Is performance worse when putting database to a dedicated server? - performance

I heard that one way to scale your system is to use different machine for web server, database server, and even use multiple instances for each type of server
I wonder how could this improve performance over the one-server-for-everything model? Aren't there bottle necks in the connection between those servers? Moreover, you will have to care about synchronization while accessing the database server from different web server.

If your infrastructure is small enough then yes, 1 server for everything is (probably) the best way to do things, however when your size starts to require that you use more then 1 server, scaling the size of your single box can become much more expensive then having multiple cheaper servers. This also means that you can have more failure tolerance (if one server goes down, the other(s) can take over). As for synchronizing data, on the database side that is usually achieved by using clustering or replicating, on the application side it can be achieved with the likes of memcached or saving to the drive, and web servers themselves don't really need to be synchronized. Network bottlenecks on a local network (like your servers would be from one another) are negligible.

Having numerous servers may appear to be an attractive solution. One problem which often occurs is the latency that arises from communication between the servers. Even with fiber inter-connects it will be slower than if they reside on the same server. Of course, in a single server-solution, if one server application does a lot of work it may starve the DB application of needed CPU resources.
Another issue which may turn up is that of SANs. Proponents of SANs will say that they are just as fast as locally attached storage. The purpose of SANs is to cut costs on storage. Even if the SAN were to use the same high-performance disks as the local solution (wiping out the cost savings) you still have a slower connection and more simultaneous users to contend with on the SAN.
Conventional wisdom has it that a DB should be SQL-based with normalized data. It is worthwile to spend some time weighing pros and cons (yes SQL has cons) against each other.
Since "time-immemorial" (at least the last twenty years) indifferent programmers have overloaded servers with stuff they are too lazy to implement in the client. Indifferent (or ignorant) architects allow this practice to continue. End result: sluggish c/s implementations which are close to useless. Tripling the server park is a desperate "week-before-delivery" measure which - at best - results in a marginal performance increase. Often you lose performance instead.
DBs should not be bothered with complex requests involving multiple tables. Simple requests filtered by the client is the way to go.
One thing to try might be to put framework/SOAP-handling on one server and let it send binary requests to the DB server which answers with binary responses (trying to make sense of a SOAP request is very CPU-intensive and something which you don't want to leave to the DB application which will be more or less choked anyway). This way you'll have SOAP throttling only one part of the environment (the interface to users/other framework users) and the rest of the interfaces will be as efficient as they can be (binary).
Another thing - if the application allows it - is to put a cache front-end on the DB-application. The purpose of this cache is to do as much repetitive stuff as possible without involving the DB itself. This way the DB is left with handling fewer but (perhaps) more complicated requests instead of doing everything.
Oh, don't let clients send SQL statements directly to the DB. You'd be suprised at the junk a DB has to contend with.

Related

Which caching mechanism to use in my spring application in below scenarios

We are using Spring boot application with Maria DB database. We are getting data from difference services and storing in our database. And while calling other service we need to fetch data from db (based on mapping) and call the service.
So to avoid database hit, we want to cache all mapping data in cache and use it to retrieve data and call service API.
So our ask is - Add data in Cache when it gets created in database (could add up-to millions records) and remove from cache when status of one of column value is "xyz" (for example) or based on eviction policy.
Should we use in-memory cache using Hazelcast/ehCache or Redis/Couch base?
Please suggest.
Thanks
I mostly agree with Rick in terms of don't build it until you need it, however it is important these days to think early of where this caching layer would fit later and how to integrate it (for example using interfaces). Adding it into a non-prepared system is always possible but much more expensive (in terms of hours) and complicated.
Ok to the actual question; disclaimer: Hazelcast employee
In general for caching Hazelcast, ehcache, Redis and others are all good candidates. The first question you want to ask yourself though is, "can I hold all necessary records in the memory of a single machine. Especially in terms for ehcache you get replication (all machines hold all information) which means every single node needs to keep them in memory. Depending on the size you want to cache, maybe not optimal. In this case Hazelcast might be the better option as we partition data in a cluster and optimize the access to a single network hop which minimal overhead over network latency.
Second question would be around serialization. Do you want to store information in a highly optimized serialization (which needs code to transform to human readable) or do you want to store as JSON?
Third question is about the number of clients and threads that'll access the data storage. Obviously a local cache like ehcache is always the fastest option, for the tradeoff of lots and lots of memory. Apart from that the most important fact is the treading model the in-memory store uses. It's either multithreaded and nicely scaling or a single-thread concept which becomes a bottleneck when you exhaust this thread. It is to overcome with more processes but it's a workaround to utilize todays systems to the fullest.
In more general terms, each of your mentioned systems would do the job. The best tool however should be selected by a POC / prototype and your real world use case. The important bit is real world, as a single thread behaves amazing under low pressure (obviously way faster) but when exhausted will become a major bottleneck (again obviously delaying responses).
I hope this helps a bit since, at least to me, every answer like "yes we are the best option" would be an immediate no-go for the person who said it.
Build InnoDB with the memcached Plugin
https://dev.mysql.com/doc/refman/5.7/en/innodb-memcached.html

Is there a right way to implement distributed caching (resistent to concurrent writing, netsplits, etc)?

