I have a big file (about 1GB) which I am using as a basis to do some data integrity testing. I'm using Python 2.7 for this because I don't care so much about how fast the writes happen, my window for data corruption should be big enough (and it's easier to submit a Python script to the machine I'm using for testing)
To do this I'm writing a sequence of 32 bit integers to memory as a background process while other code is running, like the following:
from struct import pack
with open('./FILE', 'rb+', buffering=0) as f:
f.seek(0)
counter = 1
while counter < SIZE+1:
f.write(pack('>i', counter))
counter+=1
Then after I do some other stuff it's very easy to see if we missed a write since there will be a gap instead of the sequential increasing sequence. This works well enough. My problem is some data corruption cases might only be caught with random I/O (not sequential like this) based on how we track changes to files
So what I need is a method for performing a single pass of random I/O over my 1GB file, but I can't really store this in memory since 1GB ~= 250 million 4-byte integers. Considered chunking up the file into smaller pieces and indexing those, maybe 500 KB or something, but if there is a way to write a generator that can do the same job that would be awesome. Like this:
from struct import pack
def rand_index_generator:
generator = RAND_INDEX(1, MAX+1, NO REPLACEMENT)
counter = 0
while counter < MAX:
counter+=1
yield generator.next_index()
with open('./FILE', 'rb+', buffering=0) as f:
counter = 1
for index in rand_index_generator:
f.seek(4*index)
f.write(pack('>i', counter))
counter+=1
I need it:
Not to run out of memory (so no pouring the random sequence into a list)
To be reproducible so I can verify these values in the same order later
Is there a way to do this in Python 2.7?
Just to provide an answer for anyone who has the same problem, the approach that I settled on was this, which worked well enough if you don't need something all that random:
def rand_index_generator(a,b):
ctr=0
while True:
yield (ctr%b)
ctr+=a
Then, initialize it with your index size, b and a value a which is coprime to b. This is easy to choose if b is a power of two, since a just needs to be an odd number to make sure it isn't divisible by 2. It's a hard requirement for the two values to be coprime, so you might have to do more work if your index size b is not such an easily factored number as a power of 2.
index_gen = rand_index_generator(1934919251, 2**28)
Then each time you want the new index you use index_gen.next() and this is guaranteed to iterate over numbers between [0,2^28-1] in a semi-randomish manner depending on your choice of 'a'
There's really no point in picking an a value larger than your index size, since the mod gets rid of the remainder anyways. This isn't a very good approach in terms of randomness, but it's very efficient in terms of memory and speed which is what I care about for simulating this write workload.
So I am taking a scripting test in Lua, and I am given this question:
Create an algorithm to generate a deck of cards, 1-52. Shuffle the deck of cards (do not use something like array.randomize() ). Then hand out 5 cards to two different players. Being that each card must be dealt to a different player at a time.
Typically I would do something like this to get a random number
local newDeck = {} --assume this array has all 52 cards in a playing deck
math.randomseed( os.time() )
local card = math.random(#newDeck)
...but it seems that the question is specifically asking that I do NOT use a stock math function.
(do not use something like array.randomize())
What would be the advantage to that? I can't imagine that the player of such a game would even notice a difference between random and pseudo random.
If only it were that simple. Most random number generators that are part of a language are linear congruential generators, meaning that the next term J, say, is related to the previous one I by
J = (aI + b) mod c
Where a, b, c are constants.
This means that it is possible to decipher the sequence from a single digit number of terms! (It's a set of simultaneous equations with bit of trickery to handle the modulus).
I'd say that an astute player is bound to notice the pseudo random nature of your sequence and may even game the system by unpicking your generator. You need to use a more sophisticated scheme. (Early attempts include Park-Miller and Bays-Durham; fairly well-known approaches).
I believe you are welcome to use the built in random number generator to get random numbers, but prohibited from using any built in array shufflers that may exist. How can you use a rng to have each card equally likely to be in each position?
you could just write something that draws a random card and puts it in the shuffled deck:
function shuf(tab)
local new = {}
for k=1,#tab do
new[#new+1]=table.remove(tab,math.random(#tab))
end
end
This approach makes sure you have no doubles.
