Is there anything similar to a slice.contains(object) method in Go without having to do a search through each element in a slice?
Mostafa has already pointed out that such a method is trivial to write, and mkb gave you a hint to use the binary search from the sort package. But if you are going to do a lot of such contains checks, you might also consider using a map instead.
It's trivial to check if a specific map key exists by using the value, ok := yourmap[key] idiom. Since you aren't interested in the value, you might also create a map[string]struct{} for example. Using an empty struct{} here has the advantage that it doesn't require any additional space and Go's internal map type is optimized for that kind of values. Therefore, map[string] struct{} is a popular choice for sets in the Go world.
No, such method does not exist, but is trivial to write:
func contains(s []int, e int) bool {
for _, a := range s {
if a == e {
return true
}
}
return false
}
You can use a map if that lookup is an important part of your code, but maps have cost too.
Starting with Go 1.18, you can use the slices package – specifically the generic Contains function:
https://pkg.go.dev/golang.org/x/exp/slices#Contains.
go get golang.org/x/exp/slices
import "golang.org/x/exp/slices"
things := []string{"foo", "bar", "baz"}
slices.Contains(things, "foo") // true
Note that since this is outside the stdlib as an experimental package, it is not bound to the Go 1 Compatibility Promise™ and may change before being formally added to the stdlib.
With Go 1.18+ we could use generics.
func Contains[T comparable](s []T, e T) bool {
for _, v := range s {
if v == e {
return true
}
}
return false
}
The sort package provides the building blocks if your slice is sorted or you are willing to sort it.
input := []string{"bird", "apple", "ocean", "fork", "anchor"}
sort.Strings(input)
fmt.Println(contains(input, "apple")) // true
fmt.Println(contains(input, "grow")) // false
...
func contains(s []string, searchterm string) bool {
i := sort.SearchStrings(s, searchterm)
return i < len(s) && s[i] == searchterm
}
SearchString promises to return the index to insert x if x is not present (it could be len(a)), so a check of that reveals whether the string is contained the sorted slice.
Instead of using a slice, map may be a better solution.
simple example:
package main
import "fmt"
func contains(slice []string, item string) bool {
set := make(map[string]struct{}, len(slice))
for _, s := range slice {
set[s] = struct{}{}
}
_, ok := set[item]
return ok
}
func main() {
s := []string{"a", "b"}
s1 := "a"
fmt.Println(contains(s, s1))
}
http://play.golang.org/p/CEG6cu4JTf
If the slice is sorted, there is a binary search implemented in the sort package.
func Contain(target interface{}, list interface{}) (bool, int) {
if reflect.TypeOf(list).Kind() == reflect.Slice || reflect.TypeOf(list).Kind() == reflect.Array {
listvalue := reflect.ValueOf(list)
for i := 0; i < listvalue.Len(); i++ {
if target == listvalue.Index(i).Interface() {
return true, i
}
}
}
if reflect.TypeOf(target).Kind() == reflect.String && reflect.TypeOf(list).Kind() == reflect.String {
return strings.Contains(list.(string), target.(string)), strings.Index(list.(string), target.(string))
}
return false, -1
}
I think map[x]bool is more useful than map[x]struct{}.
Indexing the map for an item that isn't present will return false. so instead of _, ok := m[X], you can just say m[X].
This makes it easy to nest inclusion tests in expressions.
You can use the reflect package to iterate over an interface whose concrete type is a slice:
func HasElem(s interface{}, elem interface{}) bool {
arrV := reflect.ValueOf(s)
if arrV.Kind() == reflect.Slice {
for i := 0; i < arrV.Len(); i++ {
// XXX - panics if slice element points to an unexported struct field
// see https://golang.org/pkg/reflect/#Value.Interface
if arrV.Index(i).Interface() == elem {
return true
}
}
}
return false
}
https://play.golang.org/p/jL5UD7yCNq
Not sure generics are needed here. You just need a contract for your desired behavior. Doing the following is no more than what you would have to do in other languages if you wanted your own objects to behave themselves in collections, by overriding Equals() and GetHashCode() for instance.
type Identifiable interface{
GetIdentity() string
}
func IsIdentical(this Identifiable, that Identifiable) bool{
return (&this == &that) || (this.GetIdentity() == that.GetIdentity())
}
func contains(s []Identifiable, e Identifiable) bool {
for _, a := range s {
if IsIdentical(a,e) {
return true
}
}
return false
}
If it is not feasable to use a map for finding items based on a key, you can consider the goderive tool. Goderive generates a type specific implementation of a contains method, making your code both readable and efficient.
