What is the meaning of the "#" prefix on some D attributes? - syntax

The D Programming Language has at least two attributes prefixed with the "#" symbol:
#disable
#property
What sort of meaning is "#" supposed to convey? I can't seem to locate anything relevant in the documentation.
Also, why is __gshared the only attribute with two leading underscores?

It has no meaning.
Yes, that probably wasn't what you were hoping to hear -- but that's what they've said in the newsgroups.

The # doesn't really mean anything at this point. All of the #x words are function attributes. The # was tacked on pretty much just to save keywords. So, in general, newer attributes have # on them and older ones don't (though there was some shuffling around of that a while back where there was some debate over whether some of the attributes should have # or not). If they were redone from scratch without caring what other languages have done, then you might have gotten # on all of the function attributes, but there was no way that stuff like #public was going to happen, since it would have just made porting code harder for no real benefit. The end result is that what got # and what didn't is fairly arbitrary. You just have to remember which attributes start with # and which don't, but that's not all that much different from having to learn new keywords. It's just that these are prefixed with # so that they aren't actually keywords and don't reduce the number of legal identifiers in the language.
Now, there's definitely a desire among many in the D community to use # for custom attributes in the future, in which case, # would indicate a custom attribute in the cases where the name used wasn't one built into the language, but for all of the ones built into the language, it pretty much just amounts to saving a keyword.

As Mehrdad shows (see the links in the comments), there's no special meaning to "#", they are how they are just for historical reasons.
As for your other question, __gshared isn't the only keyword with two underscores, there's also __thread and __traits. This naming convention is commonly used to denote internal data structures, which need to be exposed for practical reasons but are not "safe" to use in all cases (i.e. more a hack than a well-established feature). I'm not sure whether or not the D language follows this convention, but seeing this quote from the docs I believe that's the case:
__gshared is disallowed in safe mode.
I'm searching for more info about __thread and __traits (which indeed are not attributes), but so far could find very little.

Related

Did Ruby deprecate the wrong File exists method?

The docs of File.exist? says:
Return true if the named file exists.
Note that last word used; "exists". This is correct. "File exist" without the ending s is not correct.
The method File.exists? exists, but they deprecated this method. I am thinking it should have been the other way around. What am I missing?
Also, it's noteworthy that other languages/libraries use exists, for example Java and .NET.
Similarly, "this equals that" - but Ruby uses equal, again dropping the ending s. I am getting a feeling that Ruby is actively walking in another direction than mainstream. But then there has to be a reason?
This is largely a subjective call. Do you read the call as "Does this file exist?" or "File exists"? Both readings have their merits.
Historically Ruby has had a lot of aliased methods like size vs. length, but lately it seems like the core team is trying to focus on singular, consistent conventions that apply more broadly.
You'd have to look closely at the conversations on the internal mailing list surrounding the decisions here. I can't find them easily, only people dealing with the changes as deprecation warnings pop up.
The Ruby core team is a mix of people who speak different languages but the native language is Japanese, so perhaps that's guiding some of these decisions. It could be a preference to avoid odd inflections on verbs.
I agree that if File.exists?('x.txt') reads much more natural than the plural form, which was probably Matz's intention for the alias. As far as I'm concerned, this particular deprecation was misguided.
However the general preference of a plural form may well be routed in handling enumarables/collections, where plural makes a sense when used with idioms like this:
pathnames.select(&:exist?)
exist? matches the convention used elsewhere throughout the stdlib, and goes back to the early days of ruby. For example array.include? (not includes?), string.match? (not matches?), object.respond_to? (not responds_to?). So in this light, File.exists? was always a blemish.
Some recommend that you read the dot as "does". So "if file does exist," "if array does include," "if string does match," etc.

