Your friends are planning an expedition to a small town deep in the Canadian north
next winter break. They’ve researched all the travel options and have drawn up a directed
graph whose nodes represent intermediat destinations and edges represent the reoads betweeen
them.
In the course of this, they’ve also learned that extreme weather causes roads in this part of
the world to become quite slow in the winter and may cause large travel delays. They’ve
found an excellent travel Web site that can accurately predict how fast they’ll be able to
travel along the roads; however, the speed of travel depends on the time of the year. More
precisely, the Web site answers queries of the following form: given an edge e = (u, v)
connecting two sites u and v, and given a proposed starting time t from location u, the
site will return a value fe(t), the predicted arrival time at v. The web site guarantees that
1
fe(t) > t for every edge e and every time t (you can’t travel backward in time), and that
fe(t) is a monotone increasing function of t (that is, you do not arrive earlier by starting
later). Other than that, the functions fe may be arbitrary. For example, in areas where the
travel time does not vary with the season, we would have fe(t) = t + e, wheree is the
time needed to travel from the beginning to the end of the edge e.
Your friends want to use the Web site to determine the fastest way to travel through the
directed graph from their starting point to their intended destination. (You should assume
that they start at time 0 and that all predictions made by the Web site are completely
correct.) Give a polynomial-time algorithm to do this, where we treat a single query to
the Web site (based on a specific edge e and a time t) as taking a single computational step.
def updatepath(node):
randomvalue = random.randint(0,3)
print(node,"to other node:",randomvalue)
for i in range(0,n):
distance[node][i] = distance[node][i] + randomvalue
def minDistance(dist,flag_array,n):
min_value = math.inf
for i in range(0,n):
if dist[i] < min_value and flag_array[i] == False:
min_value = dist[i]
min_index = i
return min_index
def shortest_path(graph, src,n):
dist = [math.inf] * n
flag_array = [False] * n
dist[src] = 0
for cout in range(n):
#find the node index that have min cost
u = minDistance(dist,flag_array,n)
flag_array[u] = True
updatepath(u)
for i in range(n):
if graph[u][i] > 0 and flag_array[i]==False and dist[i] > dist[u] + graph[u][i]:
dist[i] = dist[u] + graph[u][i]
path[i] = u
return dist
I applied Dijkstra algorithm but it is not correct ? What would i change in my algorithm to work it for dynamic changing edge.
Well, Key points are that function is monotonically increasing. There is an algorithm which exploits this property and it is called A*.
Accumulated cost: Your prof wants you to use two distances one is accumulated cost(this is simple the cost from previous added to the cost/time needed to move to the next node).
Heuristic cost: This is some predicted cost.
Disjkstra approach would not work because you are working with heuristic cost/predicted and accumulated cost.
Monotonically increasing means h(A) <= h(A) + f(A..B).It simply says that if you move from node A to node B then the cost should not be less than the previous node (in this case A) and this is heuristic + accumulated. If this property holds then the first path which A* chooses is always the path to goal and it never needs to backtrack.
Note: The power of this algorithm is totally base on how you predict value.
If you underestimate the value that will be corrected with accumulated value but if you overestimate the value it will chose wrong path.
Algorithm:
Create a Min Priority queue.
insert initial city in q.
while(!pq.isEmpty() && !Goalfound)
Node min = pq.delMin() //this should return you a cities to which your
distance(heuristic+accumulated is minial).
put all succesors of min in pq // all cities which you can reach, you
can better make a list of visited
cities s that queue will be
efficient by not placing same
element twice.
Keep doing this and at the end you will either reach goal or your queue will be empty
Extra
Here i implemented a 8-puzzle-solve using A*, it can give you an idea about how costs are defined and ho it works.
`
private void solve(MinPQ<Node> pq, HashSet<Node> closedList) {
while(!(pq.min().getBoad().isGoal(pq.min().getBoad()))){
Node e = pq.delMin();
closedList.add(e);
for(Board boards: e.getBoad().neighbors()){
Node nextNode = new Node(boards,e,e.getMoves()+1);
if(!equalToPreviousNode(nextNode,e.getPreviousNode()))
pq.insert(nextNode);
}
}
Node collection = pq.delMin();
while(!(collection.getPreviousNode() == null)){
this.getB().add(collection.getBoad());
collection =collection.getPreviousNode();
}
this.getB().add(collection.getBoad());
System.out.println(pq.size());
}
A link to full code is here.
First of all, I got a N*N distance matrix, for each point, I calculated its nearest neighbor, so we had a N*2 matrix, It seems like this:
0 -> 1
1 -> 2
2 -> 3
3 -> 2
4 -> 2
5 -> 6
6 -> 7
7 -> 6
8 -> 6
9 -> 8
the second column was the nearest neighbor's index. So this was a special kind of directed
graph, with each vertex had and only had one out-degree.
