OpenGL es - doesn't look 3D, looks more like 2D - opengl-es

Trying to make a sphere. But it so doesn't look like 3D, in fact it looks like a flat 2D picture. What am I missing here?
Thankyou
std::vector<GLfloat> ballVerts;
for(int i = 0; i <= 40; i++)
{
double lat0 = M_PI * (-0.5 + (double) (i - 1) / 40);
double z0 = sin(lat0);
double zr0 = cos(lat0);
double lat1 = M_PI * (-0.5 + (double) i / 40);
double z1 = sin(lat1);
double zr1 = cos(lat1);
for(int j = 0; j <= 40; j++)
{
double lng = 2 * M_PI * (double) (j - 1) / 40;
double x = cos(lng);
double y = sin(lng);
// normals
glNormal3f(x * zr0, y * zr0, z0);
ballVerts.push_back(x * zr0); //X
ballVerts.push_back(y * zr0); //Y
ballVerts.push_back(z0); //Z
ballVerts.push_back(0.0f);
ballVerts.push_back(1.0f);
ballVerts.push_back(0.0f);
ballVerts.push_back(1.0f); //R,G,B,A
// normals
glNormal3f(x * zr1, y * zr1, z1);
ballVerts.push_back(x * zr1); //X
ballVerts.push_back(y * zr1); //Y
ballVerts.push_back(z1); //Z
ballVerts.push_back(0.0f);
ballVerts.push_back(1.0f);
ballVerts.push_back(0.0f);
ballVerts.push_back(1.0f); //R,G,B,A
// Render code
Furthermore, I am rotating this circle, the rotation works fine, since I have light changing and it gives me an idea that, it is rotating and is infact a circle at least
glRotatef(Angle, 1.0f, 0.5f, 0.3f);
glBindBuffer(GL_ARRAY_BUFFER, VertexBufferObject[2]);
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, 7*4, 0);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 3200);
glBindBuffer(GL_ARRAY_BUFFER, 0);

First off all you need to check if lighting is currently enabled using glGetIntegerv(GL_LIGHTING,&i) and maybe turn it on glEnable(GL_LIGHTING).
Then setup the glMaterial(...), glLightModel(...), glLight(...), there is tutorial http://www.cse.msu.edu/~cse872/tutorial3.html
or you can use own GLSL shaders to apply some advanced illumination, some tutorials are here http://www.lighthouse3d.com/opengl/glsl/
In some trivial cases you can just pass vertex colors via glColor3f(...) instead of using the GL lighting.
Also normals should be unit vectors or enable normalization glEnable(GL_NORMALIZE).

Related

Optimize WebGL shader?

