate expression: 16852085 = 01012475
as to your original request i am not sure what token you are interested to find
if getting the EPROCESS->Token of your exe is the only requirement you dont have to run any kd session
you can get the token of all running process in myhost with a local kernel debugging session (either using kd -kl or by using livekd from sysinternals)
here is a simple script which fetches the sid of all running process employing the above technique
:\>cat sid.txt
!for_each_process "r $t0 =(##c++(((nt!_eprocess *) ##Process )->Token.Object)) &
##(~7); r $t1 = ##c++(((nt!_token *) #$t0 )->UserAndGroups->Sid);!sid #$t1 1; ?
? (char *)((nt!_eprocess *) ##Process )->ImageFileName "
:\>kd -kl -c "$$>a< sid.txt;q"
result
WARNING: Local kernel debugging requires booting with kernel
debugging support (/debug or bcdedit -debug on) to work optimally.
lkd> kd: Reading initial command '$$>a< sid.txt;q'
SID is: S-1-5-18 (Well Known Group: NT AUTHORITY\SYSTEM)
char * 0x8ac729a4
"System"
SID is: S-1-5-18 (Well Known Group: NT AUTHORITY\SYSTEM)
char * 0x8a35729c
"smss.exe"
SID is: S-1-5-20 (Well Known Group: NT AUTHORITY\NETWORK SERVICE)
char * 0x8a3619ac
"svchost.exe"
SID is: S-1-5-19 (Well Known Group: NT AUTHORITY\LOCAL SERVICE)
char * 0x8a36ef14
"svchost.exe"
SID is: S-1-5-21-602162358-1801674531-1417001333-1003 (User: XXXXXX\Admin)
char * 0x8a261b64
"explorer.exe"
Use the method described in the Windbg help file for debugging WinLogon. Substitute your user mode app for WinLogon:
Windbg | Help | Contents | Windows Debugging | Debugging Techniques | Specialized Debugging Techniques | Debugging WinLogon
IFEO will start your user mode app and attach ntsd.exe. From ntsd.exe, you can set a break point on image entry with bu $exentry then g to continue.
At any point that ntsd.exe is broken into your user mode process, you can issue .breakin command to switch to kernel mode debugging.

GDB autoinitialising variables

I am trying to do an example about memory management in C++. I want to show people that there always is something standing in the memory (even if you do not write anything in it)
My problem is that gdb seems to exactly delete this values for debugging purpose...
Breakpoint 1, main (argc=1, argv=0x7fffffffe8f8) at dangling.cpp:6
6 int *test=new int;
(gdb) n
8 *test=10;
(gdb) p *test
$1 = 0
(gdb) n
10 delete test;
(gdb) p *test
$2 = 10
(gdb) n
12 std::cout<<*test<<std::endl;
(gdb) p *test
$3 = 0
(gdb)
is there a way to tell gdb not to do that. I would like to see the real value in the memory instead of the 0 of $1 and $3
gdb seems to exactly delete this values for debuging purpouse.
GDB does nothing of the sort.
I would like to see the real value in the memory instead of the 0 of $1 and $3
You are seeing the real value in memory (which happens to be 0).
Your problem is that default heap allocation returns you "clean" memory. It's only on subsequent re-allocations that you'll likely see "dirty" memory.

ProcDump dumps wrong thread

Looks ProcDump dumps a post mortem dump of the wrong thread. Made ProcDump the JIT-debugger:
C:\>procdump -ma -i c:\mydumps
Made a test program C++ MFC:
int* ptr = 0;
switch(message) {
...
case IDM_CRASH:
*ptr = 23;
break;
...
Selecting the Crash item from the menu (of the program ProcDumpTest.exe), the application crashes and a dump is made. The dump however shows (windbg) a stack and an instruction pointer (eip = 7c90e514) of an unexpected thread. How to get the stack trace of thread where the error occurred?
00400000 - 004a0000 ProdDumpTest.exe
07c90000 - 07c9b000 ntdll.dll
Got the same problem in a more serious case. Thanks for any help! GMore
After the .reload /f command, the !analyze -v showed the correct information. Thanks for the help.

Profiling the memory used by linux kernel

I have linux kernel 2.6.30 on an ARM based embedded device.
I have to do some kernel memory usage profiling on the device.
I am thinking of monitoring the ps output on various kernel threads and modules while I carry out actions like wifi on/off etc.
Can you suggest me:
Which threads I need to monitor? How to monitor the kernel module memory usage?
sometimes it is useful to get the real info straight from the kernel, I have used this little C program I threw together to get real system info in an output format that is suited for the shell (it compiles down to a pretty small binary if that matters) --
#include <sys/sysinfo.h>
int main(int argc, char **argv){
struct sysinfo info;
sysinfo(&info);
printf( "UPTIME_SECONDS=%d\n"
"LOAD_1MIN=%d\n"
"LOAD_5MIN=%d\n"
"LOAD_15MIN=%d\n"
"RAM_TOT=%d\n"
"RAM_FREE=%d\n"
"MEMUSEDKB=%d\n"
"RAM_SHARED=%d\n"
"RAM_BUFFERS=%d\n"
"SWAP_TOT=%d\n"
"SWAP_FREE=%d\n"
"PROCESSES=%d\n",
info.uptime,
info.loads[0],
info.loads[1],
info.loads[2],
info.totalram,
info.freeram,
(info.totalram-info.freeram)*info.mem_unit/1024,
info.sharedram,
info.bufferram,
info.totalswap,
info.freeswap,
info.procs);
}
I use it in the shell like this:
eval `sysinfo`
BEFORERAM=$MEMUSEDKB
command &
sleep .1 #sleep value may need to be adjusted depending on command's run time
eval `sysinfo`
AFTERRAM=$MEMUSEDKB
echo RAMDELTA is $(($AFTERRAM - BEFORERAM ))

How to view the GDTR's value?

In the book "Rootkit Arsenal" page 84 (Chapter 3) mentions:
..., we can view the contents of the
target machine's descriptor registers
using the command with the 0x100 mask:
kd> rM 0x100
and a paragraph below:
Note that the same task can be
accomplished by specifying the GDTR
components explicitly: kd> r gdtr ....
I run Windbg on my Win XP (inside VMWare) and choose the Kernel Debug -> Local.
My problem is in case of first command, windbg errors with:
lkd> rM 0x100
^ Operation not supported in current debug session 'rM 0x100'
and in the second command:
lkd> r gdtr
^ Bad register error in 'r gdtr'
Can anyone guide me ?
Right, you can't look at registers in a local kernel debug session. LiveKD works and you can also get the address indirectly through the PCR (!pcr).
-scott
I think I've found the solution:
Use two computers for kernel debugging instead of Local Kernel Debug.
(I used VMWare and am debugging through the COM port/named pipe)
I am thinking why this facility/feature (Local Kernel Debugging) is there if it's not complete ?

Resources