Of course, we could first transform the N*2 matrix to a standard graph representation, and perform BFS/DFS to get the connected components.
But, given the characteristic of this special graph, is there any other fast way to do the job ?
I will be really appreciated.
Update:
I've implemented a simple algorithm for this case here.
Look, I did not use a union-find algorithm, because the data structure may make things not that easy, and I doubt whether It's the fastest way in my case(I meant practically).
You could argue that the _merge process could be time consuming, but if we swap the edges into the continuous place while assigning new label, the merging may cost little, but it need another N spaces to trace the original indices.
The fastest algorithm for finding connected components given an edge list is the union-find algorithm: for each node, hold the pointer to a node in the same set, with all edges converging to the same node, if you find a path of length at least 2, reconnect the bottom node upwards.
This will definitely run in linear time:
- push all edges into a union-find structure: O(n)
- store each node in its set (the union-find root)
and update the set of non-empty sets: O(n)
- return the set of non-empty sets (graph components).
Since the list of edges already almost forms a union-find tree, it is possible to skip the first step:
for each node
- if the node is not marked as collected
-- walk along the edges until you find an order-1 or order-2 loop,
collecting nodes en-route
-- reconnect all nodes to the end of the path and consider it a root for the set.
-- store all nodes in the set for the root.
-- update the set of non-empty sets.
-- mark all nodes as collected.
return the set of non-empty sets
The second algorithm is linear as well, but only a benchmark will tell if it's actually faster. The strength of the union-find algorithm is its optimization. This delays the optimization to the second step but removes the first step completely.
You can probably squeeze out a little more performance if you join the union step with the nearest neighbor calculation, then collect the sets in the second pass.
If you want to do it sequencially you can do it using weighted quick union and path compression .Complexity O(N+Mlog(log(N))).check this link .
Here is the pseudocode .honoring #pycho 's words
`
public class QuickUnion
{
private int[] id;
public QuickUnion(int N)
{
id = new int[N];
for (int i = 0; i < N; i++) id[i] = i;
}
public int root(int i)
{
while (i != id[i])
{
id[i] = id[id[i]];
i = id[i];
}
return i;
}
public boolean find(int p, int q)
{
return root(p) == root(q);
}
public void unite(int p, int q)
{
int i = root(p);
int j = root(q);
id[i] = j;
}
}
`
#reference https://www.cs.princeton.edu/~rs/AlgsDS07/01UnionFind.pdf
If you want to find connected components parallely, the asymptotic complexity can be reduced to O(log(log(N)) time using pointer jumping and weighted quick union with path compression. Check this link
https://vishwasshanbhog.wordpress.com/2016/05/04/efficient-parallel-algorithm-to-find-the-connected-components-of-the-graphs/
Since each node has only one outgoing edge, you can just traverse the graph one edge at a time until you get to a vertex you've already visited. An out-degree of 1 means any further traversal at this point will only take you where you've already been. The traversed vertices in that path are all in the same component.
In your example:
0->1->2->3->2, so [0,1,2,3] is a component
4->2, so update the component to [0,1,2,3,4]
5->6->7->6, so [5,6,7] is a component
8->6, so update the compoent to [5,6,7,8]
9->8, so update the compoent to [5,6,7,8,9]
You can visit each node exactly once, so time is O(n). Space is O(n) since all you need is a component id for each node, and a list of component ids.
While solving the problems on Techgig.com, I got struck with one one of the problem. The problem is like this:
A company organizes two trips for their employees in a year. They want
to know whether all the employees can be sent on the trip or not. The
condition is like, no employee can go on both the trips. Also to
determine which employee can go together the constraint is that the
employees who have worked together in past won't be in the same group.
Examples of the problems:
Suppose the work history is given as follows: {(1,2),(2,3),(3,4)};
then it is possible to accommodate all the four employees in two trips
(one trip consisting of employees 1& 3 and other having employees 2 &
4). Neither of the two employees in the same trip have worked together
in past. Suppose the work history is given as {(1,2),(1,3),(2,3)} then
there is no way possible to have two trips satisfying the company rule
and accommodating all the employees.
Can anyone tell me how to proceed on this problem?
I am using this code for DFS and coloring the vertices.
static boolean DFS(int rootNode) {
Stack<Integer> s = new Stack<Integer>();
s.push(rootNode);
state[rootNode] = true;
color[rootNode] = 1;
while (!s.isEmpty()) {
int u = s.peek();
for (int child = 0; child < numofemployees; child++) {
if (adjmatrix[u][child] == 1) {
if (!state[child]) {
state[child] = true;
s.push(child);
color[child] = color[u] == 1 ? 2 : 1;
break;
} else {
s.pop();
if (color[u] == color[child])
return false;
}
}
}
}
return true;
}
This problem is functionally equivalent to testing if an undirected graph is bipartite. A bipartite graph is a graph for which all of the nodes can be distributed among two sets, and within each set, no node is adjacent to another node.