I wrote the following shader to render a pattern with a bunch of concentric circles. Eventually I want to have each rotating sphere be a light emitter to create something along these lines.
Of course right now I'm just doing the most basic part to render the different objects.
Unfortunately the shader is incredibly slow (16fps full screen on a high-end macbook). I'm pretty sure this is due to the numerous for loops and branching that I have in the shader. I'm wondering how I can pull off the geometry I'm trying to achieve in a more performance optimized way:
EDIT: you can run the shader here: https://www.shadertoy.com/view/lssyRH
One obvious optimization I am missing is that currently all the fragments are checked against the entire 24 surrounding circles. It would be pretty quick and easy to just discard these checks entirely by checking if the fragment intersects the outer bounds of the diagram. I guess I'm just trying to get a handle on how the best practice is of doing something like this.
#define N 10
#define M 5
#define K 24
#define M_PI 3.1415926535897932384626433832795
void mainImage( out vec4 fragColor, in vec2 fragCoord )
{
float aspectRatio = iResolution.x / iResolution.y;
float h = 1.0;
float w = aspectRatio;
vec2 uv = vec2(fragCoord.x / iResolution.x * aspectRatio, fragCoord.y / iResolution.y);
float radius = 0.01;
float orbitR = 0.02;
float orbiterRadius = 0.005;
float centerRadius = 0.002;
float encloseR = 2.0 * orbitR;
float encloserRadius = 0.002;
float spacingX = (w / (float(N) + 1.0));
float spacingY = h / (float(M) + 1.0);
float x = 0.0;
float y = 0.0;
vec4 totalLight = vec4(0.0, 0.0, 0.0, 1.0);
for (int i = 0; i < N; i++) {
for (int j = 0; j < M; j++) {
// compute the center of the diagram
vec2 center = vec2(spacingX * (float(i) + 1.0), spacingY * (float(j) + 1.0));
x = center.x + orbitR * cos(iGlobalTime);
y = center.y + orbitR * sin(iGlobalTime);
vec2 bulb = vec2(x,y);
if (length(uv - center) < centerRadius) {
// frag intersects white center marker
fragColor = vec4(1.0);
return;
} else if (length(uv - bulb) < radius) {
// intersects rotating "light"
fragColor = vec4(uv,0.5+0.5*sin(iGlobalTime),1.0);
return;
} else {
// intersects one of the enclosing 24 cylinders
for(int k = 0; k < K; k++) {
float theta = M_PI * 2.0 * float(k)/ float(K);
x = center.x + cos(theta) * encloseR;
y = center.y + sin(theta) * encloseR;
vec2 encloser = vec2(x,y);
if (length(uv - encloser) < encloserRadius) {
fragColor = vec4(uv,0.5+0.5*sin(iGlobalTime),1.0);
return;
}
}
}
}
}
}
Keeping in mind that you want to optimize the fragment shader, and only the fragment shader:
Move the sin(iGlobalTime) and cos(iGlobalTime) out of the loops, these remain static over the whole draw call so no need to recalculate them every loop iteration.
GPUs employ vectorized instruction sets (SIMD) where possible, take advantage of that. You're wasting lots of cycles by doing multiple scalar ops where you could use a single vector instruction(see annotated code)
[Three years wiser me here: I'm not really sure if this statement is true in regards to how modern GPUs process the instructions, however it certainly does help readability and maybe even give a hint or two to the compiler]
Do your radius checks squared, save that sqrt(length) for when you really need it
Replace float casts of constants(your loop limits) with a float constant(intelligent shader compilers will already do this, not something to count on though)
Don't have undefined behavior in your shader(not writing to gl_FragColor)
Here is an optimized and annotated version of your shader(still containing that undefined behavior, just like the one you provided). Annotation is in the form of:
// annotation
// old code, if any
new code
#define N 10
// define float constant N
#define fN 10.
#define M 5
// define float constant M
#define fM 5.
#define K 24
// define float constant K
#define fK 24.
#define M_PI 3.1415926535897932384626433832795
// predefine 2 times PI
#define M_PI2 6.28318531
void mainImage( out vec4 fragColor, in vec2 fragCoord )
{
float aspectRatio = iResolution.x / iResolution.y;
// we dont need these separate
// float h = 1.0;
// float w = aspectRatio;
// use vector ops(2 divs 1 mul => 1 div 1 mul)
// vec2 uv = vec2(fragCoord.x / iResolution.x * aspectRatio, fragCoord.y / iResolution.y);
vec2 uv = fragCoord.xy / iResolution.xy;
uv.x *= aspectRatio;
// most of the following declarations should be predefined or marked as "const"...
float radius = 0.01;
// precalc squared radius
float radius2 = radius*radius;
float orbitR = 0.02;
float orbiterRadius = 0.005;
float centerRadius = 0.002;
// precalc squared center radius
float centerRadius2 = centerRadius * centerRadius;
float encloseR = 2.0 * orbitR;
float encloserRadius = 0.002;
// precalc squared encloser radius
float encloserRadius2 = encloserRadius * encloserRadius;
// Use float constants and vector ops here(2 casts 2 adds 2 divs => 1 add 1 div)
// float spacingX = w / (float(N) + 1.0);
// float spacingY = h / (float(M) + 1.0);
vec2 spacing = vec2(aspectRatio, 1.0) / (vec2(fN, fM)+1.);
// calc sin and cos of global time
// saves N*M(sin,cos,2 muls)
vec2 stct = vec2(sin(iGlobalTime), cos(iGlobalTime));
vec2 orbit = orbitR * stct;
// not needed anymore
// float x = 0.0;
// float y = 0.0;
// was never used
// vec4 totalLight = vec4(0.0, 0.0, 0.0, 1.0);
for (int i = 0; i < N; i++) {
for (int j = 0; j < M; j++) {
// compute the center of the diagram
// Use vector ops
// vec2 center = vec2(spacingX * (float(i) + 1.0), spacingY * (float(j) + 1.0));
vec2 center = spacing * (vec2(i,j)+1.0);
// Again use vector opts, use precalced time trig(orbit = orbitR * stct)
// x = center.x + orbitR * cos(iGlobalTime);
// y = center.y + orbitR * sin(iGlobalTime);
// vec2 bulb = vec2(x,y);
vec2 bulb = center + orbit;
// calculate offsets
vec2 centerOffset = uv - center;
vec2 bulbOffset = uv - bulb;
// use squared length check
// if (length(uv - center) < centerRadius) {
if (dot(centerOffset, centerOffset) < centerRadius2) {
// frag intersects white center marker
fragColor = vec4(1.0);
return;
// use squared length check
// } else if (length(uv - bulb) < radius) {
} else if (dot(bulbOffset, bulbOffset) < radius2) {
// Use precalced sin global time in stct.x
// intersects rotating "light"
fragColor = vec4(uv,0.5+0.5*stct.x,1.0);
return;
} else {
// intersects one of the enclosing 24 cylinders
for(int k = 0; k < K; k++) {
// use predefined 2*PI and float K
float theta = M_PI2 * float(k) / fK;
// Use vector ops(2 muls 2 adds => 1 mul 1 add)
// x = center.x + cos(theta) * encloseR;
// y = center.y + sin(theta) * encloseR;
// vec2 encloser = vec2(x,y);
vec2 encloseOffset = uv - (center + vec2(cos(theta),sin(theta)) * encloseR);
if (dot(encloseOffset,encloseOffset) < encloserRadius2) {
fragColor = vec4(uv,0.5+0.5*stct.x,1.0);
return;
}
}
}
}
}
}
I did a little more thinking ... I realized the best way to optimize it is to actually change the logic so that before doing intersection tests on the small circles it checks the bounds of the group of circles. This got it to run at 60fps:
Example here:
https://www.shadertoy.com/view/lssyRH