Example;
type Foo struct {
Field1 string
Field2 int
}
func Test(m Foo) bool {
var allItems []Foo
return deriveContainsFoo(allItems, m)
}
To generate the deriveContainsFoo method:
Install goderive with go get -u github.com/awalterschulze/goderive
Run goderive ./... in your workspace folder
This method will be generated for deriveContains:
func deriveContainsFoo(list []Foo, item Foo) bool {
for _, v := range list {
if v == item {
return true
}
}
return false
}
Goderive has support for quite some other useful helper methods to apply a functional programming style in go.
The go style:
func Contains(n int, match func(i int) bool) bool {
for i := 0; i < n; i++ {
if match(i) {
return true
}
}
return false
}
s := []string{"a", "b", "c", "o"}
// test if s contains "o"
ok := Contains(len(s), func(i int) bool {
return s[i] == "o"
})
If you have a byte slice, you can use bytes package:
package main
import "bytes"
func contains(b []byte, sub byte) bool {
return bytes.Contains(b, []byte{sub})
}
func main() {
b := contains([]byte{10, 11, 12, 13, 14}, 13)
println(b)
}
Or suffixarray package:
package main
import "index/suffixarray"
func contains(b []byte, sub byte) bool {
return suffixarray.New(b).Lookup([]byte{sub}, 1) != nil
}
func main() {
b := contains([]byte{10, 11, 12, 13, 14}, 13)
println(b)
}
If you have an int slice, you can use intsets package:
package main
import "golang.org/x/tools/container/intsets"
func main() {
var s intsets.Sparse
for n := 10; n < 20; n++ {
s.Insert(n)
}
b := s.Has(16)
println(b)
}
https://golang.org/pkg/bytes
https://golang.org/pkg/index/suffixarray
https://pkg.go.dev/golang.org/x/tools/container/intsets
I created the following Contains function using reflect package.
This function can be used for various types like int32 or struct etc.
// Contains returns true if an element is present in a slice
func Contains(list interface{}, elem interface{}) bool {
listV := reflect.ValueOf(list)
if listV.Kind() == reflect.Slice {
for i := 0; i < listV.Len(); i++ {
item := listV.Index(i).Interface()
target := reflect.ValueOf(elem).Convert(reflect.TypeOf(item)).Interface()
if ok := reflect.DeepEqual(item, target); ok {
return true
}
}
}
return false
}
Usage of contains function is below
// slice of int32
containsInt32 := Contains([]int32{1, 2, 3, 4, 5}, 3)
fmt.Println("contains int32:", containsInt32)
// slice of float64
containsFloat64 := Contains([]float64{1.1, 2.2, 3.3, 4.4, 5.5}, 4.4)
fmt.Println("contains float64:", containsFloat64)
// slice of struct
type item struct {
ID string
Name string
}
list := []item{
item{
ID: "1",
Name: "test1",
},
item{
ID: "2",
Name: "test2",
},
item{
ID: "3",
Name: "test3",
},
}
target := item{
ID: "2",
Name: "test2",
}
containsStruct := Contains(list, target)
fmt.Println("contains struct:", containsStruct)
// Output:
// contains int32: true
// contains float64: true
// contains struct: true
Please see here for more details:
https://github.com/glassonion1/xgo/blob/main/contains.go
There are several packages that can help, but this one seems promising:
https://github.com/wesovilabs/koazee
var numbers = []int{1, 5, 4, 3, 2, 7, 1, 8, 2, 3}
contains, _ := stream.Contains(7)
fmt.Printf("stream.Contains(7): %v\n", contains)
It might be considered a bit 'hacky' but depending the size and contents of the slice, you can join the slice together and do a string search.
For example you have a slice containing single word values (e.g. "yes", "no", "maybe"). These results are appended to a slice. If you want to check if this slice contains any "maybe" results, you may use
exSlice := ["yes", "no", "yes", "maybe"]
if strings.Contains(strings.Join(exSlice, ","), "maybe") {
fmt.Println("We have a maybe!")
}
How suitable this is really depends on the size of the slice and length of its members. There may be performance or suitability issues for large slices or long values, but for smaller slices of finite size and simple values it is a valid one-liner to achieve the desired result.
Related
Is there a way to create a generic function that can adjust its operation when passed a map or a slice type vs a basic type?
Goal
Create a slice reading function generator with a flexible return type:
func ValueReader[T <probably something fancy>](i int) func ([]ProtoConvertable) T {
return func (row []ProtoConvertable) T {
return ...
