Ruby C Bindings vs. Ruby Wrapper for System Calls - ruby

What are the major differences between the execution of Ruby C bindings vs. Ruby wrapper for system calls?
To my question into context, I am looking into incorporating Git version control functionality heavily into a Ruby on Rails application. In approaching this task I do not understand the how to think about the execution pipeline of a Ruby program which incorporates a library implemented with Ruby C bindings such as yajl-ruby vs. a Ruby wrapper for system calls such as the git Ruby Gem.

Bindings interface directly with the library's API, while wrappers use system calls to invoke the end-user application from the command line.
Wrappers are similar to UNIX pipes – programs have no knowledge about each other's internals and communicate through a textual interface. Loose coupling comes with a price, though. System calls are expensive operations and will dramatically slow down your application.
This is why bindings are great. Since they use the library's programming interface, the overhead is significantly reduced. GitHub had its own git wrapper, and speed was issue that led them to implement git in Ruby.
They did it themselves because it is kind of hard to make bindings for git. It wasn't designed to be used as a library. It's really awkward to call its functions directly since it calls die() on pretty much any error.
The demand for a proper git library led to the development of libgit2. It even comes with Ruby bindings! Since you want to integrate git functionality with your application, you should check it out.

Related

Why does truffleruby need C extensions?

Current status of truffleruby says:
TruffleRuby is progressing fast but is currently probably not ready for you to try running your full Ruby application on. Support for critical C extensions such as OpenSSL and Nokogiri is missing.
Why does truffleruby need C extensions? It's built on GraalVM which is built on top of the JVM, it is in fact a fork of JRuby:
TruffleRuby is a fork of JRuby, combining it with code from the Rubinius project, and also containing code from the standard implementation of Ruby, MRI.
Can't they use JRuby world gems instead of depending on their C variants?
EDIT link to the issue on github
Running C extensions is hard because the C extension API is just the entire internals of MRI exposed as a header file. You aren't programming against a clean API - you're programming against all the implementation details and internal design decisions of MRI.
JRuby's Java extensions have exactly the same problem! The JRuby Java extension API is just the entire internals of JRuby, and you aren't programming against an API, instead you're programming against all the implementations details and design decisions of JRuby.
We plan to eventually tackle both problems in the same way - which is to add another level of abstraction over the C or Java code using an interpreter which we can intercept and redirect when required, so that it believes it is running against MRI or JRuby internals, but really we redirect these to our internals.
We think C extensions are more important, so we're tackling those first. We haven't really started on Java extensions yet, but we have started the underlying interpreter for Java that we'll use.
This video explains all
https://youtu.be/YLtjkP9bD_U?t=1562
You have already gotten a good answer by the project lead himself, but I want to offer a different point of view:
Why does truffleruby need C extensions?
It doesn't need them. But they do exist and there is code out there which uses them, and it would sure be nice to be able to run that code.

Rubinius in RubySL

I use Ruby from a user level and really don't deal with the internals. I have know Rubinius as 'Ruby in Ruby' which I assumed was a generalization. Recently, I got an error with Rubinius in the RubySL (no, I don't have error msg).
I started looking at RubySL and was a little surprised to see Rubinius everywhere. I really like Ruby and was just curious why Rubinius is in most of the RubySL? It seems to be used with things like locks / unlocks (such as https://github.com/rubysl/rubysl-thread/blob/2.0/lib/rubysl/thread/thread.rb ). Definitely not questioning it, just curious.
RubySL is short for Ruby Standard Library. It is a basic part of the shipped code bundle which forms what is generally known as Ruby. The standards library provides rather basic stuff you often need but which doesn't need to be part of the core language.
For example, the implementation of the Hash or Array, the language keywords, how assignment works, ... are part of the core language. These are often implemented in a language other than Ruby. MRI (the common C-Ruby) implements this mostly in C, JRuby implements this in Java. Rubinius implements this patly in C++ but mostly in Ruby itself. It can do this by bootstrapping itself from a very simple base VM and gradually adding more stuff with Ruby.
The standards library however is mostly implemented in Ruby in all implementations (with some exceptions mostly for performance reasons). Now, all Ruby implementations right now have their own implementation of the Ruby standards library which can thus differ in minor details.
Rubinius' approach to implementing a standards library was to implement it as separate gems. The idea was to one day provide a common standards library which could be used by other implementations (including MRI). This is in line with the efforts of esp. the Rubinius community to drive the RubySpec project in order to provide a common language specification and test suite for all Ruby implementations.
The RubySpec project was eventually abandoned and right now, it doesn't seem as if other Ruby implementations seem to be moving to the RubySL gems for implementing their standards library.
Thus, (and this is the TL;DR), the RubySL gems implement the Ruby Standard Library for the Rubinius project. Thus, it is expected to see the Rubinius project all over the place there: it is their code which is generally not used by other Ruby implementations.

