Having more than 50 column in a SQL table - oracle

I have designed my database in such a way that One of my table contains 52 columns. All the attributes are tightly associated with the primary key attribute, So there is no scope of further Normalization.
Please let me know if same kind of situation arises and you don't want to keep so many columns in a single table, what is the other option to do that.

It is not odd in any way to have 50 columns. ERP systems often have 100+ columns in some tables.
One thing you could look into is to ensure most columns got valid default values (null, today etc). That will simplify inserts.
Also ensure your code always specifies the columns (i.e no "select *"). Any kind of future optimization will include indexes with a subset of the columns.

One approach we used once, is that you split your table into two tables. Both of these tables get the primary key of the original table. In the first table, you put your most frequently used columns and in the second table you put the lesser used columns. Generally the first one should be smaller. You now can speed up things in the first table with various indices. In our design, we even had the first table running on memory engine (RAM), since we only had reading queries. If you need to get the combination of columns from table1 and table2 you need to join both tables with the primary key.

A table with fifty-two columns is not necessarily wrong. As others have pointed out many databases have such beasts. However I would not consider ERP systems as exemplars of good data design: in my experience they tend to be rather the opposite.
Anyway, moving on!
You say this:
"All the attributes are tightly associated with the primary key
attribute"
Which means that your table is in third normal form (or perhaps BCNF). That being the case it's not true that no further normalisation is possible. Perhaps you can go to fifth normal form?
Fifth normal form is about removing join dependencies. All your columns are dependent on the primary key but there may also be dependencies between columns: e.g, there are multiple values of COL42 associated with each value of COL23. Join dependencies means that when we add a new value of COL23 we end up inserting several records, one for each value of COL42. The Wikipedia article on 5NF has a good worked example.
I admit not many people go as far as 5NF. And it might well be that even with fifty-two columns you table is already in 5NF. But it's worth checking. Because if you can break out one or two subsidiary tables you'll have improved your data model and made your main table easier to work with.

Another option is the "item-result pair" (IRP) design over the "multi-column table" MCT design, especially if you'll be adding more columns from time to time.
MCT_TABLE
---------
KEY_col(s)
Col1
Col2
Col3
...
IRP_TABLE
---------
KEY_col(s)
ITEM
VALUE
select * from IRP_TABLE;
KEY_COL ITEM VALUE
------- ---- -----
1 NAME Joe
1 AGE 44
1 WGT 202
...
IRP is a bit harder to use, but much more flexible.
I've built very large systems using the IRP design and it can perform well even for massive data. In fact it kind of behaves like a column organized DB as you only pull in the rows you need (i.e. less I/O) rather that an entire wide row when you only need a few columns (i.e. more I/O).

Related

CDC strategy for multiple staging tables

I'm implementing a Data Mart following the Kimball methodology and I have a challenge with applying deltas from multiple source tables against a single target dimension.
Here's an example of the incoming source data:
STG_APPLICATION
APP_ID, APP_NAME, APP_START_DATE, CDC_HASH, ...
1, FOOBAR, 20/10/2018, MD5_XXX
STG_APPLICATION_STATUS
APP_ID, STATUS_CODE, STATUS_DESC, CDC_HASH, ...
1, SUBMITTED, "APP WAS SUBMITTED", MD5_YYY
Each of these tables (there are several others) represent a normalised version of the source data i.e. a single application can have one or more statuses associated with it.
Now then, because we only get a full alpha for these tables we have to do a snapshot merge, i.e. apply a full outer join on the current day set of records against the previous day set of records for each individual table. This is computed by comparing the CDC_HASH (a concat of all source columns). The result of this comparison is stored in a delta table as follows:
STG_APPLICATION_DELTA
APP_ID, APP_NAME, APP_START_DATE, CDC_HASH, CDC_STATUS ...
STG_APPLICATION_STATUS
APP_ID, STATUS_CODE, STATUS_DESC, CDC_HASH, CDC_STATUS...
1, AWARDED, "APP WAS AWARDED", MD5_YYY, NEW
So in this example, the first table, STG_APPLICATION did not generate a delta record as the attributes pertaining to that table did not change between daily loads. However, the associated table, STG_APPLICATION_STATUS, did calculate a delta, i.e. one or more fields have changed since the last load. This is highlighted by the CDC_STATUS which identifies it as a new record to insert.
The problem now of course is how to correctly handle this situation when loading the target dimension? For example:
DIM_APPLICATION
ID, APPLICATION_ID, APP_NAME, APP_START_DATE, APP_STATUS_CODE, FROM_DATE, TO_DATE
1, 1, FOOBAR, 20/10/2018, SUBMITTED, 20/10/2018, 12/04/2019
2, 1, NULL, NULL, NULL, AWARDED, 13/04/2019, 99/99/9999
This shows the first record - based on these two staging tables being joined - and the second record which is meant to reflect an updated version of the record. However, as previously illustrated, my Delta tables are only partially populated, and therefore I am unable to correctly update the dimension as shown here.
Logically, I understand that I need to be able to include all fields that are used by the dimension as part of my delta calculation, so that I have a copy of a full record when updating the dimension, but I'm not sure of the best way to implement this in my staging area. As shown already, I currently only have independent staging tables, each of which calculate their delta separately.
Please can somebody advise on the best way to handle this? I'm scrutinized Kimball's books on this but to no avail. And I've equally found no suitable answer on any online forums. This is a common problem so I'm sure there exists a suitable architectural pattern to resolve this.
You will need to either compare on joined records or lookup the current dimension values.
If the amount of (unchanged) data is not excessive, you could join the full snapshots of STG_APPLICATION and STG_APPLICATION_STATUS together on APP_ID until they resemble the dimension record column-wise and store those in a separate table with their CDC hash to use as previous day. You then take the deltas at this level and send the (complete) changed records as updates to the dimension.
If the amount of records in the daily update makes it impractical to join the full tables, you can take the deltas and full outer join them as you do now. Then you look up the current dimension record for this APP_ID and fill in all empty fields in the delta record. The completed record is then sent as an update to the dimension.
This solution requires less storage but seems more fragile, especially if multiple changes are possible within a day. If there are many changes, performance may also suffer. For a handful of changes in millions of records, it should be more efficient.