I don't really think using a different RNG would matter that much unless you're doing cryptography, or something else that really matters.
Interpreting the question: just don't use a library function written for doing this. But there is a difference between a shuffler and a random number generator, since the latter can return double values while the former can't.
I would like an algorithm for a function that takes n integers and returns one integer. For small changes in the input, the resulting integer should vary greatly. Even though I've taken a number of courses in math, I have not used that knowledge very much and now I need some help...
An important property of this function should be that if it is used with coordinate pairs as input and the result is plotted (as a grayscale value for example) on an image, any repeating patterns should only be visible if the image is very big.
I have experimented with various algorithms for pseudo-random numbers with little success and finally it struck me that md5 almost meets my criteria, except that it is not for numbers (at least not from what I know). That resulted in something like this Python prototype (for n = 2, it could easily be changed to take a list of integers of course):
import hashlib
def uniqnum(x, y):
return int(hashlib.md5(str(x) + ',' + str(y)).hexdigest()[-6:], 16)
But obviously it feels wrong to go over strings when both input and output are integers. What would be a good replacement for this implementation (in pseudo-code, python, or whatever language)?
A "hash" is the solution created to solve exactly the problem you are describing. See wikipedia's article
Any hash function you use will be nice; hash functions tend to be judged based on these criteria:
The degree to which they prevent collisions (two separate inputs producing the same output) -- a by-product of this is the degree to which the function minimizes outputs that may never be reached from any input.
The uniformity the distribution of its outputs given a uniformly distributed set of inputs
The degree to which small changes in the input create large changes in the output.
(see perfect hash function)
Given how hard it is to create a hash function that maximizes all of these criteria, why not just use one of the most commonly used and relied-on existing hash functions there already are?
From what it seems, turning integers into strings almost seems like another layer of encryption! (which is good for your purposes, I'd assume)
However, your question asks for hash functions that deal specifically with numbers, so here we go.
Hash functions that work over the integers
If you want to borrow already-existing algorithms, you may want to dabble in pseudo-random number generators
One simple one is the middle square method:
Take a digit number
Square it
Chop off the digits and leave the middle digits with the same length as your original.
ie,
1111 => 01234321 => 2342
so, 1111 would be "hashed" to 2342, in the middle square method.
This way isn't that effective, but for a few number of hashes, this has very low collision rates, a uniform distribution, and great chaos-potential (small changes => big changes). But if you have many values, time to look for something else...
The grand-daddy of all feasibly efficient and simple random number generators is the (Mersenne Twister)[http://en.wikipedia.org/wiki/Mersenne_twister]. In fact, an implementation is probably out there for every programming language imaginable. Your hash "input" is something that will be called a "seed" in their terminology.
In conclusion
Nothing wrong with string-based hash functions
If you want to stick with the integers and be fancy, try using your number as a seed for a pseudo-random number generator.
Hashing fits your requirements perfectly. If you really don't want to use strings, find a Hash library that will take numbers or binary data. But using strings here looks OK to me.
Bob Jenkins' mix function is a classic choice, at when n=3.
As others point out, hash functions do exactly what you want. Hashes take bytes - not character strings - and return bytes, and converting between integers and bytes is, of course, simple. Here's an example python function that works on 32 bit integers, and outputs a 32 bit integer:
import hashlib
import struct
def intsha1(ints):
input = struct.pack('>%di' % len(ints), *ints)
output = hashlib.sha1(input).digest()
return struct.unpack('>i', output[:4])
It can, of course, be easily adapted to work with different length inputs and outputs.
Have a look at this, may be you can be inspired
Chaotic system
In chaotic dynamics, small changes vary results greatly.
A x-bit block cipher will take an number and convert it effectively to another number. You could combine (sum/mult?) your input numbers and cipher them, or iteratively encipher each number - similar to a CBC or chained mode. Google 'format preserving encyption'. It is possible to create a 32-bit block cipher (not widely 'available') and use this to create a 'hashed' output. Main difference between hash and encryption, is that hash is irreversible.
