There is an array having 1 to 100 numbers randomly placed. But two numbers are missing from the list. What are those two numbers? [duplicate] - algorithm

I had an interesting job interview experience a while back. The question started really easy:
Q1: We have a bag containing numbers 1, 2, 3, …, 100. Each number appears exactly once, so there are 100 numbers. Now one number is randomly picked out of the bag. Find the missing number.
I've heard this interview question before, of course, so I very quickly answered along the lines of:
A1: Well, the sum of the numbers 1 + 2 + 3 + … + N is (N+1)(N/2) (see Wikipedia: sum of arithmetic series). For N = 100, the sum is 5050.
Thus, if all numbers are present in the bag, the sum will be exactly 5050. Since one number is missing, the sum will be less than this, and the difference is that number. So we can find that missing number in O(N) time and O(1) space.
At this point I thought I had done well, but all of a sudden the question took an unexpected turn:
Q2: That is correct, but now how would you do this if TWO numbers are missing?
I had never seen/heard/considered this variation before, so I panicked and couldn't answer the question. The interviewer insisted on knowing my thought process, so I mentioned that perhaps we can get more information by comparing against the expected product, or perhaps doing a second pass after having gathered some information from the first pass, etc, but I really was just shooting in the dark rather than actually having a clear path to the solution.
The interviewer did try to encourage me by saying that having a second equation is indeed one way to solve the problem. At this point I was kind of upset (for not knowing the answer before hand), and asked if this is a general (read: "useful") programming technique, or if it's just a trick/gotcha answer.
The interviewer's answer surprised me: you can generalize the technique to find 3 missing numbers. In fact, you can generalize it to find k missing numbers.
Qk: If exactly k numbers are missing from the bag, how would you find it efficiently?
This was a few months ago, and I still couldn't figure out what this technique is. Obviously there's a Ω(N) time lower bound since we must scan all the numbers at least once, but the interviewer insisted that the TIME and SPACE complexity of the solving technique (minus the O(N) time input scan) is defined in k not N.
So the question here is simple:
How would you solve Q2?
How would you solve Q3?
How would you solve Qk?
Clarifications
Generally there are N numbers from 1..N, not just 1..100.
I'm not looking for the obvious set-based solution, e.g. using a bit set, encoding the presence/absence each number by the value of a designated bit, therefore using O(N) bits in additional space. We can't afford any additional space proportional to N.
I'm also not looking for the obvious sort-first approach. This and the set-based approach are worth mentioning in an interview (they are easy to implement, and depending on N, can be very practical). I'm looking for the Holy Grail solution (which may or may not be practical to implement, but has the desired asymptotic characteristics nevertheless).
So again, of course you must scan the input in O(N), but you can only capture small amount of information (defined in terms of k not N), and must then find the k missing numbers somehow.

Here's a summary of Dimitris Andreou's link.
Remember sum of i-th powers, where i=1,2,..,k. This reduces the problem to solving the system of equations
a1 + a2 + ... + ak = b1
a12 + a22 + ... + ak2 = b2
...
a1k + a2k + ... + akk = bk
Using Newton's identities, knowing bi allows to compute
c1 = a1 + a2 + ... ak
c2 = a1a2 + a1a3 + ... + ak-1ak
...
ck = a1a2 ... ak
If you expand the polynomial (x-a1)...(x-ak) the coefficients will be exactly c1, ..., ck - see Viète's formulas. Since every polynomial factors uniquely (ring of polynomials is an Euclidean domain), this means ai are uniquely determined, up to permutation.
This ends a proof that remembering powers is enough to recover the numbers. For constant k, this is a good approach.
However, when k is varying, the direct approach of computing c1,...,ck is prohibitely expensive, since e.g. ck is the product of all missing numbers, magnitude n!/(n-k)!. To overcome this, perform computations in Zq field, where q is a prime such that n <= q < 2n - it exists by Bertrand's postulate. The proof doesn't need to be changed, since the formulas still hold, and factorization of polynomials is still unique. You also need an algorithm for factorization over finite fields, for example the one by Berlekamp or Cantor-Zassenhaus.
High level pseudocode for constant k:
Compute i-th powers of given numbers
Subtract to get sums of i-th powers of unknown numbers. Call the sums bi.
Use Newton's identities to compute coefficients from bi; call them ci. Basically, c1 = b1; c2 = (c1b1 - b2)/2; see Wikipedia for exact formulas
Factor the polynomial xk-c1xk-1 + ... + ck.
The roots of the polynomial are the needed numbers a1, ..., ak.
For varying k, find a prime n <= q < 2n using e.g. Miller-Rabin, and perform the steps with all numbers reduced modulo q.
EDIT: The previous version of this answer stated that instead of Zq, where q is prime, it is possible to use a finite field of characteristic 2 (q=2^(log n)). This is not the case, since Newton's formulas require division by numbers up to k.

You will find it by reading the couple of pages of Muthukrishnan - Data Stream Algorithms: Puzzle 1: Finding Missing Numbers. It shows exactly the generalization you are looking for. Probably this is what your interviewer read and why he posed these questions.
Also see sdcvvc's directly related answer, which also includes pseudocode (hurray! no need to read those tricky math formulations :)) (thanks, great work!).

We can solve Q2 by summing both the numbers themselves, and the squares of the numbers.
We can then reduce the problem to
k1 + k2 = x
k1^2 + k2^2 = y
Where x and y are how far the sums are below the expected values.
Substituting gives us:
(x-k2)^2 + k2^2 = y
Which we can then solve to determine our missing numbers.

As #j_random_hacker pointed out, this is quite similar to Finding duplicates in O(n) time and O(1) space, and an adaptation of my answer there works here too.
Assuming that the "bag" is represented by a 1-based array A[] of size N - k, we can solve Qk in O(N) time and O(k) additional space.
First, we extend our array A[] by k elements, so that it is now of size N. This is the O(k) additional space. We then run the following pseudo-code algorithm:
for i := n - k + 1 to n
A[i] := A[1]
end for
for i := 1 to n - k
while A[A[i]] != A[i]
swap(A[i], A[A[i]])
end while
end for
for i := 1 to n
if A[i] != i then
print i
end if
end for
The first loop initialises the k extra entries to the same as the first entry in the array (this is just a convenient value that we know is already present in the array - after this step, any entries that were missing in the initial array of size N-k are still missing in the extended array).
The second loop permutes the extended array so that if element x is present at least once, then one of those entries will be at position A[x].
Note that although it has a nested loop, it still runs in O(N) time - a swap only occurs if there is an i such that A[i] != i, and each swap sets at least one element such that A[i] == i, where that wasn't true before. This means that the total number of swaps (and thus the total number of executions of the while loop body) is at most N-1.
The third loop prints those indexes of the array i that are not occupied by the value i - this means that i must have been missing.

I asked a 4-year-old to solve this problem. He sorted the numbers and then counted along. This has a space requirement of O(kitchen floor), and it works just as easy however many balls are missing.

Not sure, if it's the most efficient solution, but I would loop over all entries, and use a bitset to remember, which numbers are set, and then test for 0 bits.
I like simple solutions - and I even believe, that it might be faster than calculating the sum, or the sum of squares etc.

I haven't checked the maths, but I suspect that computing Σ(n^2) in the same pass as we compute Σ(n) would provide enough info to get two missing numbers, Do Σ(n^3) as well if there are three, and so on.

The problem with solutions based on sums of numbers is they don't take into account the cost of storing and working with numbers with large exponents... in practice, for it to work for very large n, a big numbers library would be used. We can analyse the space utilisation for these algorithms.
We can analyse the time and space complexity of sdcvvc and Dimitris Andreou's algorithms.
Storage:
l_j = ceil (log_2 (sum_{i=1}^n i^j))
l_j > log_2 n^j (assuming n >= 0, k >= 0)
l_j > j log_2 n \in \Omega(j log n)
l_j < log_2 ((sum_{i=1}^n i)^j) + 1
l_j < j log_2 (n) + j log_2 (n + 1) - j log_2 (2) + 1
l_j < j log_2 n + j + c \in O(j log n)`
So l_j \in \Theta(j log n)
Total storage used: \sum_{j=1}^k l_j \in \Theta(k^2 log n)
Space used: assuming that computing a^j takes ceil(log_2 j) time, total time:
t = k ceil(\sum_i=1^n log_2 (i)) = k ceil(log_2 (\prod_i=1^n (i)))
t > k log_2 (n^n + O(n^(n-1)))
t > k log_2 (n^n) = kn log_2 (n) \in \Omega(kn log n)
t < k log_2 (\prod_i=1^n i^i) + 1
t < kn log_2 (n) + 1 \in O(kn log n)
Total time used: \Theta(kn log n)
If this time and space is satisfactory, you can use a simple recursive
algorithm. Let b!i be the ith entry in the bag, n the number of numbers before
removals, and k the number of removals. In Haskell syntax...
let
-- O(1)
isInRange low high v = (v >= low) && (v <= high)
-- O(n - k)
countInRange low high = sum $ map (fromEnum . isInRange low high . (!)b) [1..(n-k)]
findMissing l low high krange
-- O(1) if there is nothing to find.
| krange=0 = l
-- O(1) if there is only one possibility.
| low=high = low:l
-- Otherwise total of O(knlog(n)) time
| otherwise =
let
mid = (low + high) `div` 2
klow = countInRange low mid
khigh = krange - klow
in
findMissing (findMissing low mid klow) (mid + 1) high khigh
in
findMising 1 (n - k) k
Storage used: O(k) for list, O(log(n)) for stack: O(k + log(n))
This algorithm is more intuitive, has the same time complexity, and uses less space.

A very simple solution to Q2 which I'm surprised nobody answered already. Use the method from Q1 to find the sum of the two missing numbers. Let's denote it by S, then one of the missing numbers is smaller than S/2 and the other is bigger than S/2 (duh). Sum all the numbers from 1 to S/2 and compare it to the formula's result (similarly to the method in Q1) to find the lower between the missing numbers. Subtract it from S to find the bigger missing number.

Wait a minute. As the question is stated, there are 100 numbers in the bag. No matter how big k is, the problem can be solved in constant time because you can use a set and remove numbers from the set in at most 100 - k iterations of a loop. 100 is constant. The set of remaining numbers is your answer.
If we generalise the solution to the numbers from 1 to N, nothing changes except N is not a constant, so we are in O(N - k) = O(N) time. For instance, if we use a bit set, we set the bits to 1 in O(N) time, iterate through the numbers, setting the bits to 0 as we go (O(N-k) = O(N)) and then we have the answer.
It seems to me that the interviewer was asking you how to print out the contents of the final set in O(k) time rather than O(N) time. Clearly, with a bit set, you have to iterate through all N bits to determine whether you should print the number or not. However, if you change the way the set is implemented you can print out the numbers in k iterations. This is done by putting the numbers into an object to be stored in both a hash set and a doubly linked list. When you remove an object from the hash set, you also remove it from the list. The answers will be left in the list which is now of length k.

To solve the 2 (and 3) missing numbers question, you can modify quickselect, which on average runs in O(n) and uses constant memory if partitioning is done in-place.
Partition the set with respect to a random pivot p into partitions l, which contain numbers smaller than the pivot, and r, which contain numbers greater than the pivot.
Determine which partitions the 2 missing numbers are in by comparing the pivot value to the size of each partition (p - 1 - count(l) = count of missing numbers in l and
n - count(r) - p = count of missing numbers in r)
a) If each partition is missing one number, then use the difference of sums approach to find each missing number.
(1 + 2 + ... + (p-1)) - sum(l) = missing #1 and
((p+1) + (p+2) ... + n) - sum(r) = missing #2
b) If one partition is missing both numbers and the partition is empty, then the missing numbers are either (p-1,p-2) or (p+1,p+2)
depending on which partition is missing the numbers.
If one partition is missing 2 numbers but is not empty, then recurse onto that partiton.
With only 2 missing numbers, this algorithm always discards at least one partition, so it retains O(n) average time complexity of quickselect. Similarly, with 3 missing numbers this algorithm also discards at least one partition with each pass (because as with 2 missing numbers, at most only 1 partition will contain multiple missing numbers). However, I'm not sure how much the performance decreases when more missing numbers are added.
Here's an implementation that does not use in-place partitioning, so this example does not meet the space requirement but it does illustrate the steps of the algorithm:
<?php
$list = range(1,100);
unset($list[3]);
unset($list[31]);
findMissing($list,1,100);
function findMissing($list, $min, $max) {
if(empty($list)) {
print_r(range($min, $max));
return;
}
$l = $r = [];
$pivot = array_pop($list);
foreach($list as $number) {
if($number < $pivot) {
$l[] = $number;
}
else {
$r[] = $number;
}
}
if(count($l) == $pivot - $min - 1) {
// only 1 missing number use difference of sums
print array_sum(range($min, $pivot-1)) - array_sum($l) . "\n";
}
else if(count($l) < $pivot - $min) {
// more than 1 missing number, recurse
findMissing($l, $min, $pivot-1);
}
if(count($r) == $max - $pivot - 1) {
// only 1 missing number use difference of sums
print array_sum(range($pivot + 1, $max)) - array_sum($r) . "\n";
} else if(count($r) < $max - $pivot) {
// mroe than 1 missing number recurse
findMissing($r, $pivot+1, $max);
}
}
Demo

For Q2 this is a solution that is a bit more inefficient than the others, but still has O(N) runtime and takes O(k) space.
The idea is to run the original algorithm two times. In the first one you get a total number which is missing, which gives you an upper bound of the missing numbers. Let's call this number N. You know that the missing two numbers are going to sum up to N, so the first number can only be in the interval [1, floor((N-1)/2)] while the second is going to be in [floor(N/2)+1,N-1].
Thus you loop on all numbers once again, discarding all numbers that are not included in the first interval. The ones that are, you keep track of their sum. Finally, you'll know one of the missing two numbers, and by extension the second.
I have a feeling that this method could be generalized and maybe multiple searches run in "parallel" during a single pass over the input, but I haven't yet figured out how.