To solve the problem, take the following steps.
Using the adjacency pairs, construct an undirected graph. This is pretty straightforward: each number represents a node, and for each pair you are given, form a connection between those nodes.
Test the newly generated graph for bipartiteness. This can be achieved in linear time, as described here.
If the graph is bipartite and you've generated the two node sets, the answer to the problem is yes, and each node set, along with its nodes (employees), correspond to one of the two trips.
Excerpt on how to test for bipartiteness:
It is possible to test whether a graph is bipartite, and to return
either a two-coloring (if it is bipartite) or an odd cycle (if it is
not) in linear time, using depth-first search. The main idea is to
assign to each vertex the color that differs from the color of its
parent in the depth-first search tree, assigning colors in a preorder
traversal of the depth-first-search tree. This will necessarily
provide a two-coloring of the spanning tree consisting of the edges
connecting vertices to their parents, but it may not properly color
some of the non-tree edges. In a depth-first search tree, one of the
two endpoints of every non-tree edge is an ancestor of the other
endpoint, and when the depth first search discovers an edge of this
type it should check that these two vertices have different colors. If
they do not, then the path in the tree from ancestor to descendant,
together with the miscolored edge, form an odd cycle, which is
returned from the algorithm together with the result that the graph is
not bipartite. However, if the algorithm terminates without detecting
an odd cycle of this type, then every edge must be properly colored,
and the algorithm returns the coloring together with the result that
the graph is bipartite.
I even used a recursive solution but this one is also passing the same number of cases. Am I leaving any special case handling ?
Below is the recursive solution of the problem:
static void dfs(int v, int curr) {
state[v] = true;
color[v] = curr;
for (int i = 0; i < numofemployees; i++) {
if (adjmatrix[v][i] == 1) {
if (color[i] == curr) {
bipartite = false;
return;
}
if (!state[i])
dfs(i, curr == 1 ? 2 : 1);
}
}
}
I am calling this function from main() as dfs(0,1) where 0 is the starting vertex and 1 is one of the color
I have a set of students (referred to as items in the title for generality). Amongst these students, some have a reputation for being rambunctious. We are told about a set of hate relationships of the form 'i hates j'. 'i hates j' does not imply 'j hates i'. We are supposed to arrange the students in rows (front most row numbered 1) in a way such that if 'i hates j' then i should be put in a row that is strictly lesser numbered than that of j (in other words: in some row that is in front of j's row) so that i doesn't throw anything at j (Turning back is not allowed). What would be an efficient algorithm to find the minimum number of rows needed (each row need not have the same number of students)?
We will make the following assumptions:
1) If we model this as a directed graph, there are no cycles in the graph. The most basic cycle would be: if 'i hates j' is true, 'j hates i' is false. Because otherwise, I think the ordering would become impossible.
2) Every student in the group is at least hated by one other student OR at least hates one other student. Of course, there would be students who are both hated by some and who in turn hate other students. This means that there are no stray students who don't form part of the graph.
Update: I have already thought of constructing a directed graph with i --> j if 'i hates j and doing topological sorting. However, since the general topological sort would suit better if I had to line all the students in a single line. Since there is a variation of the rows here, I am trying to figure out how to factor in the change into topological sort so it gives me what I want.
When you answer, please state the complexity of your solution. If anybody is giving code and you don't mind the language, then I'd prefer Java but of course any other language is just as fine.
JFYI This is not for any kind of homework (I am not a student btw :)).
It sounds to me that you need to investigate topological sorting.
This problem is basically another way to put the longest path in a directed graph problem. The number of rows is actually number of nodes in path (number of edges + 1).
Assuming the graph is acyclic, the solution is topological sort.
Acyclic is a bit stronger the your assumption 1. Not only A -> B and B -> A is invalid. Also A -> B, B -> C, C -> A and any cycle of any length.
HINT: the question is how many rows are needed, not which student in which row. The answer to the question is the length of the longest path.
It's from a project management theory (or scheduling theory, I don't know the exact term). There the task is about sorting jobs (vertex is a job, arc is a job order relationship).
Obviously we have some connected oriented graph without loops. There is an arc from vertex a to vertex b if and only if a hates b. Let's assume there is a source (without incoming arcs) and destination (without outgoing arcs) vertex. If that is not the case, just add imaginary ones. Now we want to find length of a longest path from source to destination (it will be number of rows - 1, but mind the imaginary verteces).