Composing a tile's texture coordinates using GLSL

Preface
Consider the following example image:
Note the following:
Each tile index increments from left to right, top to bottom
There are only 28 valid tiles (out of a possible 32)
In this example, we know that each tile is 32x32 in pixels
We also know the overall image dimensions are 256x128 in pixels
Question
Given only the above info and a valid tile index, how could we use a vertex shader to construct the proper texture coordinates to use for a desired tile, which would then be passed to the fragment shader for sampling? Luckily, we can make use of gl_VertexID to identify which 'corner' of the image we need... But since we are working with normalized textels (instead of just pixels), we'll need some way of scaling things down between 0 and 1, which further complicates the algorithm.
Here's what I have so far, though it only seems to display a solid color from the image
#version 330 core
layout(location=0) in vec3 in_pos;
out vec2 out_texCoord;
void main()
{
// These will eventually be uniforms/attributes, and are
// only used here for more immediate debugging purposes
int tileNum = 1; // Desired tile index
int tileCount = 28; // Maximum # of tiles
float tileWidth = 32; // Width of each tile in pixels
float tileHeight = 32; // Height of each tile in pixels
float imgWidth = 256; // Overall width of image in pixels
float imgHeight = 128; // Overall height of image in pixels
// Attempt to calculate the correct texture coordinates
// for the desired tile, given only the above info...
int tileIndex = tileNum % tileCount;
int columnCount = int(imgWidth / tileWidth);
int rowCount = int(imgHeight / tileHeight);
int tileX = tileIndex % columnCount;
int tileY = int(float(tileIndex) / float(columnCount));
float startX = float(tileX) * tileWidth;
float startY = float(tileY) * tileHeight;
float endX = 1.0f / (startX + tileWidth);
float endY = 1.0f / (startY + tileHeight);
startX = 1.0f / startX;
startY = 1.0f / startY;
// Check which corner of the image we are working with
int vid = gl_VertexID % 4;
switch(vid) {
case 0:
out_texCoord = vec2(startX, endY);
break;
case 1:
out_texCoord = vec2(endX, endY);
break;
case 2:
out_texCoord = vec2(startX, startY);
break;
case 3:
out_texCoord = vec2(endX, startY);
break;
}
gl_Position = vec4(in_pos, 1);
}
Disclaimer
Before anyone comes barging in talking about a lack of info/code, please note that using the following code does indeed properly display the entire image, as expected...Effectively, this means that there is something wrong with the actual texture coordinate calculations,and not with my application's OpenGL implementation:
int vid = gl_VertexID % 4;
switch(vid) {
case 0:
out_texCoord = vec2(0, 1);
break;
case 1:
out_texCoord = vec2(1, 1);
break;
case 2:
out_texCoord = vec2(0, 0);
break;
case 3:
out_texCoord = vec2(1, 0);
break;
}
Inverting a texture coordinate seems to be a shot in the dark. You just need to scale it down:
float endX = (startX + tileWidth) / imgWidth;
float endY = (startY + tileHeight) / imgHeight;
startX = startX / imgWidth;
startY = startY / imgHeight;