Here's a solution that uses k bits of extra storage, without any clever tricks and just straightforward. Execution time O (n), extra space O (k). Just to prove that this can be solved without reading up on the solution first or being a genius:
void puzzle (int* data, int n, bool* extra, int k)
{
// data contains n distinct numbers from 1 to n + k, extra provides
// space for k extra bits.
// Rearrange the array so there are (even) even numbers at the start
// and (odd) odd numbers at the end.
int even = 0, odd = 0;
while (even + odd < n)
{
if (data [even] % 2 == 0) ++even;
else if (data [n - 1 - odd] % 2 == 1) ++odd;
else { int tmp = data [even]; data [even] = data [n - 1 - odd];
data [n - 1 - odd] = tmp; ++even; ++odd; }
}
// Erase the lowest bits of all numbers and set the extra bits to 0.
for (int i = even; i < n; ++i) data [i] -= 1;
for (int i = 0; i < k; ++i) extra [i] = false;
// Set a bit for every number that is present
for (int i = 0; i < n; ++i)
{
int tmp = data [i];
tmp -= (tmp % 2);
if (i >= even) ++tmp;
if (tmp <= n) data [tmp - 1] += 1; else extra [tmp - n - 1] = true;
}
// Print out the missing ones
for (int i = 1; i <= n; ++i)
if (data [i - 1] % 2 == 0) printf ("Number %d is missing\n", i);
for (int i = n + 1; i <= n + k; ++i)
if (! extra [i - n - 1]) printf ("Number %d is missing\n", i);
// Restore the lowest bits again.
for (int i = 0; i < n; ++i) {
if (i < even) { if (data [i] % 2 != 0) data [i] -= 1; }
else { if (data [i] % 2 == 0) data [i] += 1; }
}
}

Motivation
If you want to solve the general-case problem, and you can store and edit the array, then Caf's solution is by far the most efficient. If you can't store the array (streaming version), then sdcvvc's answer is the only type of solution currently suggested.
The solution I propose is the most efficient answer (so far on this thread) if you can store the array but can't edit it, and I got the idea from Svalorzen's solution, which solves for 1 or 2 missing items. This solution takes Θ(k*n) time and O(min(k,log(n))) and Ω(log(k)) space. It also works well with parallelism.
Concept
The idea is that if you use the original approach of comparing sums:
sum = SumOf(1,n) - SumOf(array)
... then you take the average of the missing numbers:
average = sum/n_missing_numbers
... which provides a boundary: Of the missing numbers, there's guaranteed to be at least one number less-or-equal to average, and at least one number greater than average. This means that we can split into sub problems that each scan the array [O(n)] and are only concerned with their respective sub-arrays.
Code
C-style solution (don't judge me for the global variables, I'm just trying to make the code readable for non-c folks):
#include "stdio.h"
// Example problem:
const int array [] = {0, 7, 3, 1, 5};
const int N = 8; // size of original array
const int array_size = 5;
int SumOneTo (int n)
{
return n*(n-1)/2; // non-inclusive
}
int MissingItems (const int begin, const int end, int & average)
{
// We consider only sub-array elements with values, v:
// begin <= v < end
// Initialise info about missing elements.
// First assume all are missing:
int n = end - begin;
int sum = SumOneTo(end) - SumOneTo(begin);
// Minus everything that we see (ie not missing):
for (int i = 0; i < array_size; ++i)
{
if ((begin <= array[i]) && (array[i] < end))
{
--n;
sum -= array[i];
}
}
// used by caller:
average = sum/n;
return n;
}
void Find (const int begin, const int end)
{
int average;
if (MissingItems(begin, end, average) == 1)
{
printf(" %d", average); // average(n) is same as n
return;
}
Find(begin, average + 1); // at least one missing here
Find(average + 1, end); // at least one here also
}
int main ()
{
printf("Missing items:");
Find(0, N);
printf("\n");
}
Analysis
Ignoring recursion for a moment, each function call clearly takes O(n) time and O(1) space. Note that sum can equal as much as n(n-1)/2, so requires double the amount of bits needed to store n-1. At most this means than we effectively need two extra elements worth of space, regardless of the size of the array or k, hence it's still O(1) space under the normal conventions.
It's not so obvious how many function calls there are for k missing elements, so I'll provide a visual. Your original sub-array (connected array) is the full array, which has all k missing elements in it. We'll imagine them in increasing order, where -- represent connections (part of same sub-array):
m1 -- m2 -- m3 -- m4 -- (...) -- mk-1 -- mk
The effect of the Find function is to disconnect the missing elements into different non-overlapping sub-arrays. It guarantees that there's at least one missing element in each sub-array, which means breaking exactly one connection.
What this means is that regardless of how the splits occur, it will always take k-1 Find function calls to do the work of finding the sub-arrays that have only one missing element in it.
So the time complexity is Θ((k-1 + k) * n) = Θ(k*n).
For the space complexity, if we divide proportionally each time then we get O(log(k)) space complexity, but if we only separate one at a time it gives us O(k).
See here for a proof as to why the space complexity is O(log(n)). Given that above we've shown that it's also O(k), then we know that it's O(min(k,log(n))).

May be this algorithm can work for question 1:
Precompute xor of first 100 integers(val=1^2^3^4....100)
xor the elements as they keep coming from input stream ( val1=val1^next_input)
final answer=val^val1
Or even better:
def GetValue(A)
val=0
for i=1 to 100
do
val=val^i
done
for value in A:
do
val=val^value
done
return val
This algorithm can in fact be expanded for two missing numbers. The first step remains the same. When we call GetValue with two missing numbers the result will be a a1^a2 are the two missing numbers. Lets say
val = a1^a2
Now to sieve out a1 and a2 from val we take any set bit in val. Lets say the ith bit is set in val. That means that a1 and a2 have different parity at ith bit position.
Now we do another iteration on the original array and keep two xor values. One for the numbers which have the ith bit set and other which doesn't have the ith bit set. We now have two buckets of numbers, and its guranteed that a1 and a2 will lie in different buckets. Now repeat the same what we did for finding one missing element on each of the bucket.

There is a general way to solve streaming problems like this.
The idea is to use a bit of randomization to hopefully 'spread' the k elements into independent sub problems, where our original algorithm solves the problem for us. This technique is used in sparse signal reconstruction, among other things.
Make an array, a, of size u = k^2.
Pick any universal hash function, h : {1,...,n} -> {1,...,u}. (Like multiply-shift)
For each i in 1, ..., n increase a[h(i)] += i
For each number x in the input stream, decrement a[h(x)] -= x.
If all of the missing numbers have been hashed to different buckets, the non-zero elements of the array will now contain the missing numbers.
The probability that a particular pair is sent to the same bucket, is less than 1/u by definition of a universal hash function. Since there are about k^2/2 pairs, we have that the error probability is at most k^2/2/u=1/2. That is, we succeed with probability at least 50%, and if we increase u we increase our chances.
Notice that this algorithm takes k^2 logn bits of space (We need logn bits per array bucket.) This matches the space required by #Dimitris Andreou's answer (In particular the space requirement of polynomial factorization, which happens to also be randomized.)
This algorithm also has constant time per update, rather than time k in the case of power-sums.
In fact, we can be even more efficient than the power sum method by using the trick described in the comments.

Can you check if every number exists? If yes you may try this:
S = sum of all numbers in the bag (S < 5050)
Z = sum of the missing numbers 5050 - S
if the missing numbers are x and y then:
x = Z - y and
max(x) = Z - 1
So you check the range from 1 to max(x) and find the number

You can solve Q2 if you have the sum of both lists and the product of both lists.
(l1 is the original, l2 is the modified list)
d = sum(l1) - sum(l2)
m = mul(l1) / mul(l2)
We can optimise this since the sum of an arithmetic series is n times the average of the first and last terms:
n = len(l1)
d = (n/2)*(n+1) - sum(l2)
Now we know that (if a and b are the removed numbers):
a + b = d
a * b = m
So we can rearrange to:
a = s - b
b * (s - b) = m
And multiply out:
-b^2 + s*b = m
And rearrange so the right side is zero:
-b^2 + s*b - m = 0
Then we can solve with the quadratic formula:
b = (-s + sqrt(s^2 - (4*-1*-m)))/-2
a = s - b
Sample Python 3 code:
from functools import reduce
import operator
import math
x = list(range(1,21))
sx = (len(x)/2)*(len(x)+1)
x.remove(15)
x.remove(5)
mul = lambda l: reduce(operator.mul,l)
s = sx - sum(x)
m = mul(range(1,21)) / mul(x)
b = (-s + math.sqrt(s**2 - (-4*(-m))))/-2
a = s - b
print(a,b) #15,5
I do not know the complexity of the sqrt, reduce and sum functions so I cannot work out the complexity of this solution (if anyone does know please comment below.)