(var)char as the type of the column for performance?

I have a column called "status" in PostgreSQL. First it used to be "status_id" of type integer. The values were kept on client, so there was no table on the server called statuses where I'd keep those statuses and then do inner join with the first table.
I used to send the ids of the statuses from the client (they had the names on the client). However, at some point I understood I'd better make the server hold those statuses. Not in a separate table but in the first one and I want to make them strings. So the initial table will have a status column of type string (varchar, to be more specific). I read it wouldn't be that slow.
In general, is it a good idea? I suppose it is because doing inner join (in case I'd keep statuses in the separate table) each time is expensive as well as sending ids from the client.
1) The only concern I have is that the column status should be of type char, not varchar. It should make it more effective I suppose. Is that so?
2) If the first case is correct then I'm not sure I'll be able to name all the statuses using exactly the same amount of characters, let's say, 5 characters. Some of them might be longer, some shorter. How can I solve this?
UPDATE:
It's not denationalization because I'm talking about 1 single table. There is no and has never been the second table called Statuses with the fields (id, status_name).
What I'm trying to convey is that I could use char(n) for status_name and also add index on it. Then it should be fast enough. However, it might be or not possible to name all the statuses with the certain (n) amount of characters and that's the only concern.
I don't think so using char or varchar instead integer is good idea. It is hard to expect how much slower it will be than integer PK, but this design will be slower - impact will be more terrible when you will join larger tables. If you can, use ENUM types instead.
http://www.postgresql.org/docs/9.2/static/datatype-enum.html
CREATE TYPE mood AS ENUM ('sad', 'ok', 'happy');
CREATE TABLE person (
name text,
current_mood mood
);
INSERT INTO person VALUES ('Moe', 'happy');
SELECT * FROM person WHERE current_mood = 'happy';
name | current_mood
------+--------------
Moe | happy
(1 row)
PostgreSQL varchar and char types are very similar. Internal implementation is same - char can be (it is paradox) little bit slower due addition by spaces.
I'd go one step further. Never use the outdated data type char(n), unless you know you have to (for compatibility or some rare exotic reason). The type is utterly useless in a modern database. Padding strings with blank characters is nonsense, and if you have to do it, you can do it in a cheaper fashion with rpad() on data retrieval.
SELECT rpad('short', 10) AS char_10_string;
varchar is basically the same as text and allows a length specifier: varchar(n). I generally use just text. If I need to limit the length, I use a CHECK constraint. Here's one example, why.
Whenever you can use a simple integer (or enum) instead, that's a bit smaller and faster in every respect. Consider #Pavel's answer for enum.
As for:
because doing inner join (...) each time is expensive
Well, it carries a small cost, but it's generally cheaper than redundantly saving text representation of the status instead of a much cheaper integer in the main table. That kind of rumor is spread by people having problems understanding the concept of database normalization. The enum type is a compromise here - for relatively static sets of values.

Cassandra DB: is it favorable, or frowned upon, to index multiple criteria per row?