We will define vertex rank (r[v]) as number of arcs in a longest path between source and this vertex v. Obviously we want to know r[destination]. Algorithm for finding rank:
0) r_0[v] := 0 for all verteces v
repeat
t) r_t[end(j)] := max( r_{t-1}[end(j)], r_{t-1}[start(j)] + 1 ) for all arcs j
until for all arcs j r_{t+1}[end(j)] = r_t[end(j)] // i.e. no changes on this iteration
On each step at least one vertex increases its rank. Therefore in this form complexity is O(n^3).
By the way, this algorithm also gives you student distribution among rows. Just group students by their respective ranks.
Edit: Another code with the same idea. Possibly it is better understandable.
# Python
# V is a list of vertex indices, let it be something like V = range(N)
# source has index 0, destination has index N-1
# E is a list of edges, i.e. tuples of the form (start vertex, end vertex)
R = [0] * len(V)
do:
changes = False
for e in E:
if R[e[1]] < R[e[0]] + 1:
changes = True
R[e[1]] = R[e[0]] + 1
while changes
# The answer is derived from value of R[N-1]
Of course this is the simplest implementation. It can be optimized, and time estimate can be better.
Edit2: obvious optimization - update only verteces adjacent to those that were updated on the previous step. I.e. introduce a queue with verteces whose rank was updated. Also for edge storing one should use adjacency lists. With such optimization complexity would be O(N^2). Indeed, each vertex may appear in the queue at most rank times. But vertex rank never exceeds N - number of verteces. Therefore total number of algorithm steps will not exceed O(N^2).
Essentailly the important thing in assumption #1 is that there must not be any cycles in this graph. If there are any cycles you can't solve this problem.
I would start by seating all of the students that do not hate any other students in the back row. Then you can seat the students who hate these students in the next row and etc.
The number of rows is the length of the longest path in the directed graph, plus one. As a limit case, if there is no hate relationship everyone can fit on the same row.
To allocate the rows, put everyone who is not hated by anyone else on the row one. These are the "roots" of your graph. Everyone else is put on row N + 1 if N is the length of the longest path from any of the roots to that person (this path is of length one at least).
A simple O(N^3) algorithm is the following:
S = set of students
for s in S: s.row = -1 # initialize row field
rownum = 0 # start from first row below
flag = true # when to finish
while (flag):
rownum = rownum + 1 # proceed to next row
flag = false
for s in S:
if (s.row != -1) continue # already allocated
ok = true
foreach q in S:
# Check if there is student q who will sit
# on this or later row who hates s
if ((q.row == -1 or q.row = rownum)
and s hated by q) ok = false; break
if (ok): # can put s here
s.row = rownum
flag = true
Simple answer = 1 row.
Put all students in the same row.
Actually that might not solve the question as stated - lesser row, rather than equal row...
Put all students in row 1
For each hate relation, put the not-hating student in a row behind the hating student
Iterate till you have no activity, or iterate Num(relation) times.
But I'm sure there are better algorithms - look at acyclic graphs.
Construct a relationship graph where i hates j will have a directed edge from i to j. So end result is a directed graph. It should be a DAG otherwise no solutions as it's not possible to resolve circular hate relations ship.
Now simply do a DFS search and during the post node callbacks, means the once the DFS of all the children are done and before returning from the DFS call to this node, simply check the row number of all the children and assign the row number of this node as row max row of the child + 1. Incase if there is some one who doesn't hate anyone basically node with no adjacency list simply assign him row 0.
Once all the nodes are processed reverse the row numbers. This should be easy as this is just about finding the max and assigning the row numbers as max-already assigned row numbers.
Here is the sample code.
postNodeCb( graph g, int node )
{
if ( /* No adj list */ )
row[ node ] = 0;
else
row[ node ] = max( row number of all children ) + 1;
}
main()
{
.
.
for ( int i = 0; i < NUM_VER; i++ )
if ( !visited[ i ] )
graphTraverseDfs( g, i );`enter code here`
.
.
}
How can I find (iterate over) ALL the cycles in a directed graph from/to a given node?
For example, I want something like this:
A->B->A
A->B->C->A
but not:
B->C->B
I found this page in my search and since cycles are not same as strongly connected components, I kept on searching and finally, I found an efficient algorithm which lists all (elementary) cycles of a directed graph. It is from Donald B. Johnson and the paper can be found in the following link:
http://www.cs.tufts.edu/comp/150GA/homeworks/hw1/Johnson%2075.PDF
A java implementation can be found in:
http://normalisiert.de/code/java/elementaryCycles.zip
A Mathematica demonstration of Johnson's algorithm can be found here, implementation can be downloaded from the right ("Download author code").
Note: Actually, there are many algorithms for this problem. Some of them are listed in this article:
http://dx.doi.org/10.1137/0205007
According to the article, Johnson's algorithm is the fastest one.
Depth first search with backtracking should work here.
Keep an array of boolean values to keep track of whether you visited a node before. If you run out of new nodes to go to (without hitting a node you have already been), then just backtrack and try a different branch.