Here is a solution that doesn't rely on complex math as sdcvvc's/Dimitris Andreou's answers do, doesn't change the input array as caf and Colonel Panic did, and doesn't use the bitset of enormous size as Chris Lercher, JeremyP and many others did. Basically, I began with Svalorzen's/Gilad Deutch's idea for Q2, generalized it to the common case Qk and implemented in Java to prove that the algorithm works.
The idea
Suppose we have an arbitrary interval I of which we only know that it contains at least one of the missing numbers. After one pass through the input array, looking only at the numbers from I, we can obtain both the sum S and the quantity Q of missing numbers from I. We do this by simply decrementing I's length each time we encounter a number from I (for obtaining Q) and by decreasing pre-calculated sum of all numbers in I by that encountered number each time (for obtaining S).
Now we look at S and Q. If Q = 1, it means that then I contains only one of the missing numbers, and this number is clearly S. We mark I as finished (it is called "unambiguous" in the program) and leave it out from further consideration. On the other hand, if Q > 1, we can calculate the average A = S / Q of missing numbers contained in I. As all numbers are distinct, at least one of such numbers is strictly less than A and at least one is strictly greater than A. Now we split I in A into two smaller intervals each of which contains at least one missing number. Note that it doesn't matter to which of the intervals we assign A in case it is an integer.
We make the next array pass calculating S and Q for each of the intervals separately (but in the same pass) and after that mark intervals with Q = 1 and split intervals with Q > 1. We continue this process until there are no new "ambiguous" intervals, i.e. we have nothing to split because each interval contains exactly one missing number (and we always know this number because we know S). We start out from the sole "whole range" interval containing all possible numbers (like [1..N] in the question).
Time and space complexity analysis
The total number of passes p we need to make until the process stops is never greater than the missing numbers count k. The inequality p <= k can be proved rigorously. On the other hand, there is also an empirical upper bound p < log2N + 3 that is useful for large values of k. We need to make a binary search for each number of the input array to determine the interval to which it belongs. This adds the log k multiplier to the time complexity.
In total, the time complexity is O(N ᛫ min(k, log N) ᛫ log k). Note that for large k, this is significantly better than that of sdcvvc/Dimitris Andreou's method, which is O(N ᛫ k).
For its work, the algorithm requires O(k) additional space for storing at most k intervals, that is significantly better than O(N) in "bitset" solutions.
Java implementation
Here's a Java class that implements the above algorithm. It always returns a sorted array of missing numbers. Besides that, it doesn't require the missing numbers count k because it calculates it in the first pass. The whole range of numbers is given by the minNumber and maxNumber parameters (e.g. 1 and 100 for the first example in the question).
public class MissingNumbers {
private static class Interval {
boolean ambiguous = true;
final int begin;
int quantity;
long sum;
Interval(int begin, int end) { // begin inclusive, end exclusive
this.begin = begin;
quantity = end - begin;
sum = quantity * ((long)end - 1 + begin) / 2;
}
void exclude(int x) {
quantity--;
sum -= x;
}
}
public static int[] find(int minNumber, int maxNumber, NumberBag inputBag) {
Interval full = new Interval(minNumber, ++maxNumber);
for (inputBag.startOver(); inputBag.hasNext();)
full.exclude(inputBag.next());
int missingCount = full.quantity;
if (missingCount == 0)
return new int[0];
Interval[] intervals = new Interval[missingCount];
intervals[0] = full;
int[] dividers = new int[missingCount];
dividers[0] = minNumber;
int intervalCount = 1;
while (true) {
int oldCount = intervalCount;
for (int i = 0; i < oldCount; i++) {
Interval itv = intervals[i];
if (itv.ambiguous)
if (itv.quantity == 1) // number inside itv uniquely identified
itv.ambiguous = false;
else
intervalCount++; // itv will be split into two intervals
}
if (oldCount == intervalCount)
break;
int newIndex = intervalCount - 1;
int end = maxNumber;
for (int oldIndex = oldCount - 1; oldIndex >= 0; oldIndex--) {
// newIndex always >= oldIndex
Interval itv = intervals[oldIndex];
int begin = itv.begin;
if (itv.ambiguous) {
// split interval itv
// use floorDiv instead of / because input numbers can be negative
int mean = (int)Math.floorDiv(itv.sum, itv.quantity) + 1;
intervals[newIndex--] = new Interval(mean, end);
intervals[newIndex--] = new Interval(begin, mean);
} else
intervals[newIndex--] = itv;
end = begin;
}
for (int i = 0; i < intervalCount; i++)
dividers[i] = intervals[i].begin;
for (inputBag.startOver(); inputBag.hasNext();) {
int x = inputBag.next();
// find the interval to which x belongs
int i = java.util.Arrays.binarySearch(dividers, 0, intervalCount, x);
if (i < 0)
i = -i - 2;
Interval itv = intervals[i];
if (itv.ambiguous)
itv.exclude(x);
}
}
assert intervalCount == missingCount;
for (int i = 0; i < intervalCount; i++)
dividers[i] = (int)intervals[i].sum;
return dividers;
}
}
For fairness, this class receives input in form of NumberBag objects. NumberBag doesn't allow array modification and random access and also counts how many times the array was requested for sequential traversing. It is also more suitable for large array testing than Iterable<Integer> because it avoids boxing of primitive int values and allows wrapping a part of a large int[] for a convenient test preparation. It is not hard to replace, if desired, NumberBag by int[] or Iterable<Integer> type in the find signature, by changing two for-loops in it into foreach ones.
import java.util.*;
public abstract class NumberBag {
private int passCount;
public void startOver() {
passCount++;
}
public final int getPassCount() {
return passCount;
}
public abstract boolean hasNext();
public abstract int next();
// A lightweight version of Iterable<Integer> to avoid boxing of int
public static NumberBag fromArray(int[] base, int fromIndex, int toIndex) {
return new NumberBag() {
int index = toIndex;
public void startOver() {
super.startOver();
index = fromIndex;
}
public boolean hasNext() {
return index < toIndex;
}
public int next() {
if (index >= toIndex)
throw new NoSuchElementException();
return base[index++];
}
};
}
public static NumberBag fromArray(int[] base) {
return fromArray(base, 0, base.length);
}
public static NumberBag fromIterable(Iterable<Integer> base) {
return new NumberBag() {
Iterator<Integer> it;
public void startOver() {
super.startOver();
it = base.iterator();
}
public boolean hasNext() {
return it.hasNext();
}
public int next() {
return it.next();
}
};
}
}
Tests
Simple examples demonstrating the usage of these classes are given below.
import java.util.*;
public class SimpleTest {
public static void main(String[] args) {
int[] input = { 7, 1, 4, 9, 6, 2 };
NumberBag bag = NumberBag.fromArray(input);
int[] output = MissingNumbers.find(1, 10, bag);
System.out.format("Input: %s%nMissing numbers: %s%nPass count: %d%n",
Arrays.toString(input), Arrays.toString(output), bag.getPassCount());
List<Integer> inputList = new ArrayList<>();
for (int i = 0; i < 10; i++)
inputList.add(2 * i);
Collections.shuffle(inputList);
bag = NumberBag.fromIterable(inputList);
output = MissingNumbers.find(0, 19, bag);
System.out.format("%nInput: %s%nMissing numbers: %s%nPass count: %d%n",
inputList, Arrays.toString(output), bag.getPassCount());
// Sieve of Eratosthenes
final int MAXN = 1_000;
List<Integer> nonPrimes = new ArrayList<>();
nonPrimes.add(1);
int[] primes;
int lastPrimeIndex = 0;
while (true) {
primes = MissingNumbers.find(1, MAXN, NumberBag.fromIterable(nonPrimes));
int p = primes[lastPrimeIndex]; // guaranteed to be prime
int q = p;
for (int i = lastPrimeIndex++; i < primes.length; i++) {
q = primes[i]; // not necessarily prime
int pq = p * q;
if (pq > MAXN)
break;
nonPrimes.add(pq);
}
if (q == p)
break;
}
System.out.format("%nSieve of Eratosthenes. %d primes up to %d found:%n",
primes.length, MAXN);
for (int i = 0; i < primes.length; i++)
System.out.format(" %4d%s", primes[i], (i % 10) < 9 ? "" : "\n");
}
}
Large array testing can be performed this way:
import java.util.*;
public class BatchTest {
private static final Random rand = new Random();
public static int MIN_NUMBER = 1;
private final int minNumber = MIN_NUMBER;
private final int numberCount;
private final int[] numbers;
private int missingCount;
public long finderTime;
public BatchTest(int numberCount) {
this.numberCount = numberCount;
numbers = new int[numberCount];
for (int i = 0; i < numberCount; i++)
numbers[i] = minNumber + i;
}
private int passBound() {
int mBound = missingCount > 0 ? missingCount : 1;
int nBound = 34 - Integer.numberOfLeadingZeros(numberCount - 1); // ceil(log_2(numberCount)) + 2
return Math.min(mBound, nBound);
}
private void error(String cause) {
throw new RuntimeException("Error on '" + missingCount + " from " + numberCount + "' test, " + cause);
}
// returns the number of times the input array was traversed in this test
public int makeTest(int missingCount) {
this.missingCount = missingCount;
// numbers array is reused when numberCount stays the same,
// just Fisher–Yates shuffle it for each test
for (int i = numberCount - 1; i > 0; i--) {
int j = rand.nextInt(i + 1);
if (i != j) {
int t = numbers[i];
numbers[i] = numbers[j];
numbers[j] = t;
}
}
final int bagSize = numberCount - missingCount;
NumberBag inputBag = NumberBag.fromArray(numbers, 0, bagSize);
finderTime -= System.nanoTime();
int[] found = MissingNumbers.find(minNumber, minNumber + numberCount - 1, inputBag);
finderTime += System.nanoTime();
if (inputBag.getPassCount() > passBound())
error("too many passes (" + inputBag.getPassCount() + " while only " + passBound() + " allowed)");
if (found.length != missingCount)
error("wrong result length");
int j = bagSize; // "missing" part beginning in numbers
Arrays.sort(numbers, bagSize, numberCount);
for (int i = 0; i < missingCount; i++)
if (found[i] != numbers[j++])
error("wrong result array, " + i + "-th element differs");
return inputBag.getPassCount();
}
public static void strideCheck(int numberCount, int minMissing, int maxMissing, int step, int repeats) {
BatchTest t = new BatchTest(numberCount);
System.out.println("╠═══════════════════════╬═════════════════╬═════════════════╣");
for (int missingCount = minMissing; missingCount <= maxMissing; missingCount += step) {
int minPass = Integer.MAX_VALUE;
int passSum = 0;
int maxPass = 0;
t.finderTime = 0;
for (int j = 1; j <= repeats; j++) {
int pCount = t.makeTest(missingCount);
if (pCount < minPass)
minPass = pCount;
passSum += pCount;
if (pCount > maxPass)
maxPass = pCount;
}
System.out.format("║ %9d %9d ║ %2d %5.2f %2d ║ %11.3f ║%n", missingCount, numberCount, minPass,
(double)passSum / repeats, maxPass, t.finderTime * 1e-6 / repeats);
}
}
public static void main(String[] args) {
System.out.println("╔═══════════════════════╦═════════════════╦═════════════════╗");
System.out.println("║ Number count ║ Passes ║ Average time ║");
System.out.println("║ missimg total ║ min avg max ║ per search (ms) ║");
long time = System.nanoTime();
strideCheck(100, 0, 100, 1, 20_000);
strideCheck(100_000, 2, 99_998, 1_282, 15);
MIN_NUMBER = -2_000_000_000;
strideCheck(300_000_000, 1, 10, 1, 1);
time = System.nanoTime() - time;
System.out.println("╚═══════════════════════╩═════════════════╩═════════════════╝");
System.out.format("%nSuccess. Total time: %.2f s.%n", time * 1e-9);
}
}
Try them out on Ideone

I think this can be done without any complex mathematical equations and theories. Below is a proposal for an in place and O(2n) time complexity solution:
Input form assumptions :
# of numbers in bag = n
# of missing numbers = k
The numbers in the bag are represented by an array of length n
Length of input array for the algo = n
Missing entries in the array (numbers taken out of the bag) are replaced by the value of the first element in the array.
Eg. Initially bag looks like [2,9,3,7,8,6,4,5,1,10].
If 4 is taken out, value of 4 will become 2 (the first element of the array).
Therefore after taking 4 out the bag will look like [2,9,3,7,8,6,2,5,1,10]
The key to this solution is to tag the INDEX of a visited number by negating the value at that INDEX as the array is traversed.
IEnumerable<int> GetMissingNumbers(int[] arrayOfNumbers)
{
List<int> missingNumbers = new List<int>();
int arrayLength = arrayOfNumbers.Length;
//First Pass
for (int i = 0; i < arrayLength; i++)
{
int index = Math.Abs(arrayOfNumbers[i]) - 1;
if (index > -1)
{
arrayOfNumbers[index] = Math.Abs(arrayOfNumbers[index]) * -1; //Marking the visited indexes
}
}
//Second Pass to get missing numbers
for (int i = 0; i < arrayLength; i++)
{
//If this index is unvisited, means this is a missing number
if (arrayOfNumbers[i] > 0)
{
missingNumbers.Add(i + 1);
}
}
return missingNumbers;
}

Thanks for this very interesting question:
It's because you reminded me Newton's work which really can solve this problem
Please refer Newton's Identities
As number of variables to find = number of equations (must for consistency)
I believe for this we should raise power to bag numbers so as to create number of different equations.
I don't know but, I believe if there should a function say f for which we'll add f( xi )
x1 + x2 + ... + xk = z1
x12 + x22 + ... + xk2 = z2
............
............
............
x1k + x2k + ... + xkk = zk
rest is a mathematical work not sure about time and space complexity but Newton's Identities will surely play important role.
Can't we use set theory
.difference_update() or Is there any chance of Linear Algebra in this question method?

You'd probably need clarification on what O(k) means.
Here's a trivial solution for arbitrary k: for each v in your set of numbers, accumulate the sum of 2^v. At the end, loop i from 1 to N. If sum bitwise ANDed with 2^i is zero, then i is missing. (Or numerically, if floor of the sum divided by 2^i is even. Or sum modulo 2^(i+1)) < 2^i.)
Easy, right? O(N) time, O(1) storage, and it supports arbitrary k.
Except that you're computing enormous numbers that on a real computer would each require O(N) space. In fact, this solution is identical to a bit vector.
So you could be clever and compute the sum and the sum of squares and the sum of cubes... up to the sum of v^k, and do the fancy math to extract the result. But those are big numbers too, which begs the question: what abstract model of operation are we talking about? How much fits in O(1) space, and how long does it take to sum up numbers of whatever size you need?

I have read all thirty answers and found the simplest one i.e to use a bit array of 100 to be the best. But as the question said we can't use an array of size N, I would use O(1) space complexity and k iterations i.e O(NK) time complexity to solve this.
To make the explanation simpler, consider I have been given numbers from 1 to 15 and two of them are missing i.e 9 and 14 but I don't know. Let the bag look like this:
[8,1,2,12,4,7,5,10,11,13,15,3,6].
We know that each number is represented internally in the form of bits.
For numbers till 16 we only need 4 bits. For numbers till 10^9, we will need 32 bits. But let's focus on 4 bits and then later we can generalize it.
Now, assume if we had all the numbers from 1 to 15, then internally, we would have numbers like this (if we had them ordered):
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
But now we have two numbers missing. So our representation will look something like this (shown ordered for understanding but can be in any order):
(2MSD|2LSD)
00|01
00|10
00|11
-----
01|00
01|01
01|10
01|11
-----
10|00
missing=(10|01)
10|10
10|11
-----
11|00
11|01
missing=(11|10)
11|11
Now let's make a bit array of size 2 that holds the count of numbers with corresponding 2 most significant digits. i.e
= [__,__,__,__]
00,01,10,11
Scan the bag from left and right and fill the above array such that each of bin of bit array contains the count of numbers. The result will be as under:
= [ 3, 4, 3, 3]
00,01,10,11
If all the numbers would have been present, it would have looked like this:
= [ 3, 4, 4, 4]
00,01,10,11
Thus we know that there are two numbers missing: one whose most 2 significant digits are 10 and one whose most 2 significant bits are 11. Now scan the list again and fill out a bit array of size 2 for the lower 2 significant digits. This time, only consider elements whose most 2 significant digits are 10. We will have the bit array as:
= [ 1, 0, 1, 1]
00,01,10,11
If all numbers of MSD=10 were present, we would have 1 in all the bins but now we see that one is missing. Thus we have the number whose MSD=10 and LSD=01 is missing which is 1001 i.e 9.
Similarly, if we scan again but consider only elements whose MSD=11,we get MSD=11 and LSD=10 missing which is 1110 i.e 14.
= [ 1, 0, 1, 1]
00,01,10,11
Thus, we can find the missing numbers in a constant amount of space. We can generalize this for 100, 1000 or 10^9 or any set of numbers.
References: Problem 1.6 in http://users.ece.utexas.edu/~adnan/afi-samples-new.pdf

Very nice problem. I'd go for using a set difference for Qk. A lot of programming languages even have support for it, like in Ruby:
missing = (1..100).to_a - bag
It's probably not the most efficient solution but it's one I would use in real life if I was faced with such a task in this case (known boundaries, low boundaries). If the set of number would be very large then I would consider a more efficient algorithm, of course, but until then the simple solution would be enough for me.

You could try using a Bloom Filter. Insert each number in the bag into the bloom, then iterate over the complete 1-k set until reporting each one not found. This may not find the answer in all scenarios, but might be a good enough solution.

I'd take a different approach to that question and probe the interviewer for more details about the larger problem he's trying to solve. Depending on the problem and the requirements surrounding it, the obvious set-based solution might be the right thing and the generate-a-list-and-pick-through-it-afterward approach might not.
For example, it might be that the interviewer is going to dispatch n messages and needs to know the k that didn't result in a reply and needs to know it in as little wall clock time as possible after the n-kth reply arrives. Let's also say that the message channel's nature is such that even running at full bore, there's enough time to do some processing between messages without having any impact on how long it takes to produce the end result after the last reply arrives. That time can be put to use inserting some identifying facet of each sent message into a set and deleting it as each corresponding reply arrives. Once the last reply has arrived, the only thing to be done is to remove its identifier from the set, which in typical implementations takes O(log k+1). After that, the set contains the list of k missing elements and there's no additional processing to be done.
This certainly isn't the fastest approach for batch processing pre-generated bags of numbers because the whole thing runs O((log 1 + log 2 + ... + log n) + (log n + log n-1 + ... + log k)). But it does work for any value of k (even if it's not known ahead of time) and in the example above it was applied in a way that minimizes the most critical interval.