In one of my first attempts to create functional code, I ran into a performance issue.
I started with a common task - multiply the elements of two arrays and sum up the results:
var first:Array[Float] ...
var second:Array[Float] ...
var sum=0f;
for (ix<-0 until first.length)
sum += first(ix) * second(ix);
Here is how I reformed the work:
sum = first.zip(second).map{ case (a,b) => a*b }.reduceLeft(_+_)
When I benchmarked the two approaches, the second method takes 40 times as long to complete!
Why does the second method take so much longer? How can I reform the work to be both speed efficient and use functional programming style?
The main reasons why these two examples are so different in speed are:
the faster one doesn't use any generics, so it doesn't face boxing/unboxing.
the faster one doesn't create temporary collections and, thus, avoids extra memory copies.
Let's consider the slower one by parts. First:
first.zip(second)
That creates a new array, an array of Tuple2. It will copy all elements from both arrays into Tuple2 objects, and then copy a reference to each of these objects into a third array. Now, notice that Tuple2 is parameterized, so it can't store Float directly. Instead, new instances of java.lang.Float are created for each number, the numbers are stored in them, and then a reference for each of them is stored into the Tuple2.
map{ case (a,b) => a*b }
Now a fourth array is created. To compute the values of these elements, it needs to read the reference to the tuple from the third array, read the reference to the java.lang.Float stored in them, read the numbers, multiply, create a new java.lang.Float to store the result, and then pass this reference back, which will be de-referenced again to be stored in the array (arrays are not type-erased).
We are not finished, though. Here's the next part:
reduceLeft(_+_)
That one is relatively harmless, except that it still do boxing/unboxing and java.lang.Float creation at iteration, since reduceLeft receives a Function2, which is parameterized.
Scala 2.8 introduces a feature called specialization which will get rid of a lot of these boxing/unboxing. But let's consider alternative faster versions. We could, for instance, do map and reduceLeft in a single step:
sum = first.zip(second).foldLeft(0f) { case (a, (b, c)) => a + b * c }
We could use view (Scala 2.8) or projection (Scala 2.7) to avoid creating intermediary collections altogether:
sum = first.view.zip(second).map{ case (a,b) => a*b }.reduceLeft(_+_)
This last one doesn't save much, actually, so I think the non-strictness if being "lost" pretty fast (ie, one of these methods is strict even in a view). There's also an alternative way of zipping that is non-strict (ie, avoids some intermediary results) by default:
sum = (first,second).zipped.map{ case (a,b) => a*b }.reduceLeft(_+_)
This gives much better result that the former. Better than the foldLeft one, though not by much. Unfortunately, we can't combined zipped with foldLeft because the former doesn't support the latter.
The last one is the fastest I could get. Faster than that, only with specialization. Now, Function2 happens to be specialized, but for Int, Long and Double. The other primitives were left out, as specialization increases code size rather dramatically for each primitive. On my tests, though Double is actually taking longer. That might be a result of it being twice the size, or it might be something I'm doing wrong.
So, in the end, the problem is a combination of factors, including producing intermediary copies of elements, and the way Java (JVM) handles primitives and generics. A similar code in Haskell using supercompilation would be equal to anything short of assembler. On the JVM, you have to be aware of the trade-offs and be prepared to optimize critical code.
I did some variations of this with Scala 2.8. The loop version is as you write but the
functional version is slightly different:
(xs, ys).zipped map (_ * _) reduceLeft(_ + _)
I ran with Double instead of Float, because currently specialization only kicks in for Double. I then tested with arrays and vectors as the carrier type. Furthermore, I tested Boxed variants which work on java.lang.Double's instead of primitive Doubles to measure
the effect of primitive type boxing and unboxing. Here is what I got (running Java 1.6_10 server VM, Scala 2.8 RC1, 5 runs per test).