}
}
row := []ProtoConvertable{
&Data[int]{Value: 333},
&ListData{Values: []ProtoConvertable{
&Data[string]{Value: "hello"},
&Data[string]{Value: "world"},
}},
&MapData{Values: map[ProtoConvertable]ProtoConvertable{
&Data[int]{Value: 22}: &Data[string]{Value: "world"},
&Data[int]{Value: 11}: &Data[string]{Value: "hello"},
}},
}
dataReader := ValueReader[int](0) // A function that converts the first element to an int
listDataReader := ValueReader[[]string](1) // A function that converts the second element to a slice
mapDataReader := ValueReader[map[int]string](2) // A function that converts the third element to a map
data := dataReader(row) // 333
listData := listDataReader(row) // []string{"hello", "world"}
mapData := mapDataReader(row) // map[int]string{11: "hello", 22: "world"}
Types
type ValueType interface {
int | string
}
type ProtoConvertable interface {
ToProto() *pb.GenericMessage
}
type Data[T ValueType] struct {
Value T
}
func (d *Data) ToProto() *pb.GenericMessage{
...
}
type ListData struct {
Values []ProtoConvertable
}
func (d *ListData) ToProto() *pb.GenericMessage {
...
}
type MapData struct {
Values map[ProtoConvertable]ProtoConvertable
}
func (d *MapData) ToProto() *pb.GenericMessage {
...
}
Current Solution
func ValueReader[T ValueType](i int) func([]ProtoConvertable) T {
return func(row []ProtoConvertable) T {
return row[i].(*Data[T]).Value
}
}
func ListValueReader[T ValueType](i int) func([]ProtoConvertable) []T {
return func(row []ProtoConvertable) []T {
vs := row[i].(*ListData).Values
res := make([]T, len(vs))
for i, v := range vs {
res[i] = v.(*Data[T]).Value
}
return res
}
}
func MapValueReader[K ValueType, V ValueType](i int) func([]ProtoConvertable) map[K]V {
return func(row []ProtoConvertable) map[K]V {
vs := row[i].(*MapData).Values
res := make(map[K]V, len(vs))
for k, v := range vs {
res[k.(*Data[K]).Value] = v.(*Data[V]).Value
}
return res
}
}
dataReader := ValueReader[int](0)
listDataReader := ListValueReader[string](1)
mapDataReader := MapValueReader[int, string](2)
Note: all of this code is an untested simplification of a more complicated library. It might need some tweaking to get to actually work.
The <probably something fancy> doesn't exist.
The main issue is that you want to model a type parameter that matches a base value and two composite types, one of which is a map type where you want to capture both K and V.
Even if it existed, the body of ValueReader would be a type-switch on T to return each specialized reader function, so your existing solution that involves a small amount of code duplication seems just a better strategy overall.
My advice is to use generics when the operations on the different concrete types of T are really identical. You can read more at: https://go.dev/blog/when-generics
I am writing a program which has several structs and functions to handle these structs differently. I am having a generic function which calls the required function based on the inputs. Is there a generic way to use the returned value from getStruct()?
package main
var X func(s []string) A
var Y func(s []string) B
type A struct {
Name string
Place string
}
type B struct {
Name string
Place string
Value string
}
func newA(s []string) A {
a := A{
Name: s[0],
Place: s[1],
}
return a
}
func newB(s []string) B {
a := B{
Name: s[0],
Place: s[1],
Value: s[2],
}
return a
}
func getStruct(t string) interface{} {
switch {
case t == "A":
return X
case t == "B":
return Y
default:
return //someStruct
}
}
func main() {
buildNewStruct := getStruct("A") //Lets assume "A" here is got as an argument
var strSlice = []string{"Bob", "US"}
buildNewStruct(strSlice) //How to do this operation?
//I am hoping to use buildNewStruct(strSlice) to dynamically call
//either of newA(strSlice) or newB(strSlice) function
}
I have tried looking at this and this the later is not exactly the same as my question.
Since I am new to go, I am not sure if something like this is possible.
you can use the reflect package to set the struct properties to the equivalent index positioned value from an []interface{} slice.
package main
import (
"fmt"
"log"
"reflect"
)
func main() {
var a A
err := decode(&a, []interface{}{"Name", "Place"})
log.Println(err)
log.Println(a)
}
func decode(dst interface{}, values []interface{}) error {
rvptr := reflect.ValueOf(dst)
if rvptr.Kind() != reflect.Ptr {
return fmt.Errorf("value must be ptr")
}
rv := rvptr.Elem()
if rv.NumField() < len(values) {
return fmt.Errorf("too many values")
}
if rv.NumField() > len(values) {
return fmt.Errorf("too few values")
}
rvalues := reflect.ValueOf(values)
for i := range values {
f := rv.FieldByIndex([]int{i})
f.Set(rvalues.Index(i).Elem())
}
return nil
}
type A struct {
Name string
Place string
}
type B struct {
Name string
Place string
Value string
}
prints
$ go run main.go
2019/11/21 17:00:17 <nil>
2019/11/21 17:00:17 {Name Place}
The problem is the return type for the function.
func newA(in []string) interface{} {...}
func newB(in []string) interface{} {...}
func getStruct(name string) func([]string) interface{} {
switch name {
case "A": return newA
case "B": return newB
}
return nil
}
func main() {
buildNewStruct := getStruct("A")
var strSlice = []string{"Bob", "US"}
str:=buildNewStruct(strSlice)
if a, ok:=str.(A); ok {
...