This might sound stupid, but, in the first problem presented to you, you would have to see all the remaining numbers in the bag to actually add them up to find the missing number using that equation.
So, since you get to see all the numbers, just look for the number that's missing. The same goes for when two numbers are missing. Pretty simple I think. No point in using an equation when you get to see the numbers remaining in the bag.

You can motivate the solution by thinking about it in terms of symmetries (groups, in math language). No matter the order of the set of numbers, the answer should be the same. If you're going to use k functions to help determine the missing elements, you should be thinking about what functions have that property: symmetric. The function s_1(x) = x_1 + x_2 + ... + x_n is an example of a symmetric function, but there are others of higher degree. In particular, consider the elementary symmetric functions. The elementary symmetric function of degree 2 is s_2(x) = x_1 x_2 + x_1 x_3 + ... + x_1 x_n + x_2 x_3 + ... + x_(n-1) x_n, the sum of all products of two elements. Similarly for the elementary symmetric functions of degree 3 and higher. They are obviously symmetric. Furthermore, it turns out they are the building blocks for all symmetric functions.
You can build the elementary symmetric functions as you go by noting that s_2(x,x_(n+1)) = s_2(x) + s_1(x)(x_(n+1)). Further thought should convince you that s_3(x,x_(n+1)) = s_3(x) + s_2(x)(x_(n+1)) and so on, so they can be computed in one pass.
How do we tell which items were missing from the array? Think about the polynomial (z-x_1)(z-x_2)...(z-x_n). It evaluates to 0 if you put in any of the numbers x_i. Expanding the polynomial, you get z^n-s_1(x)z^(n-1)+ ... + (-1)^n s_n. The elementary symmetric functions appear here too, which is really no surprise, since the polynomial should stay the same if we apply any permutation to the roots.
So we can build the polynomial and try to factor it to figure out which numbers are not in the set, as others have mentioned.
Finally, if we are concerned about overflowing memory with large numbers (the nth symmetric polynomial will be of the order 100!), we can do these calculations mod p where p is a prime bigger than 100. In that case we evaluate the polynomial mod p and find that it again evaluates to 0 when the input is a number in the set, and it evaluates to a non-zero value when the input is a number not in the set. However, as others have pointed out, to get the values out of the polynomial in time that depends on k, not N, we have to factor the polynomial mod p.

I believe I have a O(k) time and O(log(k)) space algorithm, given that you have the floor(x) and log2(x) functions for arbitrarily big integers available:
You have an k-bit long integer (hence the log8(k) space) where you add the x^2, where x is the next number you find in the bag: s=1^2+2^2+... This takes O(N) time (which is not a problem for the interviewer). At the end you get j=floor(log2(s)) which is the biggest number you're looking for. Then s=s-j and you do again the above:
for (i = 0 ; i < k ; i++)
{
j = floor(log2(s));
missing[i] = j;
s -= j;
}
Now, you usually don't have floor and log2 functions for 2756-bit integers but instead for doubles. So? Simply, for each 2 bytes (or 1, or 3, or 4) you can use these functions to get the desired numbers, but this adds an O(N) factor to time complexity

Try to find the product of numbers from 1 to 50:
Let product, P1 = 1 x 2 x 3 x ............. 50
When you take out numbers one by one, multiply them so that you get the product P2. But two numbers are missing here, hence P2 < P1.
The product of the two mising terms, a x b = P1 - P2.
You already know the sum, a + b = S1.
From the above two equations, solve for a and b through a quadratic equation. a and b are your missing numbers.

Related

Find minimum cost to convert array to arithmetic progression

I recently encountered this question in an interview. I couldn't really come up with an algorithm for this.
Given an array of unsorted integers, we have to find the minimum cost in which this array can be converted to an Arithmetic Progression where a cost of 1 unit is incurred if any element is changed in the array. Also, the value of the element ranges between (-inf,inf).
I sort of realised that DP can be used here, but I couldn't solve the equation. There were some constraints on the values, but I don't remember them. I am just looking for high level pseudo code.
EDIT
Here's a correct solution, unfortunately, while simple to understand it's not very efficient at O(n^3).
function costAP(arr) {
if(arr.length < 3) { return 0; }
var minCost = arr.length;
for(var i = 0; i < arr.length - 1; i++) {
for(var j = i + 1; j < arr.length; j++) {
var delta = (arr[j] - arr[i]) / (j - i);
var cost = 0;
for(var k = 0; k < arr.length; k++) {
if(k == i) { continue; }
if((arr[k] + delta * (i - k)) != arr[i]) { cost++; }
}
if(cost < minCost) { minCost = cost; }
}
}
return minCost;
}
Find the relative delta between every distinct pair of indices in the array
Use the relative delta to test the cost of transforming the whole array to AP using that delta
Return the minimum cost
Louis Ricci had the right basic idea of looking for the largest existing arithmetic progression, but assumed that it would have to appear in a single run, when in fact the elements of this progression can appear in any subset of the positions, e.g.:
1 42 3 69 5 1111 2222 8
requires just 4 changes:
42 69 1111 2222
1 3 5 8
To calculate this, notice that every AP has a rightmost element. We can suppose each element i of the input vector to be the rightmost AP position in turn, and for each such i consider all positions j to the left of i, determining the step size implied for each (i, j) combination and, when this is integer (indicating a valid AP), add one to the the number of elements that imply this step size and end at position i -- since all such elements belong to the same AP. The overall maximum is then the longest AP:
struct solution {
int len;
int pos;
int step;
};
solution longestArithProg(vector<int> const& v) {
solution best = { -1, 0, 0 };
for (int i = 1; i < v.size(); ++i) {
unordered_map<int, int> bestForStep;
for (int j = 0; j < i; ++j) {
int step = (v[i] - v[j]) / (i - j);
if (step * (i - j) == v[i] - v[j]) {
// This j gives an integer step size: record that j lies on this AP
int len = ++bestForStep[step];
if (len > best.len) {
best.len = len;
best.pos = i;
best.step = step;
}
}
}
}
++best.len; // We never counted the final element in the AP
return best;
}
The above C++ code uses O(n^2) time and O(n) space, since it loops over every pair of positions i and j, performing a single hash read and write for each. To answer the original problem:
int howManyChangesNeeded(vector<int> const& v) {
return v.size() - longestArithProg(v).len;
}
This problem has a simple geometric interpretation, which shows that it can be solved in O(n^2) time and probably can't be solved any faster than that (reduction from 3SUM). Suppose our array is [1, 2, 10, 3, 5]. We can write that array as a sequence of points
(0,1), (1,2), (2,10), (3,3), (4,5)
in which the x-value is the index of the array item and the y-value is the value of the array item. The question now becomes one of finding a line which passes the maximum possible number of points in that set. The cost of converting the array is the number of points not on a line, which is minimized when the number of points on a line is maximized.
A fairly definitive answer to that question is given in this SO posting: What is the most efficient algorithm to find a straight line that goes through most points?
The idea: for each point P in the set from left to right, find the line passing through that point and a maximum number of points to the right of P. (We don't need to look at points to the left of P because they would have been caught in an earlier iteration).
To find the maximum number of P-collinear points to the right of P, for each such point Q calculate the slope of the line segment PQ. Tally up the different slopes in a hash map. The slope which maps to the maximum number of hits is what you're looking for.
Technical issue: you probably don't want to use floating point arithmetic to calculate the slopes. On the other hand, if you use rational numbers, you potentially have to calculate the greatest common divisor in order to compare fractions by comparing numerator and denominator, which multiplies running time by a factor of log n. Instead, you should check equality of rational numbers a/b and c/d by testing whether ad == bc.
The SO posting referenced above gives a reduction from 3SUM, i.e., this problem is 3SUM-hard which shows that if this problem could be solved substantially faster than O(n^2), then 3SUM could also be solved substantially faster than O(n^2). This is where the condition that the integers are in (-inf,inf) comes in. If it is known that the integers are from a bounded set, the reduction from 3SUM is not definitive.
An interesting further question is whether the idea in the Wikipedia for solving 3SUM in O(n + N log N) time when the integers are in the bounded set (-N,N) can be used to solve the minimum cost to convert an array to an AP problem in time faster than O(n^2).
Given the array a = [a_1, a_2, ..., a_n] of unsorted integers, let diffs = [a_2-a_1, a_3-a_2, ..., a_n-a_(n-1)].
Find the maximum occurring value in diffs and adjust any values in a necessary so that all neighboring values differ by this amount.
Interestingly,even I had the same question in my campus recruitment test today.While doing the test itself,I realised that this logic of altering elements based on most frequent differences between 2 subsequent elements in the array fails in some cases.
Eg-4,5,8,9 .According to the logic of a2-a1,a3-a2 as proposed above,answer shud be 1 which is not the case.
As you suggested DP,I feel it can be on the lines of considering 2 values for each element in array-cost when it is modified as well as when it is not modified and return minimum of the 2.Finally terminate when you reach end of the array.

What is the probability that the array will remain the same?