loopArray 461 437 436 437 435
reduceArray 6573 6544 6718 6828 6554
loopVector 5877 5773 5775 5791 5657
reduceVector 5064 4880 4844 4828 4926
loopArrayBoxed 2627 2551 2569 2537 2546
reduceArrayBoxed 4809 4434 4496 4434 4365
loopVectorBoxed 7577 7450 7456 7463 7432
reduceVectorBoxed 5116 4903 5006 4957 5122
The first thing to notice is that by far the biggest difference is between primitive array loops and primitive array functional reduce. It's about a factor of 15 instead of the 40 you have seen, which reflects improvements in Scala 2.8 over 2.7. Still, primitive array loops are the fastest of all tests whereas primitive array reduces are the slowest. The reason is that primitive Java arrays and generic operations are just not a very good fit. Accessing elements of primitive Java arrays from generic functions requires a lot of boxing/unboxing and sometimes even requires reflection. Future versions of Scala will specialize the Array class and then we should see some improvement. But right now that's what it is.
If you go from arrays to vectors, you notice several things. First, the reduce version is now faster than the imperative loop! This is because vector reduce can make use of efficient bulk operations. Second, vector reduce is faster than array reduce, which illustrates the inherent overhead that arrays of primitive types pose for generic higher-order functions.
If you eliminate the overhead of boxing/unboxing by working only with boxed java.lang.Double values, the picture changes. Now reduce over arrays is a bit less than 2 times slower than looping, instead of the 15 times difference before. That more closely approximates the inherent overhead of the three loops with intermediate data structures instead of the fused loop of the imperative version. Looping over vectors is now by far the slowest solution, whereas reducing over vectors is a little bit slower than reducing over arrays.
So the overall answer is: it depends. If you have tight loops over arrays of primitive values, nothing beats an imperative loop. And there's no problem writing the loops because they are neither longer nor less comprehensible than the functional versions. In all other situations, the FP solution looks competitive.
This is a microbenchmark, and it depends on how the compiler optimizes you code. You have 3 loops composed here,
zip . map . fold
Now, I'm fairly sure the Scala compiler cannot fuse those three loops into a single loop, and the underlying data type is strict, so each (.) corresponds to an intermediate array being created. The imperative/mutable solution would reuse the buffer each time, avoiding copies.
Now, an understanding of what composing those three functions means is key to understanding performance in a functional programming language -- and indeed, in Haskell, those three loops will be optimized into a single loop that reuses an underlying buffer -- but Scala cannot do that.
There are benefits to sticking to the combinator approach, however -- by distinguishing those three functions, it will be easier to parallelize the code (replace map with parMap etc). In fact, given the right array type, (such as a parallel array) a sufficiently smart compiler will be able to automatically parallelize your code, yielding more performance wins.
So, in summary:
naive translations may have unexpected copies and inefficiences
clever FP compilers remove this overhead (but Scala can't yet)
sticking to the high level approach pays off if you want to retarget your code, e.g. to parallelize it
Don Stewart has a fine answer, but it might not be obvious how going from one loop to three creates a factor of 40 slowdown. I'll add to his answer that Scala compiles to JVM bytecodes, and not only does the Scala compiler not fuse the three loops into one, but the Scala compiler is almost certainly allocating all the intermediate arrays. Notoriously, implementations of the JVM are not designed to handle the allocation rates required by functional languages. Allocation is a significant cost in functional programs, and that's one the loop-fusion transformations that Don Stewart and his colleagues have implemented for Haskell are so powerful: they eliminate lots of allocations. When you don't have those transformations, plus you're using an expensive allocator such as is found on a typical JVM, that's where the big slowdown comes from.
Scala is a great vehicle for experimenting with the expressive power of an unusual mix of language ideas: classes, mixins, modules, functions, and so on. But it's a relatively young research language, and it runs on the JVM, so it's unreasonable to expect great performance except on the kind of code that JVMs are good at. If you want to experiment with the mix of language ideas that Scala offers, great—it's a really interesting design—but don't expect the same performance on pure functional code that you'd get with a mature compiler for a functional language, like GHC or MLton.
Is scala functional programming slower than traditional coding?