}
}
With this approach, even though you saved some code by calling a unified buildNewStruct(), you have to use type assertions to figure out what is returned from that function, so this may not make a lot of sense. It depends on your exact use case though.
Let's suppose I have these types:
type Attribute struct {
Key, Val string
}
type Node struct {
Attr []Attribute
}
and that I want to iterate on my node's attributes to change them.
I would have loved to be able to do:
for _, attr := range n.Attr {
if attr.Key == "href" {
attr.Val = "something"
}
}
but as attr isn't a pointer, this wouldn't work and I have to do:
for i, attr := range n.Attr {
if attr.Key == "href" {
n.Attr[i].Val = "something"
}
}
Is there a simpler or faster way? Is it possible to directly get pointers from range?
Obviously I don't want to change the structures just for the iteration and more verbose solutions are no solutions.
No, the abbreviation you want is not possible.
The reason for this is that range copies the values from the slice you're iterating over.
The specification about range says:
Range expression 1st value 2nd value (if 2nd variable is present)
array or slice a [n]E, *[n]E, or []E index i int a[i] E
So, range uses a[i] as its second value for arrays/slices, which effectively means that the
value is copied, making the original value untouchable.
This behavior is demonstrated by the following code:
x := make([]int, 3)
x[0], x[1], x[2] = 1, 2, 3
for i, val := range x {
println(&x[i], "vs.", &val)
}
The code prints you completely different memory locations for the value from range and the actual
value in the slice:
0xf84000f010 vs. 0x7f095ed0bf68
0xf84000f014 vs. 0x7f095ed0bf68
0xf84000f018 vs. 0x7f095ed0bf68
So the only thing you can do is to either use pointers or the index, as already proposed by jnml and peterSO.
You seem to be asking for something equivalent to this:
package main
import "fmt"
type Attribute struct {
Key, Val string
}
type Node struct {
Attr []Attribute
}
func main() {
n := Node{
[]Attribute{
{"key", "value"},
{"href", "http://www.google.com"},
},
}
fmt.Println(n)
for i := 0; i < len(n.Attr); i++ {
attr := &n.Attr[i]
if attr.Key == "href" {
attr.Val = "something"
}
}
fmt.Println(n)
}
Output:
{[{key value} {href http://www.google.com}]}
{[{key value} {href something}]}
This avoids creating a--possibly large--copy of type Attribute values, at the expense of slice bounds checks. In your example, type Attribute is relatively small, two string slice references: 2 * 3 * 8 = 48 bytes on a 64-bit architecture machine.
You could also simply write:
for i := 0; i < len(n.Attr); i++ {
if n.Attr[i].Key == "href" {
n.Attr[i].Val = "something"
}
}
But, the way to get an equivalent result with a range clause, which creates a copy but minimizes slice bounds checks, is:
for i, attr := range n.Attr {
if attr.Key == "href" {
n.Attr[i].Val = "something"
}
}
I'd adapt your last suggestion and use the index-only version of range.
for i := range n.Attr {
if n.Attr[i].Key == "href" {
n.Attr[i].Val = "something"
}
}
It seems simpler to me to refer to n.Attr[i] explicitly in both the line that tests Key and the line that sets Val, rather than using attr for one and n.Attr[i] for the other.