This question has been asked in Microsoft interview. Very much curious to know why these people ask so strange questions on probability?
Given a rand(N), a random generator which generates random number from 0 to N-1.
int A[N]; // An array of size N
for(i = 0; i < N; i++)
{
int m = rand(N);
int n = rand(N);
swap(A[m],A[n]);
}
EDIT: Note that the seed is not fixed.
what is the probability that array A remains the same?
Assume that the array contains unique elements.
Well I had a little fun with this one. The first thing I thought of when I first read the problem was group theory (the symmetric group Sn, in particular). The for loop simply builds a permutation σ in Sn by composing transpositions (i.e. swaps) on each iteration. My math is not all that spectacular and I'm a little rusty, so if my notation is off bear with me.
Overview
Let A be the event that our array is unchanged after permutation. We are ultimately asked to find the probability of event A, Pr(A).
My solution attempts to follow the following procedure:
Consider all possible permutations (i.e. reorderings of our array)
Partition these permutations into disjoint sets based on the number of so-called identity transpositions they contain. This helps reduce the problem to even permutations only.
Determine the probability of obtaining the identity permutation given that the permutation is even (and of a particular length).
Sum these probabilities to obtain the overall probability the array is unchanged.
1) Possible Outcomes
Notice that each iteration of the for loop creates a swap (or transposition) that results one of two things (but never both):
Two elements are swapped.
An element is swapped with itself. For our intents and purposes, the array is unchanged.
We label the second case. Let's define an identity transposition as follows:
An identity transposition occurs when a number is swapped with itself.
That is, when n == m in the above for loop.
For any given run of the listed code, we compose N transpositions. There can be 0, 1, 2, ... , N of the identity transpositions appearing in this "chain".
For example, consider an N = 3 case:
Given our input [0, 1, 2].
Swap (0 1) and get [1, 0, 2].
Swap (1 1) and get [1, 0, 2]. ** Here is an identity **
Swap (2 2) and get [1, 0, 2]. ** And another **
Note that there is an odd number of non-identity transpositions (1) and the array is changed.
2) Partitioning Based On the Number of Identity Transpositions
Let K_i be the event that i identity transpositions appear in a given permutation. Note this forms an exhaustive partition of all possible outcomes:
No permutation can have two different quantities of identity transpositions simultaneously, and
All possible permutations must have between 0 and N identity transpositions.
Thus we can apply the Law of Total Probability:
Now we can finally take advantage of the the partition. Note that when the number of non-identity transpositions is odd, there is no way the array can go unchanged*. Thus:
*From group theory, a permutation is even or odd but never both. Therefore an odd permutation cannot be the identity permutation (since the identity permutation is even).
3) Determining Probabilities
So we now must determine two probabilities for N-i even:
The First Term
The first term, , represents the probability of obtaining a permutation with i identity transpositions. This turns out to be binomial since for each iteration of the for loop:
The outcome is independent of the results before it, and
The probability of creating an identity transposition is the same, namely 1/N.
Thus for N trials, the probability of obtaining i identity transpositions is:
The Second Term
So if you've made it this far, we have reduced the problem to finding for N - i even. This represents the probability of obtaining an identity permutation given i of the transpositions are identities. I use a naive counting approach to determine the number of ways of achieving the identity permutation over the number of possible permutations.
First consider the permutations (n, m) and (m, n) equivalent. Then, let M be the number of non-identity permutations possible. We will use this quantity frequently.
The goal here is to determine the number of ways a collections of transpositions can be combined to form the identity permutation. I will try to construct the general solution along side an example of N = 4.
Let's consider the N = 4 case with all identity transpositions (i.e. i = N = 4). Let X represent an identity transposition. For each X, there are N possibilities (they are: n = m = 0, 1, 2, ... , N - 1). Thus there are N^i = 4^4 possibilities for achieving the identity permutation. For completeness, we add the binomial coefficient, C(N, i), to consider ordering of the identity transpositions (here it just equals 1). I've tried to depict this below with the physical layout of elements above and the number of possibilities below:
I = _X_ _X_ _X_ _X_
N * N * N * N * C(4, 4) => N^N * C(N, N) possibilities
Now without explicitly substituting N = 4 and i = 4, we can look at the general case. Combining the above with the denominator found previously, we find:
This is intuitive. In fact, any other value other than 1 should probably alarm you. Think about it: we are given the situation in which all N transpositions are said to be identities. What's the probably that the array is unchanged in this situation? Clearly, 1.
Now, again for N = 4, let's consider 2 identity transpositions (i.e. i = N - 2 = 2). As a convention, we will place the two identities at the end (and account for ordering later). We know now that we need to pick two transpositions which, when composed, will become the identity permutation. Let's place any element in the first location, call it t1. As stated above, there are M possibilities supposing t1 is not an identity (it can't be as we have already placed two).
I = _t1_ ___ _X_ _X_
M * ? * N * N
The only element left that could possibly go in the second spot is the inverse of t1, which is in fact t1 (and this is the only one by uniqueness of inverse). We again include the binomial coefficient: in this case we have 4 open locations and we are looking to place 2 identity permutations. How many ways can we do that? 4 choose 2.
I = _t1_ _t1_ _X_ _X_
M * 1 * N * N * C(4, 2) => C(N, N-2) * M * N^(N-2) possibilities
Again looking at the general case, this all corresponds to:
Finally we do the N = 4 case with no identity transpositions (i.e. i = N - 4 = 0). Since there are a lot of possibilities, it starts to get tricky and we must be careful not to double count. We start similarly by placing a single element in the first spot and working out possible combinations. Take the easiest first: the same transposition 4 times.
I = _t1_ _t1_ _t1_ _t1_
M * 1 * 1 * 1 => M possibilities
Let's now consider two unique elements t1 and t2. There are M possibilities for t1 and only M-1 possibilities for t2 (since t2 cannot be equal to t1). If we exhaust all arrangements, we are left with the following patterns:
I = _t1_ _t1_ _t2_ _t2_
M * 1 * M-1 * 1 => M * (M - 1) possibilities (1)st
= _t1_ _t2_ _t1_ _t2_
M * M-1 * 1 * 1 => M * (M - 1) possibilities (2)nd
= _t1_ _t2_ _t2_ _t1_
M * M-1 * 1 * 1 => M * (M - 1) possibilities (3)rd
Now let's consider three unique elements, t1, t2, t3. Let's place t1 first and then t2. As usual, we have:
I = _t1_ _t2_ ___ ___
M * ? * ? * ?
We can't yet say how many possible t2s there can be yet, and we will see why in a minute.
We now place t1 in the third spot. Notice, t1 must go there since if were to go in the last spot, we would just be recreating the (3)rd arrangement above. Double counting is bad! This leaves the third unique element t3 to the final position.
I = _t1_ _t2_ _t1_ _t3_
M * ? * 1 * ?
So why did we have to take a minute to consider the number of t2s more closely? The transpositions t1 and t2 cannot be disjoint permutations (i.e. they must share one (and only one since they also cannot be equal) of their n or m). The reason for this is because if they were disjoint, we could swap the order of permutations. This means we would be double counting the (1)st arrangement.
Say t1 = (n, m). t2 must be of the form (n, x) or (y, m) for some x and y in order to be non-disjoint. Note that x may not be n or m and y many not be n or m. Thus, the number of possible permutations that t2 could be is actually 2 * (N - 2).
So, coming back to our layout:
I = _t1_ _t2_ _t1_ _t3_
M * 2(N-2) * 1 * ?
Now t3 must be the inverse of the composition of t1 t2 t1. Let's do it out manually:
(n, m)(n, x)(n, m) = (m, x)
Thus t3 must be (m, x). Note this is not disjoint to t1 and not equal to either t1 or t2 so there is no double counting for this case.
I = _t1_ _t2_ _t1_ _t3_
M * 2(N-2) * 1 * 1 => M * 2(N - 2) possibilities
Finally, putting all of these together:
4) Putting it all together
So that's it. Work backwards, substituting what we found into the original summation given in step 2. I computed the answer to the N = 4 case below. It matches the empirical number found in another answer very closely!
N = 4
M = 6 _________ _____________ _________
| Pr(K_i) | Pr(A | K_i) | Product |
_________|_________|_____________|_________|
| | | | |
| i = 0 | 0.316 | 120 / 1296 | 0.029 |
|_________|_________|_____________|_________|
| | | | |
| i = 2 | 0.211 | 6 / 36 | 0.035 |
|_________|_________|_____________|_________|
| | | | |
| i = 4 | 0.004 | 1 / 1 | 0.004 |
|_________|_________|_____________|_________|
| | |
| Sum: | 0.068 |
|_____________|_________|
Correctness
It would be cool if there was a result in group theory to apply here-- and maybe there is! It would certainly help make all this tedious counting go away completely (and shorten the problem to something much more elegant). I stopped working at N = 4. For N > 5, what is given only gives an approximation (how good, I'm not sure). It is pretty clear why that is if you think about it: for example, given N = 8 transpositions, there are clearly ways of creating the identity with four unique elements which are not accounted for above. The number of ways becomes seemingly more difficult to count as the permutation gets longer (as far as I can tell...).
Anyway, I definitely couldn't do something like this within the scope of an interview. I would get as far as the denominator step if I was lucky. Beyond that, it seems pretty nasty.
Very much curious to know why these people ask so strange questions on probability?
Questions like this are asked because they allow the interviewer to gain insight into the interviewee's
ability read code (very simple code but at least something)
ability to analyse an algorithm to identify execution path
skills at applying logic to find possible outcomes and edge case
reasoning and problem solving skills as they work through the problem
communication and work skills - do they ask questions, or work in isolation based on information at hand
... and so on. The key to having a question that exposes these attributes of the interviewee is to have a piece of code that is deceptively simple. This shakes out the imposters the non-coder is stuck; the arrogant jump to the wrong conclusion; the lazy or sub-par computer scientist finds a simple solution and stops looking. Often, as they say, it's not whether you get the right answer but whether you impress with your thought process.
I'll attempt to answer the question, too. In an interview I'd explain myself rather than provide a one-line written answer - this is because even if my 'answer' is wrong, I am able to demonstrate logical thinking.
A will remain the same - i.e. elements in the same positions - when
m == n in every iteration (so that every element only swaps with itself); or
any element that is swapped is swapped back to its original position
The first case is the 'simple' case that duedl0r gives, the case that the array isn't altered. This might be the answer, because
what is the probability that array A remains the same?
if the array changes at i = 1 and then reverts back at i = 2, it's in the original state but it didn't 'remain the same' - it was changed, and then changed back. That might be a smartass technicality.
Then considering the chance of elements being swapped and swapped back - I think that calculation is above my head in an interview. The obvious consideration is that that does not need to be a change - change back swap, there could just as easily be a swap between three elements, swapping 1 and 2, then 2 and 3, 1 and 3 and finally 2 and 3. And continuing, there could be swaps between 4, 5 or more items that are 'circular' like this.
In fact, rather than considering the cases where the array is unchanged, it may be simpler to consider the cases where it is changed. Consider whether this problem can be mapped onto a known structure like Pascal's triangle.
This is a hard problem. I agree that it's too hard to solve in an interview, but that doesn't mean it is too hard to ask in an interview. The poor candidate won't have an answer, the average candidate will guess the obvious answer, and the good candidate will explain why the problem is too hard to answer.
I consider this an 'open-ended' question that gives the interviewer insight into the candidate. For this reason, even though it's too hard to solve during an interview, it is a good question to ask during an interview. There's more to asking a question than just checking whether the answer is right or wrong.
Below is C code to count the number of values of the 2N-tuple of indices that rand can produce and calculate the probability. Starting with N = 0, it shows counts of 1, 1, 8, 135, 4480, 189125, and 12450816, with probabilities of 1, 1, .5, .185185, .0683594, .0193664, and .00571983. The counts do not appear in the Encyclopedia of Integer Sequences, so either my program has a bug or this is a very obscure problem. If so, the problem is not intended to be solved by a job applicant but to expose some of their thought processes and how they deal with frustration. I would not regard it as a good interview problem.
#include <inttypes.h>
#include <math.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#define swap(a, b) do { int t = (a); (a) = (b); (b) = t; } while (0)
static uint64_t count(int n)
{
// Initialize count of how many times the original order is the result.
uint64_t c = 0;
// Allocate space for selectors and initialize them to zero.
int *r = calloc(2*n, sizeof *r);
// Allocate space for array to be swapped.
int *A = malloc(n * sizeof *A);
if (!A || !r)
{
fprintf(stderr, "Out of memory.\n");
exit(EXIT_FAILURE);
}
// Iterate through all values of selectors.
while (1)
{
// Initialize A to show original order.
for (int i = 0; i < n; ++i)
A[i] = i;
// Test current selector values by executing the swap sequence.
for (int i = 0; i < 2*n; i += 2)
{
int m = r[i+0];
int n = r[i+1];
swap(A[m], A[n]);
}
// If array is in original order, increment counter.
++c; // Assume all elements are in place.
for (int i = 0; i < n; ++i)
if (A[i] != i)
{
// If any element is out of place, cancel assumption and exit.
--c;
break;
}
// Increment the selectors, odometer style.
int i;
for (i = 0; i < 2*n; ++i)
// Stop when a selector increases without wrapping.
if (++r[i] < n)
break;
else
// Wrap this selector to zero and continue.
r[i] = 0;
// Exit the routine when the last selector wraps.
if (2*n <= i)
{
free(A);
free(r);
return c;
}
}
}
int main(void)
{
for (int n = 0; n < 7; ++n)
{
uint64_t c = count(n);
printf("N = %d: %" PRId64 " times, %g probabilty.\n",
n, c, c/pow(n, 2*n));
}
return 0;
}
The behaviour of the algorithm can be modelled as a Markov chain over the symmetric group SN.
Basics
The N elements of the array A can be arranged in N! different permutations. Let us number these permutations from 1 to N!, e.g. by lexicographic ordering. So the state of the array A at any time in the algorithm can be fully characterized by the permutation number.
For example, for N = 3, one possible numbering of all 3! = 6 permutations might be:
a b c
a c b
b a c
b c a
c a b
c b a
State transition probabilities
In each step of the algorithm, the state of A either stays the same or transitions from one of these permutations to another. We are now interested in the probabilities of these state changes. Let us call Pr(i → j) the probability that the state changes from permutation i to permutation j in a single loop iteration.
As we pick m and n uniformly and independently from the range [0, N-1], there are N² possible outcomes, each of which is equally likely.
Identity
For N of these outcomes m = n holds, so there is no change in the permutation. Therefore,
.
Transpositions
The remaining N² - N cases are transpositions, i.e. two elements exchange their positions and therefore the permutation changes. Suppose one of these transpositions exchanges the elements at positions x and y. There are two cases how this transposition can be generated by the algorithm: either m = x, n = y or m = y, n = x. Thus, the probability for each transposition is 2 / N².
How does this relate to our permutations? Let us call two permutations i and j neighbors if and only if there is a transposition which transforms i into j (and vice versa). We then can conclude:
Transition matrix
We can arrange the probabilities Pr(i → j) in a transition matrix P ∈ [0,1]N!×N!. We define
pij = Pr(i → j),
where pij is the entry in the i-th row and j-th column of P. Note that
Pr(i → j) = Pr(j → i),
which means P is symmetric.
The key point now is the observation of what happens when we multiply P by itself. Take any element p(2)ij of P²:
The product Pr(i → k) · Pr(k → j) is the probability that starting at permutation i we transition into permutation k in one step, and transition into permutation j after another subsequent step. Summing over all in-between permutations k therefore gives us the total probability of transitioning from i to j in 2 steps.
This argument can be extended to higher powers of P. A special consequence is the following:
p(N)ii is the probability of returning back to permutation i after N steps, assuming we started at permutation i.
Example
Let's play this through with N = 3. We already have a numbering for the permutations. The corresponding transition matrix is as follows:
Multiplying P with itself gives:
Another multiplication yields:
Any element of the main diagonal gives us the wanted probability, which is 15/81 or 5/27.
Discussion
While this approach is mathematically sound and can be applied to any value of N, it is not very practical in this form. The transition matrix P has N!² entries, which becomes huge very fast. Even for N = 10 the size of the matrix already exceeds 13 trillion entries. A naive implementation of this algorithm therefore appears to be infeasible.
However, in comparison to other proposals, this approach is very structured and doesn't require complex derivations beyond figuring out which permutations are neighbors. My hope is that this structuredness can be exploited to find a much simpler computation.
For example, one could exploit the fact that all diagonal elements of any power of P are equal. Assuming we can easily calculate the trace of PN, the solution is then simply tr(PN) / N!. The trace of PN is equal to the sum of the N-th powers of its eigenvalues. So if we had an efficient algorithm to compute the eigenvalues of P, we would be set. I haven't explored this further than calculating the eigenvalues up to N = 5, however.
It's easy to observe bounds 1/nn <= p <= 1/n.
Here is an incomplete idea of showing an inverse-exponential upper bound.
You're drawing numbers from {1,2,..,n} 2n times. If any of them is unique (occurs exactly once), the array will definitely be changed, as the element has gone away and cannot return at its original place.
The probability that a fixed number is unique is 2n * 1/n * (1-1/n)^(2n-1)=2 * (1-1/n)^(2n-1) which is asympotically 2/e2, bounded away from 0. [2n because you choose on which try you get it, 1/n that you got it on that try, (1-1/n)^(2n-1) that you did not get it on other tries]
If the events were independent, you'd get that chance that all numbers are nonunique is (2/e2)^n, which would mean p <= O((2/e2)^n). Unfortunately, they are not independent. I feel that the bound can be shown with more sophisticated analysis. The keyword is "balls and bins problem".
One simplistic solution is
p >= 1 / NN
Since one possible way the array stays the same is if m = n for every iteration. And m equals n with possibility 1 / N.
It's certainly higher than that. The question is by how much..
Second thought: One could also argue, that if you shuffle an array randomly, every permutation has equal probability. Since there are n! permutations the probability of getting just one (the one we have at the beginning) is
p = 1 / N!
which is a bit better than the previous result.
As discussed, the algorithm is biased. This means not every permutation has the same probability. So 1 / N! is not quite exact. You have to find out how the distribution of the permutations are.
FYI, not sure the bound above (1/n^2) holds:
N=5 -> 0.019648 < 1/25
N=6 -> 0.005716 < 1/36
Sampling code:
import random
def sample(times,n):
count = 0;
for i in range(times):
count += p(n)
return count*1.0/times;
def p(n):
perm = range(n);
for i in range(n):
a = random.randrange(n)
b = random.randrange(n)
perm[a],perm[b]=perm[b],perm[a];
return perm==range(n)
print sample(500000,5)
Everyone assumes that A[i] == i, which was not explicitly
stated. I'm going to make this assumption too, but note that the probability
depends on the contents. For example if A[i]=0, then the probability = 1 for
all N.
Here's how to do it. Let P(n,i) be the probability that the resulting array
differs by exactly i transpositions from the original array.
We want to know P(n,0). It's true that:
P(n,0) =
1/n * P(n-1,0) + 1/n^2 * P(n-1,1) =
1/n * P(n-1,0) + 1/n^2 * (1-1/(n-1)) * P(n-2,0)
Explanation: we can get the original array in two ways, either by making a "neutral" transposition in an array that's already good, or by reverting the only "bad" transposition. To get an array with only one "bad" transposition, we can take an array with 0 bad transpositions and make one transposition that is not neutral.
EDIT: -2 instead of -1 in P(n-1,0)
It's not a full solution, but it's something at least.
Take a particular set of swaps that have no effect. We know that it must have been the case that its swaps ended up forming a bunch of loops of different sizes, using a total of n swaps. (For the purposes of this, a swap with no effect can be considered a loop of size 1)
Perhaps we can
1) Break them down into groups based on what the sizes of the loops are
2) Calculate the number of ways to get each group.
(The main problem is that there are a ton of different groups, but I'm not sure how you'd actually calculate this if you don't take into account the different groupings.)
Interesting question.
I think the answer is 1/N, but I don't have any proof. When I find a proof, I will edit my answer.
What I got until now:
If m == n, You won't change the array.
The probability to get m == n is 1/N, because there are N^2 options, and only N is suitable ((i,i) for every 0 <= i <= N-1).
Thus, we get N/N^2 = 1/N.
Denote Pk the probability that after k iterations of swaps, the array of size N will remain the same.
P1 = 1/N. (As we saw below)
P2 = (1/N)P1 + (N-1/N)(2/N^2) = 1/N^2 + 2(N-1) / N^3.
Explanation for P2:
We want to calculate the probability that after 2 iterations, the array with
N elements won't change. We have 2 options :
- in the 2 iteration we got m == n (Probability of 1/N)
- in the 2 iteration we got m != n (Probability of N-1/N)
If m == n, we need that the array will remain after the 1 iteration = P1.
If m != n, we need that in the 1 iteration to choose the same n and m
(order is not important). So we get 2/N^2.
Because those events are independent we get - P2 = (1/N)*P1 + (N-1/N)*(2/N^2).
Pk = (1/N)*Pk-1 + (N-1/N)*X. (the first for m == n, the second for m != n)
I have to think more about what X equals. (X is just a replacement for the real formula, not a constant or anything else)
Example for N = 2.
All possible swaps:
(1 1 | 1 1),(1 1 | 1 2),(1 1 | 2 1),(1 1 | 2 2),(1 2 | 1 1),(1 2 | 1 2)
(1 2 | 2 1),(1 2 | 2 2),(2 1 | 1 1),(2 1 | 1 2),(2 1 | 2 1),(2 1 | 2 2)
(2 2 | 1 1),(2 2 | 1 2),(2 2 | 2 1),(2 1 | 1 1).
Total = 16. Exactly 8 of them remain the array the same.
Thus, for N = 2, the answer is 1/2.
EDIT :
I want to introduce another approach:
We can classify swaps to three groups: constructive swaps, destructive swaps and harmless swaps.
Constructive swap is defined to be a swap that cause at least one element to move to its right place.
Destructive swap is defined to be a swap that cause at least one element to move from its correct position.
Harmless swap is defined to be a swap that does not belong to the other groups.
It is easy to see that this is a partition of all possible swaps. (intersection = empty set).
Now the claim I want to prove:
The array will remain the same if and only if
the number of Destructive swap == Constructive swap in the iterations.
If someone has a counter-example, please write it down as a comment.
If this claim is correct, we can take all combinations and sum them -
0 harmless swaps, 1 harmless swaps,..,N harmless swaps.
And for each possible k harmless swap, we check if N-k is even, if no, we skip. If yes, we take (N-k)/2 for destructive, and (N-k) for constructive. And just look all possibilities.
I would model the problem as a multigraph where nodes are elements of the array and swaps is adding an un-directed(!) connection between them. Then look for loops somehow (all nodes is a part of a loop => original)
Really need to get back to work! :(
well, from mathematical perspective:
to have the array elements swapped at the same place every time, then the Rand(N) function must generate the same number twice for int m, and int n. so the probability that the Rand(N) function generates the same number twice is 1/N.
and we have Rand(N) called N times inside the for loop, so we have probability of 1/(N^2)
Naive implementation in C#.
The idea is to create all the possible permutations of initial array and enumerate them.
Then we build a matrix of possible changes of state. Multiplying matrix by itself N times we will get the matrix showing how many ways exists that lead from permutation #i to permutation #j in N steps. Elemet [0,0] will show how many ways will lead to the same initial state. Sum of elements of row #0 will show total number of different ways. By dividing former to latter we get the probability.
In fact total number of permutations is N^(2N).
Output:
For N=1 probability is 1 (1 / 1)
For N=2 probability is 0.5 (8 / 16)
For N=3 probability is 0.1851851851851851851851851852 (135 / 729)
For N=4 probability is 0.068359375 (4480 / 65536)
For N=5 probability is 0.0193664 (189125 / 9765625)
For N=6 probability is 0.0057198259072973293366526105 (12450816 / 2176782336)
class Program
{
static void Main(string[] args)
{
for (int i = 1; i < 7; i++)
{
MainClass mc = new MainClass(i);
mc.Run();
}
}
}
class MainClass
{
int N;
int M;
List<int> comb;
List<int> lastItemIdx;
public List<List<int>> combinations;
int[,] matrix;
public MainClass(int n)
{
N = n;
comb = new List<int>();
lastItemIdx = new List<int>();
for (int i = 0; i < n; i++)
{
comb.Add(-1);
lastItemIdx.Add(-1);
}
combinations = new List<List<int>>();
}
public void Run()
{
GenerateAllCombinations();
GenerateMatrix();
int[,] m2 = matrix;
for (int i = 0; i < N - 1; i++)
{
m2 = Multiply(m2, matrix);
}
decimal same = m2[0, 0];
decimal total = 0;
for (int i = 0; i < M; i++)
{
total += m2[0, i];
}
Console.WriteLine("For N={0} probability is {1} ({2} / {3})", N, same / total, same, total);
}
private int[,] Multiply(int[,] m2, int[,] m1)
{
int[,] ret = new int[M, M];
for (int ii = 0; ii < M; ii++)
{
for (int jj = 0; jj < M; jj++)
{
int sum = 0;
for (int k = 0; k < M; k++)
{
sum += m2[ii, k] * m1[k, jj];
}
ret[ii, jj] = sum;
}
}
return ret;
}
private void GenerateMatrix()
{
M = combinations.Count;
matrix = new int[M, M];
for (int i = 0; i < M; i++)
{
matrix[i, i] = N;
for (int j = i + 1; j < M; j++)
{
if (2 == Difference(i, j))
{
matrix[i, j] = 2;
matrix[j, i] = 2;
}
else
{
matrix[i, j] = 0;
}
}
}
}
private int Difference(int x, int y)
{
int ret = 0;
for (int i = 0; i < N; i++)
{
if (combinations[x][i] != combinations[y][i])
{
ret++;
}
if (ret > 2)
{
return int.MaxValue;
}
}
return ret;
}
private void GenerateAllCombinations()
{
int placeAt = 0;
bool doRun = true;
while (doRun)
{
doRun = false;
bool created = false;
for (int i = placeAt; i < N; i++)
{
for (int j = lastItemIdx[i] + 1; j < N; j++)
{
lastItemIdx[i] = j; // remember the test
if (comb.Contains(j))
{
continue; // tail items should be nulled && their lastItemIdx set to -1
}
// success
placeAt = i;
comb[i] = j;
created = true;
break;
}
if (comb[i] == -1)
{
created = false;
break;
}
}
if (created)
{
combinations.Add(new List<int>(comb));
}
// rollback
bool canGenerate = false;
for (int k = placeAt + 1; k < N; k++)
{
lastItemIdx[k] = -1;
}
for (int k = placeAt; k >= 0; k--)
{
placeAt = k;
comb[k] = -1;
if (lastItemIdx[k] == N - 1)
{
lastItemIdx[k] = -1;
continue;
}
canGenerate = true;
break;
}
doRun = canGenerate;
}
}
}
The probability that m==n on each iteration, then do that N times. P(m==n) = 1/N. So I think P=1/(n^2) for that case. But then you have to consider the values getting swapped back. So I think the answer is (text editor got me) 1/N^N.
Question: what is the probability that array A remains the same?
Condition: Assume that the array contains unique elements.
Tried the solution in Java.
Random swapping happens on primitive int array. In java method parameters are always passed by value so what happens in swap method does not matter as a[m] and a[n] elements of the array (from below code swap(a[m], a[n]) ) are passed not complete array.
The answer is array will remain same. Despite of condition mentioned above. See below java code sample:
import java.util.Random;
public class ArrayTrick {
int a[] = new int[10];
Random random = new Random();
public void swap(int i, int j) {
int temp = i;
i = j;
j = temp;
}
public void fillArray() {
System.out.println("Filling array: ");
for (int index = 0; index < a.length; index++) {
a[index] = random.nextInt(a.length);
}
}
public void swapArray() {
System.out.println("Swapping array: ");
for (int index = 0; index < a.length; index++) {
int m = random.nextInt(a.length);
int n = random.nextInt(a.length);
swap(a[m], a[n]);
}
}
public void printArray() {
System.out.println("Printing array: ");
for (int index = 0; index < a.length; index++) {
System.out.print(" " + a[index]);
}
System.out.println();
}
public static void main(String[] args) {
ArrayTrick at = new ArrayTrick();
at.fillArray();
at.printArray();
at.swapArray();
at.printArray();
}
}
Sample output:
Filling array:
Printing array:
3 1 1 4 9 7 9 5 9 5
Swapping array:
Printing array:
3 1 1 4 9 7 9 5 9 5