The DFS is easy to implement if you have an adjacency list to represent the graph. For example adj[A] = {B,C} indicates that B and C are the children of A.
For example, pseudo-code below. "start" is the node you start from.
dfs(adj,node,visited):
if (visited[node]):
if (node == start):
"found a path"
return;
visited[node]=YES;
for child in adj[node]:
dfs(adj,child,visited)
visited[node]=NO;
Call the above function with the start node:
visited = {}
dfs(adj,start,visited)
The simplest choice I found to solve this problem was using the python lib called networkx.
It implements the Johnson's algorithm mentioned in the best answer of this question but it makes quite simple to execute.
In short you need the following:
import networkx as nx
import matplotlib.pyplot as plt
# Create Directed Graph
G=nx.DiGraph()
# Add a list of nodes:
G.add_nodes_from(["a","b","c","d","e"])
# Add a list of edges:
G.add_edges_from([("a","b"),("b","c"), ("c","a"), ("b","d"), ("d","e"), ("e","a")])
#Return a list of cycles described as a list o nodes
list(nx.simple_cycles(G))
Answer: [['a', 'b', 'd', 'e'], ['a', 'b', 'c']]
First of all - you do not really want to try find literally all cycles because if there is 1 then there is an infinite number of those. For example A-B-A, A-B-A-B-A etc. Or it may be possible to join together 2 cycles into an 8-like cycle etc., etc... The meaningful approach is to look for all so called simple cycles - those that do not cross themselves except in the start/end point. Then if you wish you can generate combinations of simple cycles.
One of the baseline algorithms for finding all simple cycles in a directed graph is this: Do a depth-first traversal of all simple paths (those that do not cross themselves) in the graph. Every time when the current node has a successor on the stack a simple cycle is discovered. It consists of the elements on the stack starting with the identified successor and ending with the top of the stack. Depth first traversal of all simple paths is similar to depth first search but you do not mark/record visited nodes other than those currently on the stack as stop points.
The brute force algorithm above is terribly inefficient and in addition to that generates multiple copies of the cycles. It is however the starting point of multiple practical algorithms which apply various enhancements in order to improve performance and avoid cycle duplication. I was surprised to find out some time ago that these algorithms are not readily available in textbooks and on the web. So I did some research and implemented 4 such algorithms and 1 algorithm for cycles in undirected graphs in an open source Java library here : http://code.google.com/p/niographs/ .
BTW, since I mentioned undirected graphs : The algorithm for those is different. Build a spanning tree and then every edge which is not part of the tree forms a simple cycle together with some edges in the tree. The cycles found this way form a so called cycle base. All simple cycles can then be found by combining 2 or more distinct base cycles. For more details see e.g. this : http://dspace.mit.edu/bitstream/handle/1721.1/68106/FTL_R_1982_07.pdf .
The DFS-based variants with back edges will find cycles indeed, but in many cases it will NOT be minimal cycles. In general DFS gives you the flag that there is a cycle but it is not good enough to actually find cycles. For example, imagine 5 different cycles sharing two edges. There is no simple way to identify cycles using just DFS (including backtracking variants).
Johnson's algorithm is indeed gives all unique simple cycles and has good time and space complexity.
But if you want to just find MINIMAL cycles (meaning that there may be more then one cycle going through any vertex and we are interested in finding minimal ones) AND your graph is not very large, you can try to use the simple method below.
It is VERY simple but rather slow compared to Johnson's.
So, one of the absolutely easiest way to find MINIMAL cycles is to use Floyd's algorithm to find minimal paths between all the vertices using adjacency matrix.
This algorithm is nowhere near as optimal as Johnson's, but it is so simple and its inner loop is so tight that for smaller graphs (<=50-100 nodes) it absolutely makes sense to use it.
Time complexity is O(n^3), space complexity O(n^2) if you use parent tracking and O(1) if you don't.
First of all let's find the answer to the question if there is a cycle.
The algorithm is dead-simple. Below is snippet in Scala.
val NO_EDGE = Integer.MAX_VALUE / 2
def shortestPath(weights: Array[Array[Int]]) = {
for (k <- weights.indices;
i <- weights.indices;
j <- weights.indices) {
val throughK = weights(i)(k) + weights(k)(j)
if (throughK < weights(i)(j)) {
weights(i)(j) = throughK
}
}
}
Originally this algorithm operates on weighted-edge graph to find all shortest paths between all pairs of nodes (hence the weights argument). For it to work correctly you need to provide 1 if there is a directed edge between the nodes or NO_EDGE otherwise.
After algorithm executes, you can check the main diagonal, if there are values less then NO_EDGE than this node participates in a cycle of length equal to the value. Every other node of the same cycle will have the same value (on the main diagonal).