For example:
package main
import "fmt"
type Attribute struct {
Key, Val string
}
type Node struct {
Attr []*Attribute
}
func main() {
n := Node{[]*Attribute{
&Attribute{"foo", ""},
&Attribute{"href", ""},
&Attribute{"bar", ""},
}}
for _, attr := range n.Attr {
if attr.Key == "href" {
attr.Val = "something"
}
}
for _, v := range n.Attr {
fmt.Printf("%#v\n", *v)
}
}
Playground
Output
main.Attribute{Key:"foo", Val:""}
main.Attribute{Key:"href", Val:"something"}
main.Attribute{Key:"bar", Val:""}
Alternative approach:
package main
import "fmt"
type Attribute struct {
Key, Val string
}
type Node struct {
Attr []Attribute
}
func main() {
n := Node{[]Attribute{
{"foo", ""},
{"href", ""},
{"bar", ""},
}}
for i := range n.Attr {
attr := &n.Attr[i]
if attr.Key == "href" {
attr.Val = "something"
}
}
for _, v := range n.Attr {
fmt.Printf("%#v\n", v)
}
}
Playground
Output:
main.Attribute{Key:"foo", Val:""}
main.Attribute{Key:"href", Val:"something"}
main.Attribute{Key:"bar", Val:""}
Let's say I want to write a function that finds a value in a slice
I intuitively want to write:
func find(s []interface{}, f func(interface{})bool) int {
for i, item := range s {
if f(item) {
return i
}
}
return -1
}
however I don't manage to do this with Go. I could have an interface with
Len() int
Value(int) interface{}
...
and this would work but in my real code things are more complicated (I need to do slices[from:end] etc), append, ... etc and if I redefine all this in an interface I end up having a lot of code. Is there a better way?
You can use reflection. I wrote this function for a project, feel free to use it:
// InSlice returns true if value is in slice
func InSlice(value, slice interface{}) bool {
switch reflect.TypeOf(slice).Kind() {
case reflect.Slice, reflect.Ptr:
values := reflect.Indirect(reflect.ValueOf(slice))
if values.Len() == 0 {
return false
}
val := reflect.Indirect(reflect.ValueOf(value))
if val.Kind() != values.Index(0).Kind() {
return false
}
for i := 0; i < values.Len(); i++ {
if reflect.DeepEqual(values.Index(i).Interface(), val.Interface()) {
return true
}
}
}
return false
}
if you have predefined type like []int or []string and do not want to convert to []interface{} see this working sample code (without using reflect):
package main
import "fmt"
func find(s []int, f func(int) bool) int {
for i, item := range s {
if f(item) {
return i
}
}
return -1
}
func findString(s []string, f func(string) bool) int {
for i, item := range s {
if f(item) {
return i
}
}
return -1
}
func main() {
s := []int{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
fmt.Println(find(s, func(a int) bool { return a == 5 })) //5
strs := []string{"A", "B", "C"}
fmt.Println(findString(strs, func(a string) bool { return a == "B" })) //1
}
or you may use reflect,like this working sample code:
package main
import "fmt"
import "reflect"
func find(slice interface{}, f func(interface{}) bool) int {
switch reflect.TypeOf(slice).Kind() {
case reflect.Slice:
values := reflect.Indirect(reflect.ValueOf(slice))
for i := 0; i < values.Len(); i++ {
if f(values.Index(i).Interface()) {
return i
}
}
}
return -1
}
func main() {
a := []int{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
fmt.Println(find(a, func(i interface{}) bool { return i == 5 })) //5
b := []string{"A", "B", "C"}
fmt.Println(find(b, func(i interface{}) bool { return i == "B" })) //1
}
output:
5
1
I hope this helps.
I think, if you want to have slice of arbitrary values and use that sort of find function and have the possibility of standard [] reslicing, maybe the best way is to encapsulate your interface{} with another struct
type proxy struct {
val interface{}
}
and use
func find(s []proxy , f func(proxy)bool) int {}
and have the f function deal with interface{} comparison / type casting.
Trying to check if a struct in some slice contains a value of a given field so i wrote this
func main() {
//test
Objs := []Obj{{1,"xxx"},{2,"yyy"},{3,"zzz"}}
res := containsStructFieldValue(Objs,"X",1)
fmt.Println(res)
}
type Obj struct {
X int
Y string
}
func containsStructFieldValue(slice []Obj ,fieldName string,fieldValueToCheck interface {}) bool{
for _,s := range slice{
r := reflect.ValueOf(s)
f := r.FieldByName(fieldName)
if f.IsValid(){
if f.Interface() == fieldValueToCheck{
return true //a field with the given value exists
}
}
}
return false
}
i need it to work for any given struct type but when i tried slice []interface as the parameter i found out that its not possible, any idea on how to make the above method work for any struct type?
You can use reflect to range over an interface{}, for instance:
func containsStructFieldValue(slice interface{} ,fieldName string,fieldValueToCheck interface {}) bool{
rangeOnMe := reflect.ValueOf(slice)
for i := 0; i < rangeOnMe.Len(); i++ {
s := rangeOnMe.Index(i)
f := s.FieldByName(fieldName)
if f.IsValid(){
if f.Interface() == fieldValueToCheck {
return true
}
}
}
}
Note that I did not check that slice is indeed a slice... If not, this code will panic. You can use reflect.Kind to check this if you want to avoid this behaviour.