Drawing a circle with a sector cut out in OpenGL ES 1.1

I'm trying to draw the following shape using OpenGL ES 1.1. And well, I'm stuck, I don't really know how to go about it.
My game currently uses Android's Canvas API, which isn't hardware accelerated, so I'm rewriting it with OpenGL ES. The Canvas class has a method called drawArc which makes drawing this shape very very easy; Canvas.drawArc
Any advice/hints on doing the same with OpenGL ES?
Thank you for reading.
void gltDrawArc(unsigned int const segments, float angle_start, float angle_stop)
{
int i;
float const angle_step = (angle_stop - angle_start)/segments;
GLfloat *arc_vertices;
arc_vertices = malloc(2*sizeof(GLfloat) * (segments+2));
arc_vertices[0] = arc_vertices[1] = 0.
for(i=0; i<segments+1; i++) {
arc_vertices[2 + 2*i ] = cos(angle_start + i*angle_step);
arc_vertices[2 + 2*i + 1] = sin(angle_start + i*angle_step);
}
glVertexPointer(2, GL_FLOAT, 0, arc_vertices);
glEnableClientState(GL_VERTEX_ARRAY);
glDrawArrays(GL_TRIANGLE_FAN, 0, segments+2);
free(arc_vertices);
}
What about just sampling the circle at discrete angles and drawing a GL_TRIANGLE_FAN?
EDIT: Something like this will just draw a sector of a unit circle around the origin in 2D:
glBegin(GL_TRIANGLE_FAN);
glVertex2f(0.0f, 0.0f);
for(angle=startAngle; angle<=endAngle; ++angle)
glVertex2f(cos(angle), sin(angle));
glEnd();
Actually take this more as pseudocode, as sin and cos usually work on radians and I'm using degrees, but you should get the point.
I am new to android programming so I am sure there is probably a better way to do this. But I was following the OpenGL ES 1.0 tutorial on the android developers site http://developer.android.com/resources/tutorials/opengl/opengl-es10.html which walks you through drawing a green triangle. You can follow the link and you will see most of the code I used there. I wanted to draw a circle on the triangle. The code I added is based on the above example posted by datenwolf. And is shown in snippets below:
public class HelloOpenGLES10Renderer implements GLSurfaceView.Renderer {
// the number small triangles used to make a circle
public int segments = 100;
public float mAngle;
private FloatBuffer triangleVB;
// array to hold the FloatBuffer for the small triangles
private FloatBuffer [] segmentsArray = new FloatBuffer[segments];
private void initShapes(){
.
.
.
// stuff to draw holes in the board
int i = 0;
float angle_start = 0.0f;
float angle_stop = 2.0f * (float) java.lang.Math.PI;
float angle_step = (angle_stop - angle_start)/segments;
for(i=0; i<segments; i++) {
float[] holeCoords;
FloatBuffer holeVB;
holeCoords = new float [ 9 ];
// initialize vertex Buffer for triangle
// (# of coordinate values * 4 bytes per float)
ByteBuffer vbb2 = ByteBuffer.allocateDirect(holeCoords.length * 4);
vbb2.order(ByteOrder.nativeOrder());// use the device hardware's native byte order
holeVB = vbb2.asFloatBuffer(); // create a floating point buffer from the ByteBuffer
float x1 = 0.05f * (float) java.lang.Math.cos(angle_start + i*angle_step);
float y1 = 0.05f * (float) java.lang.Math.sin(angle_start + i*angle_step);
float z1 = 0.1f;
float x2 = 0.05f * (float) java.lang.Math.cos(angle_start + i+1*angle_step);
float y2 = 0.05f * (float) java.lang.Math.sin(angle_start + i+1*angle_step);
float z2 = 0.1f;
holeCoords[0] = 0.0f;
holeCoords[1] = 0.0f;
holeCoords[2] = 0.1f;
holeCoords[3] = x1;
holeCoords[4] = y1;
holeCoords[5] = z1;
holeCoords[6] = x2;
holeCoords[7] = y2;
holeCoords[8] = z2;
holeVB.put(holeCoords); // add the coordinates to the FloatBuffer
holeVB.position(0); // set the buffer to read the first coordinate
segmentsArray[i] = holeVB;
}
}
.
.
.
public void onDrawFrame(GL10 gl) {
.
.
.
// Draw hole
gl.glColor4f( 1.0f - 0.63671875f, 1.0f - 0.76953125f, 1.0f - 0.22265625f, 0.0f);
for ( int i=0; i<segments; i++ ) {
gl.glVertexPointer(3, GL10.GL_FLOAT, 0, segmentsArray[i]);
gl.glDrawArrays(GL10.GL_TRIANGLES, 0, 3);
}
}