To reconstruct the cycle itself we need to use slightly modified version of algorithm with parent tracking.
def shortestPath(weights: Array[Array[Int]], parents: Array[Array[Int]]) = {
for (k <- weights.indices;
i <- weights.indices;
j <- weights.indices) {
val throughK = weights(i)(k) + weights(k)(j)
if (throughK < weights(i)(j)) {
parents(i)(j) = k
weights(i)(j) = throughK
}
}
}
Parents matrix initially should contain source vertex index in an edge cell if there is an edge between the vertices and -1 otherwise.
After function returns, for each edge you will have reference to the parent node in the shortest path tree.
And then it's easy to recover actual cycles.
All in all we have the following program to find all minimal cycles
val NO_EDGE = Integer.MAX_VALUE / 2;
def shortestPathWithParentTracking(
weights: Array[Array[Int]],
parents: Array[Array[Int]]) = {
for (k <- weights.indices;
i <- weights.indices;
j <- weights.indices) {
val throughK = weights(i)(k) + weights(k)(j)
if (throughK < weights(i)(j)) {
parents(i)(j) = parents(i)(k)
weights(i)(j) = throughK
}
}
}
def recoverCycles(
cycleNodes: Seq[Int],
parents: Array[Array[Int]]): Set[Seq[Int]] = {
val res = new mutable.HashSet[Seq[Int]]()
for (node <- cycleNodes) {
var cycle = new mutable.ArrayBuffer[Int]()
cycle += node
var other = parents(node)(node)
do {
cycle += other
other = parents(other)(node)
} while(other != node)
res += cycle.sorted
}
res.toSet
}
and a small main method just to test the result
def main(args: Array[String]): Unit = {
val n = 3
val weights = Array(Array(NO_EDGE, 1, NO_EDGE), Array(NO_EDGE, NO_EDGE, 1), Array(1, NO_EDGE, NO_EDGE))
val parents = Array(Array(-1, 1, -1), Array(-1, -1, 2), Array(0, -1, -1))
shortestPathWithParentTracking(weights, parents)
val cycleNodes = parents.indices.filter(i => parents(i)(i) < NO_EDGE)
val cycles: Set[Seq[Int]] = recoverCycles(cycleNodes, parents)
println("The following minimal cycle found:")
cycles.foreach(c => println(c.mkString))
println(s"Total: ${cycles.size} cycle found")
}
and the output is
The following minimal cycle found:
012
Total: 1 cycle found
To clarify:
Strongly Connected Components will find all subgraphs that have at least one cycle in them, not all possible cycles in the graph. e.g. if you take all strongly connected components and collapse/group/merge each one of them into one node (i.e. a node per component), you'll get a tree with no cycles (a DAG actually). Each component (which is basically a subgraph with at least one cycle in it) can contain many more possible cycles internally, so SCC will NOT find all possible cycles, it will find all possible groups that have at least one cycle, and if you group them, then the graph will not have cycles.
to find all simple cycles in a graph, as others mentioned, Johnson's algorithm is a candidate.
I was given this as an interview question once, I suspect this has happened to you and you are coming here for help. Break the problem into three questions and it becomes easier.
how do you determine the next valid
route
how do you determine if a point has
been used
how do you avoid crossing over the
same point again
Problem 1)
Use the iterator pattern to provide a way of iterating route results. A good place to put the logic to get the next route is probably the "moveNext" of your iterator. To find a valid route, it depends on your data structure. For me it was a sql table full of valid route possibilities so I had to build a query to get the valid destinations given a source.
Problem 2)
Push each node as you find them into a collection as you get them, this means that you can see if you are "doubling back" over a point very easily by interrogating the collection you are building on the fly.
Problem 3)
If at any point you see you are doubling back, you can pop things off the collection and "back up". Then from that point try to "move forward" again.
Hack: if you are using Sql Server 2008 there is are some new "hierarchy" things you can use to quickly solve this if you structure your data in a tree.
In the case of undirected graph, a paper recently published (Optimal listing of cycles and st-paths in undirected graphs) offers an asymptotically optimal solution. You can read it here http://arxiv.org/abs/1205.2766 or here http://dl.acm.org/citation.cfm?id=2627951
I know it doesn't answer your question, but since the title of your question doesn't mention direction, it might still be useful for Google search
Start at node X and check for all child nodes (parent and child nodes are equivalent if undirected). Mark those child nodes as being children of X. From any such child node A, mark it's children of being children of A, X', where X' is marked as being 2 steps away.). If you later hit X and mark it as being a child of X'', that means X is in a 3 node cycle. Backtracking to it's parent is easy (as-is, the algorithm has no support for this so you'd find whichever parent has X').
Note: If graph is undirected or has any bidirectional edges, this algorithm gets more complicated, assuming you don't want to traverse the same edge twice for a cycle.