Algorithm to find high/low numbers with at most 1.5n comparisons

I've been thinking about this homework question for a bit now. Given an number array of size n, design an algorithm that will find the high and and low values with at most 1.5n comparisons.
My first try was
int high=0
int low= Number.MaxValue //problem statement is unclear on what type of number to use
Number numList[0 . . n] //number array, assuming unsorted
for (i=0, i < n, i++) {
if (numList[i] > high)
high = numList[i]
else if (numList[i] < low)
low = numList[i]
}
My problem is each iteration of the loop has one of three possibilities:
low value is found - 1 comparison made
high value is found - 2 comparisons made
neither is found - 2 comparisons made
So for an entire array traversal, a maximum of 2n comparisons can be made, which is a far cry from the problem maximum requirement of 1.5n comparisons.
Start with a pairs of numbers and find local min and max (n/2 comparisons). Next, find global max from n/2 local maxes (n/2 comparisons), and similarly global min from local mins (n/2 comparisons). Total comparisons: 3*n/2 !
For i in 0 to n/2: #n/2 comparisons
if x[2*i]>x[2*i+1]:
swap(x,2*i,2*i+1)
global_min = min( x[0], x[2], ...) # n/2 comparisons
global_max = max( x[1], x[3], ...) # n/2 comparisons
Note that the above solution changes the array. Alternate solution:
Initialize min and max
For i = 0 to n/2:
if x[2*i]<x[2*i+1]:
if x[2*i]< min:
min = x[2*i]
if x[2*i+1]> max:
max = x[2*i+1]
else:
if x[2*i+1]< min:
min = x[2*i+1]
if x[2*i]> max:
max = x[2*i]
I know this has already been answered, but in case someone is looking for another way to think about this. This answer is similar to Lester's, but can handle odd values of n without breaking and will still make at most 1.5n comparisons. The secret is in the modulus. ;)
As a side effect of ensuring we place the last value in the proper sub array, the second element in the givenList will be compared and placed twice. However, since we are not changing the original array and we are only interested in the high and low of the set, this does not really make a difference.
Initialize lowArray and highArray
Initialize subArrayCounter to 0
For i = 0; i < n; i+=2
X = givenList[i];
Y = givenList[(i+1)%n];
If(x < y)
lowArray[subArrayCounter] = x;
highArray[subArrayCounter] = y;
subArrayCounter++;
else
lowArray[subArrayCounter] = y;
highArray[subArrayCounter] = x;
subArrayCounter++;
Initialize low to lowArray[0];
Initialize high to highArray[0];
For i = 1; i < lowArray.length; i++
If(lowArray[i] < low)
Low = lowArray[i];
For i = 1; i < highArray.length; i++
If(highArray[i] > high)
High = highArray[i]
This is the same answer as ElKamina but as I had already started writing the pseudo code I thought I'd finish and post it.
The idea is to compare pairs of values (n/2 comparisons) to get an array of high values and an array of low values. With each of those arrays we again compare pairs of values (2 * n/2 comparisons) to get the highest and lowest values respectively.
n/2 + 2*n/2 = 1.5n comparisons
Here's the pseudocode:
int[] highNumList;
int[] lowNumList;
for (i = 0, i < n, i+=2)
{
a = numList[i];
b = numList[i+1];
if (a > b)
{
highNumList.Add(a);
lowNumlist.Add(b);
}
else
{
highNumlist.Add(b);
lowNumList.Add(a);
}
}
int high = highNumList[0];
int low = lowNumList[0];
for (i = 0, i < n/2, i+=2)
{
if (highNumList[i] < highNumList[i+1])
high = highNumList[i+1]
if (lowNumList[i] > lowNumList[i+1])
low = lowNumList[i+1]
}
This code doesn't account for n not being even or the initial array being empty.
This is a question I had during an interview and I found the answer with a small hint from the interviewer which was "How do you compare two numbers?" (it really helped).
Here is the explanation:
Lets say I have 100 numbers (you can easily replace it by n but it work better for the example if n is an even number). What I do is that I split it into 50 lists of 2 numbers. For each couple I make one comparison and I'm done (which makes 50 comparisons by now) then I just have to find the minimum of the minimums (which is 49 comparisons) and the maximum of the maximums (which is 49 comparisons as well) such that we have to make 49+49+50=148 comparisons. We're done !
Remark: to find the minimum we proceed as follow (in pseudo code):
n = myList.size();
min = myList[0];
for (int i(1); i<n-1; i++)
{
if (min>myList[i]) min = myList[i];
}
return min;
And we find it in (n-1) comparisons. The code is almost the same for maximum.