Best practice for Cocoa category naming conventions

I am tidying up my ancient Cocoa code to use modern naming conventions. There has been lots of discussion on best practices, but I'm unsure of one thing.
I'm thinking about adding a prefix to category method names, to ensure uniqueness. It seem generally agreed that this is a good idea, though most people probably don't bother.
My question is: what about a NSDictionary category method like -copyDeep that does a deep copy? The method used to be named -deepCopy, but I reversed the words as the analyzer looks for a prefix of "copy". Therefore I presumably couldn't add a prefix. And having the "prefix" in the middle or end of the method name seems messy and inconsistent.
I'd also be interested in thoughts on the style of prefix -- I currently use DS (for Dejal Systems) for class prefixes. But I know that Apple now wants to reserve all two-character prefixes for themselves, so am thinking about using Dejal, e.g. my class DSManagedObject would be renamed as DejalManagedObject. And getting back to categories, their methods would be renamed to add a dejal prefix, e.g. from -substringFromString: to -dejalSubstringFromString:. But -dejalCopyDeep would confuse the analyzer, so maybe I'd have to be inconsistent for such methods, and use -copyDeepDejal or -copyDeep_dejal?
I will be re-releasing my categories and various classes as open source once I've cleaned them up, so following the latest conventions will be beneficial.
I emailed the Apple Application Frameworks Evangelist about this, and got a reply that recommended not prefixing category method names. Which conflicts with the advice in the aforelinked WWDC10 session, but I assume reflects Apple's current thinking.
He recommended just looking at the beta seed API diffs to spot conflicts, which is what I've always been doing.
I agree with Kevin Ballard, you should prefix your category method names, particularly if you are going to distribute them to others. But you do have a valid concern the analyzer will be confused by DScopy. The ARC compiler will similarly be confused if the definition/implementation of DScopy is done without ARC and is used by another class using ARC (or vice versa).
My preferred solution is to use "ownership transfer annotations", such as:
NS_RETURNS_NOT_RETAINED
NS_RETURNS_RETAINED
They would be used to override the compilers default behavior of reading method names and acting on them. You might declare DScopy like so: (This declaration must be in a header file that is imported by all the classes that use this method mentioned due to link)
-(DSManagedObject *)DScopy; NS_RETURNS_RETAINED;
Source for NS_RETURNS... WWDC 2011 Session 322 - Objective-C Advancements in Depth. The meat of this issue begins at about time 9:10.
A note about "But I know that Apple now wants to reserve all two-character prefixes for themselves". As a personal preference I like to use the _ character to separate the prefix from the name, it works well for me. You might try something like:
-(DSManagedObject *)ds_copy; NS_RETURNS_RETAINED;
This would give you three characters, and arguably make the method name more readable.
Edit In response to link posted in comment.
However as Justin's answer to your original question says that can be broken.
With regards to attributes; I did not suggest using __attribute__((objc_method_family(copy))) I suggested using NS_RETURNS_RETAINED, which translates to :__attribute__((ns_returns_retained)). While the first example there won't even compile (as he says) using - (NSString *)string __attribute__((objc_method_family(copy))); it compiles with - (NSString *)string; NS_RETURNS_RETAINED; just fine.
Obviously also if the NS_RETURNS_.. are "hidden" from the compiler in separate the .ms or indirected in some other way and the compiler can't see the directives then it won't work. Because of this I would suggest putting the declaration for any methods that may cause the analyzer/compiler confusion in your main .h file (the one that imports all the others) to limit the chances that there will be an issue.

Suggestions for using attributes beyond [[noreturn]]?

Coming from the discussions about the use of vendor specific attributes in another question I asked myself, "what rules should we tell people for using attributes that are not listed in the standard"?
The two attributes that are defined are [[ noreturn ]] and [[ carries_dependencies ]]. The standard leaves open how compilers should react on unknown attributes -- thus, by the standard they may stop with an error message. This is not what e.g. GCC does, it emits a warning and continues. This is probably a behavior to be expected by the most-common compilers. For this reason I would have like to read a "should" in the standard, but we don't have it.
The paper N2553 brings up flexible attributes. It lists further attributes used by GCC (
unused, weak) and MSVC (dllimport). for OpenMP, the widely supported parallelizing framework, scoped attributes are suggested, eg. omp::for(clause, clause), omp::parallel(clause,clause). So, it is very likely that we will se some vendor specific attributes very soon after they support the syntax at all, indeed.
Therefore, when we now go "out in the world" and tell people about C++11, what should the advice be about using attributes?
Only use noreturn and carries_dependencies
Use your compilers old syntax instead, eg. __attribute__((noreturn)) and define a macro when you port the code (the current situation)
Use those attributes your favorite compiler supports freely, knowing this code might not be portable to another standard-conforming compiler, because if the standard allows a compiler to stop with an error, you have to consider this will happen. This sounds a bit like advocating writing non-portable code.
Or, my guess, expect the most-used compilers to warn about unknown attributes, so you can use vendor-specific attributes, keeping in mind that in rare cases you may get problems.
Note the slight difference in the last two bullet-items. While both say "use those attributes you need", item3's message is "do not care about other compilers", while item4 implicitly rephrases the standard texts "implementation defined behavior" to "the compiler should emit a diagnostic message".
What could be the suggestion for an upcoming Best Practice here?
The best practice — the only one that is reasonably portable in practical terms, never mind ambiguity in the Standard — is to use macros. It will be many years before we can forget about compilers that don't support attributes.
The number of compilers and the number of custom __keywords__ defined by those compilers will always be increasing, and it makes sense for the language to define a way to contain the damage. It doesn't need to revolutionize the way people write unportable code, or make unportable code portable (although standard attributes do that). There is a benefit simply to giving caffeine-addled compiler backend engineers a sandbox for when they want to extend the grammar.
It is a bit alarming, though, that no attribute tokens are reserved to the implementation, or to the language besides the ones currently standard. So there will be trouble when they decide to standardize more of them.

Using strings instead of symbols: good or evil?