CGPathRef / Bezier Curves in OpenGL-ES

I am considering porting an iPhone project from core animation to OpenGL-ES.
I need to render a button that is constructed from CGPathRef s.
But it seems that GL has no provision for Bezier Curves.
Can anyone provide some code that renders a Bezier Curve in GL?
This will accept a series of points to draw a rounded bezier line. It must use point sprites. If you send it a line of three points, and a number of point sprites to draw, it will create a bezeir line. The code is based of something I found somewhere, but I cannot remember where.
It requires:
CGPoint origin - First Point
CGPoint control - Mid Point
CGPoint destination - End Point
int segments - Number of points to render.
To calculate the number of points, I use:
count = MAX(ceilf(sqrtf(([[currentStroke objectAtIndex:i+2] CGPointValue].x - [[currentStroke objectAtIndex:i] CGPointValue].x)
* ([[currentStroke objectAtIndex:i+2] CGPointValue].x - [[currentStroke objectAtIndex:i] CGPointValue].x)
+ ((invertedYThirdCoord - invertedYBegCoord) * (invertedYThirdCoord - invertedYBegCoord))) / 2), 1)*4;
Anyway, the code (in C++):
CGPoint vertices[segments];
CGPoint midPoint;
float x, y;
float t = 0.0;
for(int i = 0; i < (segments); i++)
{
x = pow(1 - t, 2) * origin.x + 2.0 * (1 - t) * t * control.x + t * t * destination.x;
y = pow(1 - t, 2) * origin.y + 2.0 * (1 - t) * t * control.y + t * t * destination.y;
vertices[i] = CGPointMake(x, y);
t += 1.0 / (segments);
}
midPoint = CGPointMake(x, 288 - y);
glVertexPointer(2, GL_FLOAT, 0, vertices);
glDrawArrays(GL_POINTS, 0, segments);
Following this render as normal.

How to draw a dotted line using OpenGL ES 1?