array- having some issues [duplicate]

An interesting interview question that a colleague of mine uses:
Suppose that you are given a very long, unsorted list of unsigned 64-bit integers. How would you find the smallest non-negative integer that does not occur in the list?
FOLLOW-UP: Now that the obvious solution by sorting has been proposed, can you do it faster than O(n log n)?
FOLLOW-UP: Your algorithm has to run on a computer with, say, 1GB of memory
CLARIFICATION: The list is in RAM, though it might consume a large amount of it. You are given the size of the list, say N, in advance.
If the datastructure can be mutated in place and supports random access then you can do it in O(N) time and O(1) additional space. Just go through the array sequentially and for every index write the value at the index to the index specified by value, recursively placing any value at that location to its place and throwing away values > N. Then go again through the array looking for the spot where value doesn't match the index - that's the smallest value not in the array. This results in at most 3N comparisons and only uses a few values worth of temporary space.
# Pass 1, move every value to the position of its value
for cursor in range(N):
target = array[cursor]
while target < N and target != array[target]:
new_target = array[target]
array[target] = target
target = new_target
# Pass 2, find first location where the index doesn't match the value
for cursor in range(N):
if array[cursor] != cursor:
return cursor
return N
Here's a simple O(N) solution that uses O(N) space. I'm assuming that we are restricting the input list to non-negative numbers and that we want to find the first non-negative number that is not in the list.
Find the length of the list; lets say it is N.
Allocate an array of N booleans, initialized to all false.
For each number X in the list, if X is less than N, set the X'th element of the array to true.
Scan the array starting from index 0, looking for the first element that is false. If you find the first false at index I, then I is the answer. Otherwise (i.e. when all elements are true) the answer is N.
In practice, the "array of N booleans" would probably be encoded as a "bitmap" or "bitset" represented as a byte or int array. This typically uses less space (depending on the programming language) and allows the scan for the first false to be done more quickly.
This is how / why the algorithm works.
Suppose that the N numbers in the list are not distinct, or that one or more of them is greater than N. This means that there must be at least one number in the range 0 .. N - 1 that is not in the list. So the problem of find the smallest missing number must therefore reduce to the problem of finding the smallest missing number less than N. This means that we don't need to keep track of numbers that are greater or equal to N ... because they won't be the answer.
The alternative to the previous paragraph is that the list is a permutation of the numbers from 0 .. N - 1. In this case, step 3 sets all elements of the array to true, and step 4 tells us that the first "missing" number is N.
The computational complexity of the algorithm is O(N) with a relatively small constant of proportionality. It makes two linear passes through the list, or just one pass if the list length is known to start with. There is no need to represent the hold the entire list in memory, so the algorithm's asymptotic memory usage is just what is needed to represent the array of booleans; i.e. O(N) bits.
(By contrast, algorithms that rely on in-memory sorting or partitioning assume that you can represent the entire list in memory. In the form the question was asked, this would require O(N) 64-bit words.)
#Jorn comments that steps 1 through 3 are a variation on counting sort. In a sense he is right, but the differences are significant:
A counting sort requires an array of (at least) Xmax - Xmin counters where Xmax is the largest number in the list and Xmin is the smallest number in the list. Each counter has to be able to represent N states; i.e. assuming a binary representation it has to have an integer type (at least) ceiling(log2(N)) bits.
To determine the array size, a counting sort needs to make an initial pass through the list to determine Xmax and Xmin.
The minimum worst-case space requirement is therefore ceiling(log2(N)) * (Xmax - Xmin) bits.
By contrast, the algorithm presented above simply requires N bits in the worst and best cases.
However, this analysis leads to the intuition that if the algorithm made an initial pass through the list looking for a zero (and counting the list elements if required), it would give a quicker answer using no space at all if it found the zero. It is definitely worth doing this if there is a high probability of finding at least one zero in the list. And this extra pass doesn't change the overall complexity.
EDIT: I've changed the description of the algorithm to use "array of booleans" since people apparently found my original description using bits and bitmaps to be confusing.
Since the OP has now specified that the original list is held in RAM and that the computer has only, say, 1GB of memory, I'm going to go out on a limb and predict that the answer is zero.
1GB of RAM means the list can have at most 134,217,728 numbers in it. But there are 264 = 18,446,744,073,709,551,616 possible numbers. So the probability that zero is in the list is 1 in 137,438,953,472.
In contrast, my odds of being struck by lightning this year are 1 in 700,000. And my odds of getting hit by a meteorite are about 1 in 10 trillion. So I'm about ten times more likely to be written up in a scientific journal due to my untimely death by a celestial object than the answer not being zero.
As pointed out in other answers you can do a sort, and then simply scan up until you find a gap.
You can improve the algorithmic complexity to O(N) and keep O(N) space by using a modified QuickSort where you eliminate partitions which are not potential candidates for containing the gap.
On the first partition phase, remove duplicates.
Once the partitioning is complete look at the number of items in the lower partition
Is this value equal to the value used for creating the partition?
If so then it implies that the gap is in the higher partition.
Continue with the quicksort, ignoring the lower partition
Otherwise the gap is in the lower partition
Continue with the quicksort, ignoring the higher partition
This saves a large number of computations.
To illustrate one of the pitfalls of O(N) thinking, here is an O(N) algorithm that uses O(1) space.
for i in [0..2^64):
if i not in list: return i
print "no 64-bit integers are missing"
Since the numbers are all 64 bits long, we can use radix sort on them, which is O(n). Sort 'em, then scan 'em until you find what you're looking for.
if the smallest number is zero, scan forward until you find a gap. If the smallest number is not zero, the answer is zero.
For a space efficient method and all values are distinct you can do it in space O( k ) and time O( k*log(N)*N ). It's space efficient and there's no data moving and all operations are elementary (adding subtracting).
set U = N; L=0
First partition the number space in k regions. Like this:
0->(1/k)*(U-L) + L, 0->(2/k)*(U-L) + L, 0->(3/k)*(U-L) + L ... 0->(U-L) + L
Find how many numbers (count{i}) are in each region. (N*k steps)
Find the first region (h) that isn't full. That means count{h} < upper_limit{h}. (k steps)
if h - count{h-1} = 1 you've got your answer
set U = count{h}; L = count{h-1}
goto 2
this can be improved using hashing (thanks for Nic this idea).
same
First partition the number space in k regions. Like this:
L + (i/k)->L + (i+1/k)*(U-L)
inc count{j} using j = (number - L)/k (if L < number < U)
find first region (h) that doesn't have k elements in it
if count{h} = 1 h is your answer
set U = maximum value in region h L = minimum value in region h
This will run in O(log(N)*N).
I'd just sort them then run through the sequence until I find a gap (including the gap at the start between zero and the first number).
In terms of an algorithm, something like this would do it:
def smallest_not_in_list(list):
sort(list)
if list[0] != 0:
return 0
for i = 1 to list.last:
if list[i] != list[i-1] + 1:
return list[i-1] + 1
if list[list.last] == 2^64 - 1:
assert ("No gaps")
return list[list.last] + 1
Of course, if you have a lot more memory than CPU grunt, you could create a bitmask of all possible 64-bit values and just set the bits for every number in the list. Then look for the first 0-bit in that bitmask. That turns it into an O(n) operation in terms of time but pretty damned expensive in terms of memory requirements :-)
I doubt you could improve on O(n) since I can't see a way of doing it that doesn't involve looking at each number at least once.
The algorithm for that one would be along the lines of:
def smallest_not_in_list(list):
bitmask = mask_make(2^64) // might take a while :-)
mask_clear_all (bitmask)
for i = 1 to list.last:
mask_set (bitmask, list[i])
for i = 0 to 2^64 - 1:
if mask_is_clear (bitmask, i):
return i
assert ("No gaps")
Sort the list, look at the first and second elements, and start going up until there is a gap.
We could use a hash table to hold the numbers. Once all numbers are done, run a counter from 0 till we find the lowest. A reasonably good hash will hash and store in constant time, and retrieves in constant time.
for every i in X // One scan Θ(1)
hashtable.put(i, i); // O(1)
low = 0;
while (hashtable.get(i) <> null) // at most n+1 times
low++;
print low;
The worst case if there are n elements in the array, and are {0, 1, ... n-1}, in which case, the answer will be obtained at n, still keeping it O(n).
You can do it in O(n) time and O(1) additional space, although the hidden factor is quite large. This isn't a practical way to solve the problem, but it might be interesting nonetheless.
For every unsigned 64-bit integer (in ascending order) iterate over the list until you find the target integer or you reach the end of the list. If you reach the end of the list, the target integer is the smallest integer not in the list. If you reach the end of the 64-bit integers, every 64-bit integer is in the list.
Here it is as a Python function:
def smallest_missing_uint64(source_list):
the_answer = None
target = 0L
while target < 2L**64:
target_found = False
for item in source_list:
if item == target:
target_found = True
if not target_found and the_answer is None:
the_answer = target
target += 1L
return the_answer
This function is deliberately inefficient to keep it O(n). Note especially that the function keeps checking target integers even after the answer has been found. If the function returned as soon as the answer was found, the number of times the outer loop ran would be bound by the size of the answer, which is bound by n. That change would make the run time O(n^2), even though it would be a lot faster.
Thanks to egon, swilden, and Stephen C for my inspiration. First, we know the bounds of the goal value because it cannot be greater than the size of the list. Also, a 1GB list could contain at most 134217728 (128 * 2^20) 64-bit integers.
Hashing part
I propose using hashing to dramatically reduce our search space. First, square root the size of the list. For a 1GB list, that's N=11,586. Set up an integer array of size N. Iterate through the list, and take the square root* of each number you find as your hash. In your hash table, increment the counter for that hash. Next, iterate through your hash table. The first bucket you find that is not equal to it's max size defines your new search space.
Bitmap part
Now set up a regular bit map equal to the size of your new search space, and again iterate through the source list, filling out the bitmap as you find each number in your search space. When you're done, the first unset bit in your bitmap will give you your answer.
This will be completed in O(n) time and O(sqrt(n)) space.
(*You could use use something like bit shifting to do this a lot more efficiently, and just vary the number and size of buckets accordingly.)
Well if there is only one missing number in a list of numbers, the easiest way to find the missing number is to sum the series and subtract each value in the list. The final value is the missing number.
int i = 0;
while ( i < Array.Length)
{
if (Array[i] == i + 1)
{
i++;
}
if (i < Array.Length)
{
if (Array[i] <= Array.Length)
{//SWap
int temp = Array[i];
int AnoTemp = Array[temp - 1];
Array[temp - 1] = temp;
Array[i] = AnoTemp;
}
else
i++;
}
}
for (int j = 0; j < Array.Length; j++)
{
if (Array[j] > Array.Length)
{
Console.WriteLine(j + 1);
j = Array.Length;
}
else
if (j == Array.Length - 1)
Console.WriteLine("Not Found !!");
}
}
Here's my answer written in Java:
Basic Idea:
1- Loop through the array throwing away duplicate positive, zeros, and negative numbers while summing up the rest, getting the maximum positive number as well, and keep the unique positive numbers in a Map.
2- Compute the sum as max * (max+1)/2.
3- Find the difference between the sums calculated at steps 1 & 2
4- Loop again from 1 to the minimum of [sums difference, max] and return the first number that is not in the map populated in step 1.
public static int solution(int[] A) {
if (A == null || A.length == 0) {
throw new IllegalArgumentException();
}
int sum = 0;
Map<Integer, Boolean> uniqueNumbers = new HashMap<Integer, Boolean>();
int max = A[0];
for (int i = 0; i < A.length; i++) {
if(A[i] < 0) {
continue;
}
if(uniqueNumbers.get(A[i]) != null) {
continue;
}
if (A[i] > max) {
max = A[i];
}
uniqueNumbers.put(A[i], true);
sum += A[i];
}
int completeSum = (max * (max + 1)) / 2;
for(int j = 1; j <= Math.min((completeSum - sum), max); j++) {
if(uniqueNumbers.get(j) == null) { //O(1)
return j;
}
}
//All negative case
if(uniqueNumbers.isEmpty()) {
return 1;
}
return 0;
}
As Stephen C smartly pointed out, the answer must be a number smaller than the length of the array. I would then find the answer by binary search. This optimizes the worst case (so the interviewer can't catch you in a 'what if' pathological scenario). In an interview, do point out you are doing this to optimize for the worst case.
The way to use binary search is to subtract the number you are looking for from each element of the array, and check for negative results.
I like the "guess zero" apprach. If the numbers were random, zero is highly probable. If the "examiner" set a non-random list, then add one and guess again:
LowNum=0
i=0
do forever {
if i == N then leave /* Processed entire array */
if array[i] == LowNum {
LowNum++
i=0
}
else {
i++
}
}
display LowNum
The worst case is n*N with n=N, but in practice n is highly likely to be a small number (eg. 1)
I am not sure if I got the question. But if for list 1,2,3,5,6 and the missing number is 4, then the missing number can be found in O(n) by:
(n+2)(n+1)/2-(n+1)n/2
EDIT: sorry, I guess I was thinking too fast last night. Anyway, The second part should actually be replaced by sum(list), which is where O(n) comes. The formula reveals the idea behind it: for n sequential integers, the sum should be (n+1)*n/2. If there is a missing number, the sum would be equal to the sum of (n+1) sequential integers minus the missing number.
Thanks for pointing out the fact that I was putting some middle pieces in my mind.
Well done Ants Aasma! I thought about the answer for about 15 minutes and independently came up with an answer in a similar vein of thinking to yours:
#define SWAP(x,y) { numerictype_t tmp = x; x = y; y = tmp; }
int minNonNegativeNotInArr (numerictype_t * a, size_t n) {
int m = n;
for (int i = 0; i < m;) {
if (a[i] >= m || a[i] < i || a[i] == a[a[i]]) {
m--;
SWAP (a[i], a[m]);
continue;
}
if (a[i] > i) {
SWAP (a[i], a[a[i]]);
continue;
}
i++;
}
return m;
}
m represents "the current maximum possible output given what I know about the first i inputs and assuming nothing else about the values until the entry at m-1".
This value of m will be returned only if (a[i], ..., a[m-1]) is a permutation of the values (i, ..., m-1). Thus if a[i] >= m or if a[i] < i or if a[i] == a[a[i]] we know that m is the wrong output and must be at least one element lower. So decrementing m and swapping a[i] with the a[m] we can recurse.
If this is not true but a[i] > i then knowing that a[i] != a[a[i]] we know that swapping a[i] with a[a[i]] will increase the number of elements in their own place.
Otherwise a[i] must be equal to i in which case we can increment i knowing that all the values of up to and including this index are equal to their index.
The proof that this cannot enter an infinite loop is left as an exercise to the reader. :)
The Dafny fragment from Ants' answer shows why the in-place algorithm may fail. The requires pre-condition describes that the values of each item must not go beyond the bounds of the array.
method AntsAasma(A: array<int>) returns (M: int)
requires A != null && forall N :: 0 <= N < A.Length ==> 0 <= A[N] < A.Length;
modifies A;
{
// Pass 1, move every value to the position of its value
var N := A.Length;
var cursor := 0;
while (cursor < N)
{
var target := A[cursor];
while (0 <= target < N && target != A[target])
{
var new_target := A[target];
A[target] := target;
target := new_target;
}
cursor := cursor + 1;
}
// Pass 2, find first location where the index doesn't match the value
cursor := 0;
while (cursor < N)
{
if (A[cursor] != cursor)
{
return cursor;
}
cursor := cursor + 1;
}
return N;
}
Paste the code into the validator with and without the forall ... clause to see the verification error. The second error is a result of the verifier not being able to establish a termination condition for the Pass 1 loop. Proving this is left to someone who understands the tool better.
Here's an answer in Java that does not modify the input and uses O(N) time and N bits plus a small constant overhead of memory (where N is the size of the list):
int smallestMissingValue(List<Integer> values) {
BitSet bitset = new BitSet(values.size() + 1);
for (int i : values) {
if (i >= 0 && i <= values.size()) {
bitset.set(i);
}
}
return bitset.nextClearBit(0);
}
def solution(A):
index = 0
target = []
A = [x for x in A if x >=0]
if len(A) ==0:
return 1
maxi = max(A)
if maxi <= len(A):
maxi = len(A)
target = ['X' for x in range(maxi+1)]
for number in A:
target[number]= number
count = 1
while count < maxi+1:
if target[count] == 'X':
return count
count +=1
return target[count-1] + 1
Got 100% for the above solution.
1)Filter negative and Zero
2)Sort/distinct
3)Visit array
Complexity: O(N) or O(N * log(N))
using Java8
public int solution(int[] A) {
int result = 1;
boolean found = false;
A = Arrays.stream(A).filter(x -> x > 0).sorted().distinct().toArray();
//System.out.println(Arrays.toString(A));
for (int i = 0; i < A.length; i++) {
result = i + 1;
if (result != A[i]) {
found = true;
break;
}
}
if (!found && result == A.length) {
//result is larger than max element in array
result++;
}
return result;
}
An unordered_set can be used to store all the positive numbers, and then we can iterate from 1 to length of unordered_set, and see the first number that does not occur.
int firstMissingPositive(vector<int>& nums) {
unordered_set<int> fre;
// storing each positive number in a hash.
for(int i = 0; i < nums.size(); i +=1)
{
if(nums[i] > 0)
fre.insert(nums[i]);
}
int i = 1;
// Iterating from 1 to size of the set and checking
// for the occurrence of 'i'
for(auto it = fre.begin(); it != fre.end(); ++it)
{
if(fre.find(i) == fre.end())
return i;
i +=1;
}
return i;
}
Solution through basic javascript
var a = [1, 3, 6, 4, 1, 2];
function findSmallest(a) {
var m = 0;
for(i=1;i<=a.length;i++) {
j=0;m=1;
while(j < a.length) {
if(i === a[j]) {
m++;
}
j++;
}
if(m === 1) {
return i;
}
}
}
console.log(findSmallest(a))
Hope this helps for someone.
With python it is not the most efficient, but correct
#!/usr/bin/env python3
# -*- coding: UTF-8 -*-
import datetime
# write your code in Python 3.6
def solution(A):
MIN = 0
MAX = 1000000
possible_results = range(MIN, MAX)
for i in possible_results:
next_value = (i + 1)
if next_value not in A:
return next_value
return 1
test_case_0 = [2, 2, 2]
test_case_1 = [1, 3, 44, 55, 6, 0, 3, 8]
test_case_2 = [-1, -22]
test_case_3 = [x for x in range(-10000, 10000)]
test_case_4 = [x for x in range(0, 100)] + [x for x in range(102, 200)]
test_case_5 = [4, 5, 6]
print("---")
a = datetime.datetime.now()
print(solution(test_case_0))
print(solution(test_case_1))
print(solution(test_case_2))
print(solution(test_case_3))
print(solution(test_case_4))
print(solution(test_case_5))
def solution(A):
A.sort()
j = 1
for i, elem in enumerate(A):
if j < elem:
break
elif j == elem:
j += 1
continue
else:
continue
return j
this can help:
0- A is [5, 3, 2, 7];
1- Define B With Length = A.Length; (O(1))
2- initialize B Cells With 1; (O(n))
3- For Each Item In A:
if (B.Length <= item) then B[Item] = -1 (O(n))
4- The answer is smallest index in B such that B[index] != -1 (O(n))