Lets say we have a database (PostgreSQL). Some requests are too expensive or slow, so we decided to cache some data, say, in Memcached. At first everything seems to be OK, but in fact there is a number of corner cases:
Some Memcached servers could be unavailable (server is down, netsplits)
Writes by one key can occur concurrently by 2+ backends
Memcached server was added/removed, some backends are already aware of this, some are not
etc
Is there some well known solution to avoid inconsistency between caches and database under these circumstances? I can think of a few really simple solutions, but they lead to stale reads.

Balancing Redis queries and in-process memory?

I am a software developer but wannabe architect new to the server scalability world.
In the context of multiple services working with the same data set, aiming to scale for redundancies and load balancing.
The question is: In a idealistic system, should services try to optimize their internal processing to reduce the amount of queries done to the remote server cache for better performance and less bandwidth at the cost of some local memory and code base or is it better to just go all-in and query the remote cache as the single transaction point every time any transaction need processing done on the data?
When I read about Redis and even general database usage online, the later seems to be the common option. Every nodes of the scaled application have no memory and read and write directly to the remote cache on every transactions.
But as a developer, I ask if this isn't a tremendous waste of resources? Whether you are designing at electronic chips level, at inter-thread, inter-process or inter-machine, I do believe it's the responsibility of each sub-system to do whatever it can to optimize its processing without depending on the external world if it can and hence reduce overall operation time.
I mean, if the same data is read over hundreds or time from the same service without changes (write), isn't it just more logical to keep a local cache and wait for notifications of changes (pub/sub) and only read only these changes to update the cache instead reading the bigger portion of data every time a transaction require it? On the other hand, I understand that this method implies that the same data will be duplicated at multiple place (more ram usage) and require some sort of expiration system not to keep the cache from filling up.
I know Redis is built to be fast. But however fast it is, in my opinion there's still a massive difference between reading directly from local memory versus querying an external service, transfer data over network, allocating memory, deserialize into proper objects and garbage collect it when you are finished with it. Anyone have benchmark numbers between in-process dictionaries query versus a Redis query on the localhost? Is it a negligible time in the bigger scheme of things or is it an important factor?
Now, I believe the real answer to my question until now is "it depends on your usage scenario", so let's elaborate:
Some of our services trigger actions on conditions of data change, others periodically crunch data, others periodically read new data from external network source and finally others are responsible to present data to users and let them trigger some actions and bring in new data. So it's a bit more complex than a single web pages deserving service. We already have a cache system codebase in most services, and we have a message broker system to notify data changes and trigger actions. Currently only one service of each type exist (not scaled). They transfer small volatile data over messages and bigger more persistent (changing less often) data over SQL. We are in process of moving pretty much all data to Redis to ease scalability and performances. Now some colleagues are having a heated discussion about whether we should abandon the cache system altogether and use Redis as the common global cache, or keep our notification/refresh system. We were wondering what the external world think about it. Thanks
(damn that's a lot of text)
I would favor utilizing in-process memory as much as possible. Any remote query introduces latency. You can use a hybrid approach and utilize in-process cache for speed (and it is MUCH faster) but put a significantly shorter TTL on it, and then once expired, reach further back to Redis.