How to compile Ruby API into multiple client libraries

My team is currently creating an API that will interact with our core Ruby API.
The new API is for the public as the Ruby API is our private API. We want to be able to compile this new API into a PHP, Java, Python, etc., client libraries when we are ready to release.
Are there any gems, or other ways to write this new API so we can compile it into different client libraries?
There are several ways to think about exposing an API these days. If we're talking about creating a library in the sense of something compiled into other applications, that takes us down one path. If we're talking about providing, effectively, command line functionality callable from other contexts as system calls, that's another story. More broadly is the API is more of a service, like REST, that's different. I'll assume one of the first two.
There are several tools that will create a binary package for platforms. Look at ruby-tioolbox.com for some examples. None of these are compiling true executable code (as far as I know) but mainly provide an executable version of ruby with your code and dependencies packaged up. Perhaps the API appears callable as a system library (DLL for Windows, SO for UNIXy).
But either way, I would think you're dealing with ruby and your code loading and running as a separate process on each call. There's a library like this (not in Ruby) called ImageMagick, with a wrapper for ruby calls called MiniMagick that might be a pointer to the kind of pattern you're looking for.
If you want to run ruby and your app as a service, there are several tools for this -- this helps address the overhead of loading a process each time, and built into Ruby 1.9 is a Process class that daemonizes ruby, although presumably only on Unix. Check this SO answer
The best answer is probably that ruby, like other similar languages (e.g. Python) are really not designed to be low-level system libraries. There are likely many ways of accomplishing what you want in a given environment (notably Linux) ... but as far as I know nothing that really exposes executable codepoints to all languages.

Can the Ruby language be used to build operating systems?

Can the Ruby language be used to create an entire new mobile operating system or desktop operating system i.e. can it be used in system programming?
Well there are a few operating systems out there right now which use higher-level languages than C. Basically the ruby interpreter itself would need to be written in something low-level, and there would need to be some boot-loading code that loaded a fully-functional ruby interpreter into memory as a standalone kernel. Once the ruby interpreter is bootstrapped and running in kernel-mode (or one of the inner rings), there would be nothing stopping you from builing a whole OS on top of it.
Unfortunately, it would likely be very slow. Garbage collection for every OS function would probably be rather noticeable. The ruby interpreter would be responsible for basic things like task scheduling and the network stack, which using a garbage-collecting framework would slow things down considerably. To work around this, odds are good that the "performance critical" pieces would still be written in C.
So yes, technically speaking this is possible. But no one in their right mind would try it (queue crazy person in 3... 2...)
For all practical purposes: No.
While the language itself is not suited for such a task, it is imaginable (in some other universe ;-) that there a Ruby run-time developed with such a goal in mind.
The only "high level" -- yes, the quotes are there for a reason, I don't consider C very "high level" these days -- language I know of designed for Systems Programming is BitC. (Which is quite unlike Ruby.)
Happy coding.
Edit: Here is a list of "Lisp-based OSes". While not Ruby, the dynamically-typed/garbage-collected nature of (many) Lisp implementations makes for a favorable comparison: if those crazy Lispers can do/attempt it, then so can some Ruby fanatic ... or at least they can wish for it ;-) There is even a link to an OCaml OS on the list...
No, not directly
In the same way that Rails is built on top of Ruby, Ruby is built on top of the services that lower layers .. the real OS .. provide.
I suppose one could subset Ruby until it functionally resembled C and then build an OS out of that, but it wouldn't be worth it. Sure, it would have a nice if .. end but C syntax is perfectly usable and we already have C language systems. Also, operating systems don't handle character data very much, so all of the Ruby features to manipulate it wouldn't be as valuable in a kernel.
If we were starting from scratch today we might actually try (as various experimental projects have) to use garbage collected memory allocation in a kernel but we already have OS kernels.
People are making investments at the higher layers rather than redoing work already done. After all, with all the upper level software to run these days, a new kernel would need to present a compatible interface and the question would then be asked "why not just run the nice kernels we already have?".
Now, the application API for a mobile OS could indeed be done for Ruby. So, just as Android apps are written in Java, RubyPhone apps could be written in Ruby. But Ruby might not be the best possible starting point for a rich application platform. Its development so far has been oriented to server-side problems. There exist various graphical interface gems but I don't think they are widely used.
basically yes, but with a big disclamer .. which is basically Chris' answer but a different spin on it. Since for kernel performance it would kinda suck to use ruby, you'd probably want to build around a linux-ish kernel and just not load any of the rest of the operating system. This is basically what Android does: the kernel is a fork from Linux (and is maintained close to linux), the console is a webkit screen, and the interpreter is Java with some Android specific libraries. IE, Android is Java masquerading as an OS, .. you could do about the same thing with Ruby instead of Java and only a smallish hit to performance from java
While building a whole OS from scratch in Ruby seems like
a multi-billion project (think of all the drivers), a
linux kernel module that runs simple ruby scripts does
make sense for me - even it was only for prototyping
new linux drivers.

Is it possible to hook API calls on Mac OS?

On Windows there a few libraries that allow you to intercept calls to DLLs:
http://www.codeproject.com/kb/system/hooksys.aspx
Is it possible to do this on Mac OS? If so, how is it done?
The answer depends on whether you want to do this in your own application or systemwide. In your own application, it's pretty easy; the dynamic linker provides features such as DYLD_INSERT_LIBRARIES. If you're doing this for debugging/instrumentation purposes, also check out DTrace.
You can replace Objective-C method implementations with method swizzling, e.g. JRSwizzle or Apple's method_exchangeImplementations (10.5+).
If you want to modify library behavior systemwide, you're going to need to load into other processes' address spaces.
Two loading mechanisms originally designed for other purposes (input managers and scripting additions) are commonly abused for this purpose, but I wouldn't really recommend them.
mach_inject/mach_override are an open-source set of libraries for loading code and replacing function implementations, respectively; however, you're responsible for writing your own application which uses the libraries. (Also, take a look at this answer; you need special permissions to inject code into other processes.)
Please keep in mind that application patching/code injection for non-debugging purposes is strongly discouraged by Apple and some Mac users (and developers) are extremely critical of the practice. Much of this criticism is poorly informed, but there have been a number of legitimately poorly written "plug-ins" (particularly those which patch Safari) that have been implicated in application crashes and problems. Code defensively.
(Disclaimer: I am the author of a (free) APE module and an application which uses mach_inject.)

Resources