I've been doing a lot of reading lately on Cassandra, and specifically how to structure rows to take advantage of indexing/sorting, but there is one thing I am still unclear on; how many "index" items (or filters if you will) should you include in a column family (CF) row?
Specifically: I am building an app and will be using Cassandra to archive log data, which I will use for analytics.
Example types of analytic searches will include (by date range):
total visits to specific site section
total visits by Country
traffic source
I plan to store the whole log object in JSON format, but to avoid having to go through each item to get basic data, or to create multiple CF just to get basic data, I am curious to know if it's a good idea to include these above "filters" as columns (compound column segment)?
Example:
Row Key | timeUUID:data | timeUUID:country | timeUUID:source |
======================================================
timeUUID:section | JSON Object | USA | example.com |
So as you can see from the structure, the row key would be a compound key of timeUUID (say per day) plus the site section I want to get stats for. This lets me query a date range quite easily.
Next, my dilemma, the columns. Compound column name with timeUUID lets me sort & do a time based slice, but does the concept make sense?
Is this type of structure acceptable by the current "best practice", or would it be frowned upon? Would it be advisable to create a separate "index" CF for each metric I want to query on? (even when it's as simple as this?)
I would rather get this right the first time instead of having to restructure the data and refactor my application code later.
I think the idea behind this is OK. It's a pretty common way of doing timeslicing (assuming I've understood your schema anyway - a create table snippet would be great). Some minor tweaks ...
You don't need a timeUUID as your row key. Given that you suggest partitioning by individual days (which are inherently unique) you don't need a UUID aspect. A timestamp is probably fine, or even simpler a varchar in the format YYYYMMDD (or whatever arrangement you prefer).
You will probably also want to swap your row key composition around to section:time. The reason for this is that if you need to specify an IN clause (i.e. to grab multiple days) you can only do it on the last part of the key. This means you can do WHERE section = 'foo' and time IN (....). I imagine that's a more common use case - but the decision is obviously yours.
If your common case is querying the most recent data don't forget to cluster your timeUUID columns in descending order. This keeps the hot columns at the head.
Double storing content is fine (i.e. once for the JSON payload, and denormalised again for data you need to query). Storage is cheap.
I don't think you need indexes, but it depends on the queries you intend to run. If your queries are simple then you may want to store counters by (date:parameter) instead of values and just increment them as data comes in.

Should one store a search_data tsvector in the same table or external table?

I am implementing full text search in postgres.
I would like to search all posts in my system. The posts fulltext index is an amalgamation of the post title and post body.
I have two ways of achieving this:
create a tsvector column in the posts table, trigger an update to it.
create a second table (posts_search) with a post_id and tsvector column containing the index data.
create a simple gin index ... (out of the question, cause my real world problem needs data in multiple tables for the index)
What is going to perform better, considering I sometimes need to filter down the search by other attributes in the table (like deleted_at is null and so on).
Is it a better approach to keep the tsvector column in the same table as the data (side effect select * now sucks) or a separate table (side effect, join required, index filtering is complicated)?
In my experiments, typical size of tsvector column is about 1% of the size of text field this tsvector was computed from using to_tsvector().
With this in mind, storing tsvector column in another table should provide performance benefit. For example, even if you do not use SELECT * (and you shouldn't, really), any seqscan in original single table will still have to load pages which contain original text. If you offload tsvector field to separate table, page loading will be faster by 100x.
In other words, I would favor second solution of offloading tsvector field to separate table. Or, alternatively, offloading posts (original text) deeper into your table hierarchy (but I guess it is almost the same thing).
Note that for full text search to work, original text is not necessary. You way want to even not store it in database, or store it in highly compressed format (and not necessarily easily accessible by SQL routines). It would work as long as something can create tsvector based on original text, or update when it changes.

Teradata: How to design table to be normalized with many foreign key columns?

I am designing a table in Teradata with about 30 columns. These columns are going to need to store several time-interval-style values such as Daily, Monthly, Weekly, etc. It is bad design to store the actual string values in the table since this would be an attrocious repeat of data. Instead, what I want to do is create a primitive lookup table. This table would hold Daily, Monthly, Weekly and would use Teradata's identity column to derive the primary key. This primary key would then be stored in the table I am creating as foreign keys.
This would work fine for my application since all I need to know is the primitive key value as I populate my web form's dropdown lists. However, other applications we use will need to either run reports or receive this data through feeds. Therefore, a view will need to be created that joins this table out to the primitives table so that it can actually return Daily, Monthly, and Weekly.
My concern is performance. I've never created a table with such a large amount of foreign key fields and am fairly new to Teradata. Before I go on the long road of figuring this all out the hard way, I'd like any advice I can get on the best way to achieve my goal.
Edit: I suppose I should add that this lookup table would be a mishmash of unrelated primitives. It would contain group of values relating to time intervals as already mentioned above, but also time frames such as 24x7 and 8x5. The table would be designed like this:
ID Type Value
--- ------------ ------------
1 Interval Daily
2 Interval Monthly
3 Interval Weekly
4 TimeFrame 24x7
5 TimeFrame 8x5
Edit Part 2: Added a new tag to get more exposure to this question.
What you've done should be fine. Obviously, you'll need to run the actual queries and collect statistics where appropriate.
One thing I can recommend is to have an additional row in the lookup table like so:
ID Type Value
--- ------------ ------------
0 Unknown Unknown
Then in the main table, instead of having fields as null, you would give them a value of 0. This allows you to use inner joins instead of outer joins, which will help with performance.

Resources