Not necessarily. Stuff to do with first-class functions, pattern matching, and currying need not be especially slow. But with Scala, more than with other implementations of other functional languages, you really have to watch out for allocations—they can be very expensive.
The Scala collections library is fully generic, and the operations provided are chosen for maximum capability, not maximum speed. So, yes, if you use a functional paradigm with Scala without paying attention (especially if you are using primitive data types), your code will take longer to run (in most cases) than if you use an imperative/iterative paradigm without paying attention.
That said, you can easily create non-generic functional operations that perform quickly for your desired task. In the case of working with pairs of floats, we might do the following:
class FastFloatOps(a: Array[Float]) {
def fastMapOnto(f: Float => Float) = {
var i = 0
while (i < a.length) { a(i) = f(a(i)); i += 1 }
this
}
def fastMapWith(b: Array[Float])(f: (Float,Float) => Float) = {
val len = a.length min b.length
val c = new Array[Float](len)
var i = 0
while (i < len) { c(i) = f(a(i),b(i)); i += 1 }
c
}
def fastReduce(f: (Float,Float) => Float) = {
if (a.length==0) Float.NaN
else {
var r = a(0)
var i = 1
while (i < a.length) { r = f(r,a(i)); i += 1 }
r
}
}
}
implicit def farray2fastfarray(a: Array[Float]) = new FastFloatOps(a)
and then these operations will be much faster. (Faster still if you use Double and 2.8.RC1, because then the functions (Double,Double)=>Double will be specialized, not generic; if you're using something earlier, you can create your own abstract class F { def f(a: Float) : Float } and then call with new F { def f(a: Float) = a*a } instead of (a: Float) => a*a.)
Anyway, the point is that it's not the functional style that makes functional coding in Scala slow, it's that the library is designed with maximum power/flexibility in mind, not maximum speed. This is sensible, since each person's speed requirements are typically subtly different, so it's hard to cover everyone supremely well. But if it's something you're doing more than just a little, you can write your own stuff where the performance penalty for a functional style is extremely small.
I am not an expert Scala programmer, so there is probably a more efficient method, but what about something like this. This can be tail call optimized, so performance should be OK.
def multiply_and_sum(l1:List[Int], l2:List[Int], sum:Int):Int = {
if (l1 != Nil && l2 != Nil) {
multiply_and_sum(l1.tail, l2.tail, sum + (l1.head * l2.head))
}
else {
sum
}
}
val first = Array(1,2,3,4,5)
val second = Array(6,7,8,9,10)
multiply_and_sum(first.toList, second.toList, 0) //Returns: 130
To answer the question in the title: Simple functional constructs may be slower than imperative on the JVM.
But, if we consider only simple constructs, then we might as well throw out all modern languages and stick with C or assembler. If you look a the programming language shootout, C always wins.
So why choose a modern language? Because it lets you express a cleaner design. Cleaner design leads to performance gains in the overall operation of the application. Even if some low-level methods can be slower. One of my favorite examples is the performance of BuildR vs. Maven. BuildR is written in Ruby, an interpreted, slow, language. Maven is written in Java. A build in BuildR is twice as fast as Maven. This is due mostly to the design of BuildR which is lightweight compared with that of Maven.
Your functional solution is slow because it is generating unnecessary temporary data structures. Removing these is known as deforesting and it is easily done in strict functional languages by rolling your anonymous functions into a single anonymous function and using a single aggregator. For example, your solution written in F# using zip, map and reduce:
let dot xs ys = Array.zip xs ys |> Array.map (fun (x, y) -> x * y) -> Array.reduce ( * )
may be rewritten using fold2 so as to avoid all temporary data structures:
let dot xs ys = Array.fold2 (fun t x y -> t + x * y) 0.0 xs ys
This is a lot faster and the same transformation can be done in Scala and other strict functional languages. In F#, you can also define the fold2 as inline in order to have the higher-order function inlined with its functional argument whereupon you recover the optimal performance of the imperative loop.