Most efficient way to cache in a fastcgi app

For fun i am writing a fastcgi app. Right now all i do is generate a GUID and display it at the top of the page then make a db query based on the url which pulls data from one of my existing sites.
I would like to attempt to cache everything on the page except for the GUID. What is a good way of doing that? I heard of but never used redis. But it appears its a server which means its in a seperate process. Perhaps an in process solution would be faster? (unless its not?)
What is a good solution for page caching? (i'm using C++)
Your implementation sounds like you need a simple key-value caching mechanism, and you could possibly use a container like std::unordered_map from C++11, or its boost cousin, boost::unordered_map. unordered_map provides a hash table implementation. If you needed even higher performance at some point, you could also look at Boost.Intrusive which provides high performance, standard library-compatible containers.
If you roll your cache with the suggestions mentioned, a second concern will be expiring cache entries, because of the possibility your cached data will grow stale. I don't know what your data is like, but you can choose to implement a caching strategy like any of these:
after a certain time/number of uses, expire a cached entry
after a certain time/number of uses, expire the entire cache (extreme)
least-recently used - there's a stack overflow question concerning this: LRU cache design
Multithreaded/concurrent access may also be a concern, though as suggested in the link above, a possibility would be to lock the cache on access rather than worry about granular locking.
Now if you're talking about scaling, and moving up to multiple processes, and distributing server processes across multiple physical machines, the simple in-process caching might not be the way to go anymore (everyone could have different copies of data at any given time, inconsistency of performance if some server has cached data but others don't).
That's where Redis/Memcached/Membase/etc. shine - they are built for scaling and for offloading work from a database. They could be beaten out by a database and in-memory cache in performance (there is latency, after all, and a host of other factors), but when it comes to scaling, they are very useful and save load from a database, and can quickly serve requests. They also come with features cache expiration (implementations differ between them).
Best of all? They're easy to use and drop in. You don't have to choose redis/memcache from the outset, as caching itself is just an optimization and you can quickly replace the caching code with using, say, an in-memory cache of your own to using redis or something else.
There are still some differences between the caching servers though - membase and memcache distribute their data, while redis has master-slave replication.
For the record: I work in a company where we use memcached servers - we have several of them in the data center with the rest of our servers each having something like 16 GB of RAM allocated completely to cache.
edit:
And for speed comparisons, I'll adapt something from a Herb Sutter presentation I watched long ago:
process in-memory -> really fast
getting data from a local process in-memory data -> still really fast
data from local disk -> depends on your I/O device, SSD can be fast, but mechanical drives are glacial
getting data from remote process (in-memory data) -> fast-ish, and your cache servers better be close
getting data from remote process (disk) -> iceberg

Performance impact of having a data access layer/service layer?

I need to design a system which has these basic components:
A Webserver which will be getting ~100 requests/sec. The webserver only needs to dump data into raw data repository.
Raw data repository which has a single table which gets 100 rows/s from the webserver.
A raw data processing unit (Simple processing, not much. Removing invalid raw data, inserting missing components into damaged raw data etc.)
Processed data repository
Does it make sense in such a system to have a service layer on which all components would be built? All inter-component interaction will go through the service layers. While this would make the system easily upgradeable and maintainable, would it not also have a significant performance impact since I have so much traffic to handle?
Here's what can happen unless you guard against it.
In the communication between layers, some format is chosen, like XML. Then you build it and run it and find out the performance is not satisfactory.
Then you mess around with profilers which leave you guessing what the problem is.
When I worked on a problem like this, I used the stackshot technique and quickly found the problem. You would have thought it was I/O. NOT. It was that converting data to XML, and parsing XML to recover data structure, was taking roughly 80% of the time. It wasn't too hard to find a better way to do that. Result - a 5x speedup.
What do you see as the costs of having a separate service layer?
How do those costs compare with the costs you must incur? In your case that seems to be at least
a network read for the request
a database write for raw data
a database read of raw data
a database write of processed data
Plus some data munging.
What sort of services do you have a mind? Perhaps
saveRawData()
getNextRawData()
writeProcessedData()
why is the overhead any more than a procedure call? Service does not need to imply "separate process" or "web service marshalling".
I contend that structure is always of value, separation of concerns in your application really matters. In comparison with database activities a few procedure calls will rarely cost much.
In passing: the persisting of Raw data might best be done to a queuing system. You can then get some natural scaling by having many queue readers on separate machines if you need them. In effect the queueing system is naturally introducing some service-like concepts.
Personally feel that you might be focusing too much on low level implementation details when designing the system. Before looking at how to lay out the components, assemblies or services you should be thinking of how to architect the system.
You could start with the following high level statements from which to build your system architecture around:
Confirm the technical skill set of the development team and the operations/support team.
Agree on an initial finite list of systems that will integrate to your service, the protocols they support and some SLAs.
Decide on the messaging strategy.
Understand how you will deploy your service/system.
Decide on the choice of middleware (ESBs, Message Brokers, etc), databases (SQL, Oracle, Memcache, DB2, etc) and 3rd party frameworks/tools.
Decide on your caching and data latency strategy.
Break your application into the various areas of business responsibility - This will allow you to split up the work and allow easier communication of milestones during development/testing and implementation.
Design each component as required to meet the areas of responsibility. The areas of responsibility should automatically lead you to decide on how to design component, assembly or service.
Obviously not all of the above will match your specific case but I would suggest that they should at least be given some thought.
Good luck.
Abstraction and tiering will introduce latency, but the real question is, what are you GAINING to make the cost(s) worthwhile? Loose coupling, governance, scalability, maintainability are worth real $.
Even the best-designed layered app will exhibit more latency than an app talking directly to a DB. Users who know the original system will feel the difference. They may not like it, so this can be a political issue as much as a technical one.

Resources