If what you want is to find all elementary circuits in a graph you can use the EC algorithm, by JAMES C. TIERNAN, found on a paper since 1970.
The very original EC algorithm as I managed to implement it in php (hope there are no mistakes is shown below). It can find loops too if there are any. The circuits in this implementation (that tries to clone the original) are the non zero elements. Zero here stands for non-existence (null as we know it).
Apart from that below follows an other implementation that gives the algorithm more independece, this means the nodes can start from anywhere even from negative numbers, e.g -4,-3,-2,.. etc.
In both cases it is required that the nodes are sequential.
You might need to study the original paper, James C. Tiernan Elementary Circuit Algorithm
<?php
echo "<pre><br><br>";
$G = array(
1=>array(1,2,3),
2=>array(1,2,3),
3=>array(1,2,3)
);
define('N',key(array_slice($G, -1, 1, true)));
$P = array(1=>0,2=>0,3=>0,4=>0,5=>0);
$H = array(1=>$P, 2=>$P, 3=>$P, 4=>$P, 5=>$P );
$k = 1;
$P[$k] = key($G);
$Circ = array();
#[Path Extension]
EC2_Path_Extension:
foreach($G[$P[$k]] as $j => $child ){
if( $child>$P[1] and in_array($child, $P)===false and in_array($child, $H[$P[$k]])===false ){
$k++;
$P[$k] = $child;
goto EC2_Path_Extension;
} }
#[EC3 Circuit Confirmation]
if( in_array($P[1], $G[$P[$k]])===true ){//if PATH[1] is not child of PATH[current] then don't have a cycle
$Circ[] = $P;
}
#[EC4 Vertex Closure]
if($k===1){
goto EC5_Advance_Initial_Vertex;
}
//afou den ksana theoreitai einai asfales na svisoume
for( $m=1; $m<=N; $m++){//H[P[k], m] <- O, m = 1, 2, . . . , N
if( $H[$P[$k-1]][$m]===0 ){
$H[$P[$k-1]][$m]=$P[$k];
break(1);
}
}
for( $m=1; $m<=N; $m++ ){//H[P[k], m] <- O, m = 1, 2, . . . , N
$H[$P[$k]][$m]=0;
}
$P[$k]=0;
$k--;
goto EC2_Path_Extension;
#[EC5 Advance Initial Vertex]
EC5_Advance_Initial_Vertex:
if($P[1] === N){
goto EC6_Terminate;
}
$P[1]++;
$k=1;
$H=array(
1=>array(1=>0,2=>0,3=>0,4=>0,5=>0),
2=>array(1=>0,2=>0,3=>0,4=>0,5=>0),
3=>array(1=>0,2=>0,3=>0,4=>0,5=>0),
4=>array(1=>0,2=>0,3=>0,4=>0,5=>0),
5=>array(1=>0,2=>0,3=>0,4=>0,5=>0)
);
goto EC2_Path_Extension;
#[EC5 Advance Initial Vertex]
EC6_Terminate:
print_r($Circ);
?>
then this is the other implementation, more independent of the graph, without goto and without array values, instead it uses array keys, the path, the graph and circuits are stored as array keys (use array values if you like, just change the required lines). The example graph start from -4 to show its independence.
<?php
$G = array(
-4=>array(-4=>true,-3=>true,-2=>true),
-3=>array(-4=>true,-3=>true,-2=>true),
-2=>array(-4=>true,-3=>true,-2=>true)
);
$C = array();
EC($G,$C);
echo "<pre>";
print_r($C);
function EC($G, &$C){
$CNST_not_closed = false; // this flag indicates no closure
$CNST_closed = true; // this flag indicates closure
// define the state where there is no closures for some node
$tmp_first_node = key($G); // first node = first key
$tmp_last_node = $tmp_first_node-1+count($G); // last node = last key
$CNST_closure_reset = array();
for($k=$tmp_first_node; $k<=$tmp_last_node; $k++){
$CNST_closure_reset[$k] = $CNST_not_closed;
}
// define the state where there is no closure for all nodes
for($k=$tmp_first_node; $k<=$tmp_last_node; $k++){
$H[$k] = $CNST_closure_reset; // Key in the closure arrays represent nodes
}
unset($tmp_first_node);
unset($tmp_last_node);
# Start algorithm
foreach($G as $init_node => $children){#[Jump to initial node set]
#[Initial Node Set]
$P = array(); // declare at starup, remove the old $init_node from path on loop
$P[$init_node]=true; // the first key in P is always the new initial node
$k=$init_node; // update the current node
// On loop H[old_init_node] is not cleared cause is never checked again
do{#Path 1,3,7,4 jump here to extend father 7
do{#Path from 1,3,8,5 became 2,4,8,5,6 jump here to extend child 6
$new_expansion = false;
foreach( $G[$k] as $child => $foo ){#Consider each child of 7 or 6
if( $child>$init_node and isset($P[$child])===false and $H[$k][$child]===$CNST_not_closed ){
$P[$child]=true; // add this child to the path
$k = $child; // update the current node
$new_expansion=true;// set the flag for expanding the child of k
break(1); // we are done, one child at a time
} } }while(($new_expansion===true));// Do while a new child has been added to the path
# If the first node is child of the last we have a circuit
if( isset($G[$k][$init_node])===true ){
$C[] = $P; // Leaving this out of closure will catch loops to
}
# Closure
if($k>$init_node){ //if k>init_node then alwaya count(P)>1, so proceed to closure
$new_expansion=true; // $new_expansion is never true, set true to expand father of k
unset($P[$k]); // remove k from path
end($P); $k_father = key($P); // get father of k
$H[$k_father][$k]=$CNST_closed; // mark k as closed
$H[$k] = $CNST_closure_reset; // reset k closure
$k = $k_father; // update k
} } while($new_expansion===true);//if we don't wnter the if block m has the old k$k_father_old = $k;
// Advance Initial Vertex Context
}//foreach initial
}//function
?>
I have analized and documented the EC but unfortunately the documentation is in Greek.