To draw a dotted line in OpenGL I can use glLineStipple, but how do I achieve the same effect in OpenGL ES 1?
Lines can be textured, just like triangles. Enable alpha testing, apply an alpha texture, set up some texture coordinates, and enjoy.
Actually i have realized the doted line or the dashed line using for loops but it still make non sense to use it as a line type link to the drawing method, here is the code of my doted line and dashed line below:
doted line:
(void)drawVerticalDotedInternalGrid{
float a,b;
int drawCount =0;
GLfloat dotedInternalGrid[1296];
for (a = -0.5f; a <= 0.5f; a +=0.5f) {
for (b = -0.875f; b <=0.925f; b += 0.025f)
{
dotedInternalGrid[drawCount] = b;
drawCount++;
dotedInternalGrid[drawCount] = a;
drawCount++;
};
};
glPointSize(1.0f);
glColor4f(0.863f,0.863f,0.863f,0.8f); //line color
glVertexPointer(2, GL_FLOAT, 0, dotedInternalGrid);
glEnableClientState(GL_VERTEX_ARRAY);
glDrawArrays(GL_POINTS, 0, 648);
glDisableClientState(GL_VERTEX_ARRAY);
}
dashed line:
(void)drawVerticalDashedInternalGridH{
GLfloat dashedLine[1296];
float a,b;
int i =0;
//-0.4----0.4 // -0.875----0.900
for (a = -0.4f; a <= 0.4f; a +=0.1f) {
for (b =-0.825f; b <=0.950f; b+=0.025f) {
dashedLine[i] = b;
i++;
dashedLine[i] = a;
i++;
};
};
//glLineWidth(1.0f);
glColor4f(0.863f,0.863f,0.863f,1.f); //line color
glVertexPointer(2, GL_FLOAT, 0, dashedLine);
glEnableClientState(GL_VERTEX_ARRAY);
glDrawArrays(GL_LINES, 0, 648);
glDisableClientState(GL_VERTEX_ARRAY);
}
of course ye can see the code is drawing in a rectangle area of certain coordinates,the bother things is how to figure out the dotedInternalGrid[1296]; this size of array dynamically for draw method use and the number of lines to draw as well.
To explain it easily, I have put drawHorizontalDashedLine() first.
To understand, click this image.
I cannot put an image on this post because of my reputation.
Visualizing the Vertices
+(void)drawHorizontalDashedLine:(GLfloat)x1 x2:(GLfloat)x2 y:(GLfloat)y {
//Parameters
GLfloat DASH_LENGTH = 4.0f;
GLfloat GAP_LENGTH = 2.0f;
GLfloat LINE_THICKNESS = 1.5f;
//Calculate how many dashes require to draw the whole line
GLfloat fHorizontalLength = fabsf(x2-x1);
int nDashedLineCount = fHorizontalLength / (DASH_LENGTH + GAP_LENGTH);
int nVerticesSize = nDashedLineCount * 4; //A dashed line has 4 values(2 points)
//Vertex
GLfloat vertices[nVerticesSize];
//The first dashed line vertices
vertices[0] = (x1 < x2)? x1 : x2;
vertices[1] = y;
vertices[2] = (x1 < x2)? x1 : x2 + DASH_LENGTH;
vertices[3] = y;
//The other vertices of dashed lines
for (int nIndex=4; nIndex < nVerticesSize; nIndex=nIndex+4) {
vertices[nIndex] = vertices[nIndex-2] + GAP_LENGTH;
vertices[nIndex+1] = y;
vertices[nIndex+2] = vertices[nIndex] + DASH_LENGTH;
vertices[nIndex+3] = y;
//NSLog(#"Point1(%.2f, %.2f)", vertices[nIndex], vertices[nIndex+1]);
//NSLog(#"Point2(%.2f, %.2f)", vertices[nIndex+2], vertices[nIndex+3]);
}
//Draw the arrays
glPushMatrix();
glLineWidth(LINE_THICKNESS);
glVertexPointer (2, GL_FLOAT, 0, vertices);
glDrawArrays (GL_LINES, 0, nVerticesSize/2);
glPopMatrix();
}
drawDashedLine().
I used the trigonometric function to get lengths.
+(void)drawDashedLine:(CGPoint)point1 point2:(CGPoint)point2 {
//Parameters
GLfloat DASH_LENGTH = 3.0f;
GLfloat GAP_LENGTH = 1.0f;
GLfloat LINE_THICKNESS = 1.5f;
//Calculate how many dashes require to draw the whole line
GLfloat fWidth = point2.x - point1.x;
GLfloat fHeight = point2.y - point1.y;
GLfloat fRadian = atan2(fHeight, fWidth);
float fLineLength = sqrtf(powf(fWidth, 2) + powf(fHeight, 2));
int nDashedLineCount = fabsf(fLineLength / (DASH_LENGTH + GAP_LENGTH));
int nVerticesSize = nDashedLineCount * 4; //A dashed line has 4 values(2 points)
//Vertex
GLfloat vertices[nVerticesSize];
//The first dashed line vertices
vertices[0] = point1.x;
vertices[1] = point1.y;
vertices[2] = point1.x + cosf(fRadian) * DASH_LENGTH;
vertices[3] = point1.y + sinf(fRadian) * DASH_LENGTH;
//The other vertices of dashed lines
for (int nIndex=4; nIndex < nVerticesSize; nIndex=nIndex+4) {
vertices[nIndex] = vertices[nIndex-2] + cosf(fRadian) * GAP_LENGTH;
vertices[nIndex+1] = vertices[nIndex-1] + sinf(fRadian) * GAP_LENGTH;
vertices[nIndex+2] = vertices[nIndex] + cosf(fRadian) * DASH_LENGTH;
vertices[nIndex+3] = vertices[nIndex+1] + sinf(fRadian) * DASH_LENGTH;
//NSLog(#"DrawDash Point1(%.2f, %.2f)", vertices[nIndex], vertices[nIndex+1]);
//NSLog(#"DrawDash Point2(%.2f, %.2f)", vertices[nIndex+2], vertices[nIndex+3]);
}
//Draw the arrays
glPushMatrix();
glLineWidth(LINE_THICKNESS);
glVertexPointer (2, GL_FLOAT, 0, vertices);
glDrawArrays (GL_LINES, 0, nVerticesSize/2);
glPopMatrix();
}
glPushAttrib(GL_ENABLE_BIT);
# glPushAttrib is done to return everything to normal after drawing
glLineStipple(1, 0xAAAA); # [1]
glEnable(GL_LINE_STIPPLE);
glBegin(GL_LINES);
glVertex3f(-.5,.5,-.5);
glVertex3f(.5,.5,-.5);
glEnd();
glPopAttrib();

Resources