Most efficient way of randomly choosing a set of distinct integers

I'm looking for the most efficient algorithm to randomly choose a set of n distinct integers, where all the integers are in some range [0..maxValue].
Constraints:
maxValue is larger than n, and possibly much larger
I don't care if the output list is sorted or not
all integers must be chosen with equal probability
My initial idea was to construct a list of the integers [0..maxValue] then extract n elements at random without replacement. But that seems quite inefficient, especially if maxValue is large.
Any better solutions?
Here is an optimal algorithm, assuming that we are allowed to use hashmaps. It runs in O(n) time and space (and not O(maxValue) time, which is too expensive).
It is based on Floyd's random sample algorithm. See my blog post about it for details.
The code is in Java:
private static Random rnd = new Random();
public static Set<Integer> randomSample(int max, int n) {
HashSet<Integer> res = new HashSet<Integer>(n);
int count = max + 1;
for (int i = count - n; i < count; i++) {
Integer item = rnd.nextInt(i + 1);
if (res.contains(item))
res.add(i);
else
res.add(item);
}
return res;
}
For small values of maxValue such that it is reasonable to generate an array of all the integers in memory then you can use a variation of the Fisher-Yates shuffle except only performing the first n steps.
If n is much smaller than maxValue and you don't wish to generate the entire array then you can use this algorithm:
Keep a sorted list l of number picked so far, initially empty.
Pick a random number x between 0 and maxValue - (elements in l)
For each number in l if it smaller than or equal to x, add 1 to x
Add the adjusted value of x into the sorted list and repeat.
If n is very close to maxValue then you can randomly pick the elements that aren't in the result and then find the complement of that set.
Here is another algorithm that is simpler but has potentially unbounded execution time:
Keep a set s of element picked so far, initially empty.
Pick a number at random between 0 and maxValue.
If the number is not in s, add it to s.
Go back to step 2 until s has n elements.
In practice if n is small and maxValue is large this will be good enough for most purposes.
One way to do it without generating the full array.
Say I want a randomly selected subset of m items from a set {x1, ..., xn} where m <= n.
Consider element x1. I add x1 to my subset with probability m/n.
If I do add x1 to my subset then I reduce my problem to selecting (m - 1) items from {x2, ..., xn}.
If I don't add x1 to my subset then I reduce my problem to selecting m items from {x2, ..., xn}.
Lather, rinse, and repeat until m = 0.
This algorithm is O(n) where n is the number of items I have to consider.
I rather imagine there is an O(m) algorithm where at each step you consider how many elements to remove from the "front" of the set of possibilities, but I haven't convinced myself of a good solution and I have to do some work now!
If you are selecting M elements out of N, the strategy changes depending on whether M is of the same order as N or much less (i.e. less than about N/log N).
If they are similar in size, then you go through each item from 1 to N. You keep track of how many items you've got so far (let's call that m items picked out of n that you've gone through), and then you take the next number with probability (M-m)/(N-n) and discard it otherwise. You then update m and n appropriately and continue. This is a O(N) algorithm with low constant cost.
If, on the other hand, M is significantly less than N, then a resampling strategy is a good one. Here you will want to sort M so you can find them quickly (and that will cost you O(M log M) time--stick them into a tree, for example). Now you pick numbers uniformly from 1 to N and insert them into your list. If you find a collision, pick again. You will collide about M/N of the time (actually, you're integrating from 1/N to M/N), which will require you to pick again (recursively), so you'll expect to take M/(1-M/N) selections to complete the process. Thus, your cost for this algorithm is approximately O(M*(N/(N-M))*log(M)).
These are both such simple methods that you can just implement both--assuming you have access to a sorted tree--and pick the one that is appropriate given the fraction of numbers that will be picked.
(Note that picking numbers is symmetric with not picking them, so if M is almost equal to N, then you can use the resampling strategy, but pick those numbers to not include; this can be a win, even if you have to push all almost-N numbers around, if your random number generation is expensive.)
My solution is the same as Mark Byers'. It takes O(n^2) time, hence it's useful when n is much smaller than maxValue. Here's the implementation in python:
def pick(n, maxValue):
chosen = []
for i in range(n):
r = random.randint(0, maxValue - i)
for e in chosen:
if e <= r:
r += 1
else:
break;
bisect.insort(chosen, r)
return chosen
The trick is to use a variation of shuffle or in other words a partial shuffle.
function random_pick( a, n )
{
N = len(a);
n = min(n, N);
picked = array_fill(0, n, 0); backup = array_fill(0, n, 0);
// partially shuffle the array, and generate unbiased selection simultaneously
// this is a variation on fisher-yates-knuth shuffle
for (i=0; i<n; i++) // O(n) times
{
selected = rand( 0, --N ); // unbiased sampling N * N-1 * N-2 * .. * N-n+1
value = a[ selected ];
a[ selected ] = a[ N ];
a[ N ] = value;
backup[ i ] = selected;
picked[ i ] = value;
}
// restore partially shuffled input array from backup
// optional step, if needed it can be ignored
for (i=n-1; i>=0; i--) // O(n) times
{
selected = backup[ i ];
value = a[ N ];
a[ N ] = a[ selected ];
a[ selected ] = value;
N++;
}
return picked;
}
NOTE the algorithm is strictly O(n) in both time and space, produces unbiased selections (it is a partial unbiased shuffling) and does not need hasmaps (which may not be available and/or usualy hide a complexity behind their implementation, e.g fetch time is not O(1), it might even be O(n) in worst case)
adapted from here
Linear congruential generator modulo maxValue+1. I'm sure I've written this answer before, but I can't find it...
UPDATE: I am wrong. The output of this is not uniformly distributed. Details on why are here.
I think this algorithm below is optimum. I.e. you cannot get better performance than this.
For choosing n numbers out of m numbers, the best offered algorithm so far is presented below. Its worst run time complexity is O(n), and needs only a single array to store the original numbers. It partially shuffles the first n elements from the original array, and then you pick those first n shuffled numbers as your solution.
This is also a fully working C program. What you find is:
Function getrand: This is just a PRNG that returns a number from 0 up to upto.
Function randselect: This is the function that randmoly chooses n unique numbers out of m many numbers. This is what this question is about.
Function main: This is only to demonstrate a use for other functions, so that you could compile it into a program and have fun.
#include <stdio.h>
#include <stdlib.h>
int getrand(int upto) {
long int r;
do {
r = rand();
} while (r > upto);
return r;
}
void randselect(int *all, int end, int select) {
int upto = RAND_MAX - (RAND_MAX % end);
int binwidth = upto / end;
int c;
for (c = 0; c < select; c++) {
/* randomly choose some bin */
int bin = getrand(upto)/binwidth;
/* swap c with bin */
int tmp = all[c];
all[c] = all[bin];
all[bin] = tmp;
}
}
int main() {
int end = 1000;
int select = 5;
/* initialize all numbers up to end */
int *all = malloc(end * sizeof(int));
int c;
for (c = 0; c < end; c++) {
all[c] = c;
}
/* select select unique numbers randomly */
srand(0);
randselect(all, end, select);
for (c = 0; c < select; c++) printf("%d ", all[c]);
putchar('\n');
return 0;
}
Here is the output of an example code where I randomly output 4 permutations out of a pool of 8 numbers for 100,000,000 many times. Then I use those many permutations to compute the probability of having each unique permutation occur. I then sort them by this probability. You notice that the numbers are fairly close, which I think means that it is uniformly distributed. The theoretical probability should be 1/1680 = 0.000595238095238095. Note how the empirical test is close to the theoretical one.

Resources