Here is dbyrnes solution with arrays (assuming Arrays are to be used) and just iterating over the index:
def multiplyAndSum (l1: Array[Int], l2: Array[Int]) : Int =
{
def productSum (idx: Int, sum: Int) : Int =
if (idx < l1.length)
productSum (idx + 1, sum + (l1(idx) * l2(idx))) else
sum
if (l2.length == l1.length)
productSum (0, 0) else
error ("lengths don't fit " + l1.length + " != " + l2.length)
}
val first = (1 to 500).map (_ * 1.1) toArray
val second = (11 to 510).map (_ * 1.2) toArray
def loopi (n: Int) = (1 to n).foreach (dummy => multiplyAndSum (first, second))
println (timed (loopi (100*1000)))
That needs about 1/40 of the time of the list-approach. I don't have 2.8 installed, so you have to test #tailrec yourself. :)
I've got a classification system, which I will unfortunately need to be vague about for work reasons. Say we have 5 features to consider, it is basically a set of rules:
A B C D E Result
1 2 b 5 3 X
1 2 c 5 4 X
1 2 e 5 2 X
We take a subject and get its values for A-E, then try matching the rules in sequence. If one matches we return the first result.
C is a discrete value, which could be any of a-e. The rest are just integers.
The ruleset has been automatically generated from our old system and has an extremely large number of rules (~25 million). The old rules were if statements, e.g.
result("X") if $A >= 1 && $A <= 10 && $C eq 'A';
As you can see, the old rules often do not even use some features, or accept ranges. Some are more annoying:
result("Y") if ($A == 1 && $B == 2) || ($A == 2 && $B == 4);
The ruleset needs to be much smaller as it has to be human maintained, so I'd like to shrink rule sets so that the first example would become:
A B C D E Result
1 2 bce 5 2-4 X
The upshot is that we can split the ruleset by the Result column and shrink each independently. However, I cannot think of an easy way to identify and shrink down the ruleset. I've tried clustering algorithms but they choke because some of the data is discrete, and treating it as continuous is imperfect. Another example:
A B C Result
1 2 a X
1 2 b X
(repeat a few hundred times)
2 4 a X
2 4 b X
(ditto)
In an ideal world, this would be two rules:
A B C Result
1 2 * X
2 4 * X
That is: not only would the algorithm identify the relationship between A and B, but would also deduce that C is noise (not important for the rule)
Does anyone have an idea of how to go about this problem? Any language or library is fair game, as I expect this to be a mostly one-off process. Thanks in advance.
Check out the Weka machine learning lib for Java. The API is a little bit crufty but it's very useful. Overall, what you seem to want is an off-the-shelf machine learning algorithm, which is exactly what Weka contains. You're apparently looking for something relatively easy to interpret (you mention that you want it to deduce the relationship between A and B and to tell you that C is just noise.) You could try a decision tree, such as J48, as these are usually easy to visualize/interpret.
Twenty-five million rules? How many features? How many values per feature? Is it possible to iterate through all combinations in practical time? If you can, you could begin by separating the rules into groups by result.
Then, for each result, do the following. Considering each feature as a dimension, and the allowed values for a feature as the metric along that dimension, construct a huge Karnaugh map representing the entire rule set.
The map has two uses. One: research automated methods for the Quine-McCluskey algorithm. A lot of work has been done in this area. There are even a few programs available, although probably none of them will deal with a Karnaugh map of the size you're going to make.
Two: when you have created your final reduced rule set, iterate over all combinations of all values for all features again, and construct another Karnaugh map using the reduced rule set. If the maps match, your rule sets are equivalent.
-Al.
You could try a neural network approach, trained via backpropagation, assuming you have or can randomly generate (based on the old ruleset) a large set of data that hit all your classes. Using a hidden layer of appropriate size will allow you to approximate arbitrary discriminant functions in your feature space. This is more or less the same idea as clustering, but due to the training paradigm should have no issue with your discrete inputs.
This may, however, be a little too "black box" for your case, particularly if you have zero tolerance for false positives and negatives (although, it being a one-off process, you get an arbitrary degree of confidence by checking a gargantuan validation set).