There are two steps (algorithms) involved in finding all cycles in a DAG.
The first step is to use Tarjan's algorithm to find the set of strongly connected components.
Start from any arbitrary vertex.
DFS from that vertex. For each node x, keep two numbers, dfs_index[x] and dfs_lowval[x].
dfs_index[x] stores when that node is visited, while dfs_lowval[x] = min(dfs_low[k]) where
k is all the children of x that is not the directly parent of x in the dfs-spanning tree.
All nodes with the same dfs_lowval[x] are in the same strongly connected component.
The second step is to find cycles (paths) within the connected components. My suggestion is to use a modified version of Hierholzer's algorithm.
The idea is:
Choose any starting vertex v, and follow a trail of edges from that vertex until you return to v.
It is not possible to get stuck at any vertex other than v, because the even degree of all vertices ensures that, when the trail enters another vertex w there must be an unused edge leaving w. The tour formed in this way is a closed tour, but may not cover all the vertices and edges of the initial graph.
As long as there exists a vertex v that belongs to the current tour but that has adjacent edges not part of the tour, start another trail from v, following unused edges until you return to v, and join the tour formed in this way to the previous tour.
Here is the link to a Java implementation with a test case:
http://stones333.blogspot.com/2013/12/find-cycles-in-directed-graph-dag.html
I stumbled over the following algorithm which seems to be more efficient than Johnson's algorithm (at least for larger graphs). I am however not sure about its performance compared to Tarjan's algorithm.
Additionally, I only checked it out for triangles so far. If interested, please see "Arboricity and Subgraph Listing Algorithms" by Norishige Chiba and Takao Nishizeki (http://dx.doi.org/10.1137/0214017)
DFS from the start node s, keep track of the DFS path during traversal, and record the path if you find an edge from node v in the path to s. (v,s) is a back-edge in the DFS tree and thus indicates a cycle containing s.
Regarding your question about the Permutation Cycle, read more here:
https://www.codechef.com/problems/PCYCLE
You can try this code (enter the size and the digits number):
# include<cstdio>
using namespace std;
int main()
{
int n;
scanf("%d",&n);
int num[1000];
int visited[1000]={0};
int vindex[2000];
for(int i=1;i<=n;i++)
scanf("%d",&num[i]);
int t_visited=0;
int cycles=0;
int start=0, index;
while(t_visited < n)
{
for(int i=1;i<=n;i++)
{
if(visited[i]==0)
{
vindex[start]=i;
visited[i]=1;
t_visited++;
index=start;
break;
}
}
while(true)
{
index++;
vindex[index]=num[vindex[index-1]];
if(vindex[index]==vindex[start])
break;
visited[vindex[index]]=1;
t_visited++;
}
vindex[++index]=0;
start=index+1;
cycles++;
}
printf("%d\n",cycles,vindex[0]);
for(int i=0;i<(n+2*cycles);i++)
{
if(vindex[i]==0)
printf("\n");
else
printf("%d ",vindex[i]);
}
}
DFS c++ version for the pseudo-code in second floor's answer:
void findCircleUnit(int start, int v, bool* visited, vector<int>& path) {
if(visited[v]) {
if(v == start) {
for(auto c : path)
cout << c << " ";
cout << endl;
return;
}
else
return;
}
visited[v] = true;
path.push_back(v);
for(auto i : G[v])
findCircleUnit(start, i, visited, path);
visited[v] = false;
path.pop_back();
}
http://www.me.utexas.edu/~bard/IP/Handouts/cycles.pdf
The CXXGraph library give a set of algorithms and functions to detect cycles.
For a full algorithm explanation visit the wiki.