Often enough, I find myself dealing with lists of function options (or more general replacement lists) of the form {foo->value,...}. This leads to bugs when foo already has a value in $Context. One obvious way to prevent this is using a string "foo" instead of the symbol: {"foo"->value,...}. This works, but seems to draw ire of some seasoned LISPers I know, who chastise me for conflating symbols and strings and tell me to use built-in quoting constructs.
While it is certainly possible to write code that avoids collisions without using strings, it often seems more trouble than it is worth. On the other hand, I haven't seen too many examples of {"string"->value} type replacement rules. So the question to you is -- is this an acceptable usage pattern?.. Are there cases where it is particularly appropriate?.. Where should it be avoided?..
In my opinion (disclaimer - it is only my opinion), it is best to avoid using strings as option names, at least for "main" options in your function. Strings OTOH are totally fine as settings (r.h.s. of options). This is not to say that you can not use strings, just as you noted. Perhaps, they could be more appropriate for sub-options, and they are used in this way by many system functions (usually "superfunctions" like NDSolve, that may have sub-options within options). The main problems I see with using strings is that they reduce the introspection capabilities, both for the system and for the user. In other words, it is harder to discover an option that has a string name than that with a symbol name - for the latter I can just inspect the names of the symbols in a package, and also symbolic option names have usage messages. You may also want to automate some things, such as writing a utility that finds all option names in the package etc. It is easier to do when option names are symbols, since they all belong to the same context. It is also easy to discover that some options do not have usage messages, one can do that automatically by writing a utility function.
Finally, you may have a better protection against accidental collisions of similar option names. It may be, that many option sequences are passed to your function, and occasionally they may contain options with the same name. If option names were symbols, full symbol names would be different. Then, you will both get a shadowing warning, and at the same time a protection - only the correct option (full) name will be used. For string, you don't get any warning, and may end up using incorrect option setting, if the duplicate string option name with a wrong setting (intended for a different function, say) happens to be first in the list. This scenario is more likely to occur in larger projects, but bugs like this are probably very hard to catch (this is a guess, I never had such situation).
As for possible collisions, if you follow some naming conventions such as option name always starting with a capital letter, plus put most of your code in packages, and do not start your variable or function names (for functions in the interactive session), with a capital letter, then you will greatly reduce the chance of such collisions. Additionally, you should Protect option names, when you define them, or at the end of the package. Then, the collisions will be detected as cases of shadowing. Avoiding shadowing, OTOH, is a general necessity, so the case of options is no more special in this respect than for function names etc.

What are your language "hangups"? [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 11 years ago.
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
I've read some of the recent language vs. language questions with interest... Perl vs. Python, Python vs. Java, Can one language be better than another?
One thing I've noticed is that a lot of us have very superficial reasons for disliking languages. We notice these things at first glance and they turn us off. We shun what are probably perfectly good languages as a result of features that we'd probably learn to love or ignore in 2 seconds if we bothered.
Well, I'm as guilty as the next guy, if not more. Here goes:
Ruby: All the Ruby example code I see uses the puts command, and that's a sort of childish Yiddish anatomical term. So as a result, I can't take Ruby code seriously even though I should.
Python: The first time I saw it, I smirked at the whole significant whitespace thing. I avoided it for the next several years. Now I hardly use anything else.
Java: I don't like identifiersThatLookLikeThis. I'm not sure why exactly.
Lisp: I have trouble with all the parentheses. Things of different importance and purpose (function declarations, variable assignments, etc.) are not syntactically differentiated and I'm too lazy to learn what's what.
Fortran: uppercase everything hurts my eyes. I know modern code doesn't have to be written like that, but most example code is...
Visual Basic: it bugs me that Dim is used to declare variables, since I remember the good ol' days of GW-BASIC when it was only used to dimension arrays.
What languages did look right to me at first glance? Perl, C, QBasic, JavaScript, assembly language, BASH shell, FORTH.
Okay, now that I've aired my dirty laundry... I want to hear yours. What are your language hangups? What superficial features bother you? How have you gotten over them?
I hate Hate HATE "End Function" and "End IF" and "If... Then" parts of VB. I would much rather see a curly bracket instead.
PHP's function name inconsistencies.
// common parameters back-to-front
in_array(needle, haystack);
strpos(haystack, needle);
// _ to separate words, or not?
filesize();
file_exists;
// super globals prefix?
$GLOBALS;
$_POST;
I never really liked the keywords spelled backwards in some scripting shells
if-then-fi is bad enough, but case-in-esac is just getting silly
I just thought of another... I hate the mostly-meaningless URLs used in XML to define namespaces, e.g. xmlns="http://purl.org/rss/1.0/"
Pascal's Begin and End. Too verbose, not subject to bracket matching, and worse, there isn't a Begin for every End, eg.
Type foo = Record
// ...
end;
Although I'm mainly a PHP developer, I dislike languages that don't let me do enough things inline. E.g.:
$x = returnsArray();
$x[1];
instead of
returnsArray()[1];
or
function sort($a, $b) {
return $a < $b;
}
usort($array, 'sort');
instead of
usort($array, function($a, $b) { return $a < $b; });
I like object-oriented style. So it bugs me in Python to see len(str) to get the length of a string, or splitting strings like split(str, "|") in another language. That is fine in C; it doesn't have objects. But Python, D, etc. do have objects and use obj.method() other places. (I still think Python is a great language.)
Inconsistency is another big one for me. I do not like inconsistent naming in the same library: length(), size(), getLength(), getlength(), toUTFindex() (why not toUtfIndex?), Constant, CONSTANT, etc.
The long names in .NET bother me sometimes. Can't they shorten DataGridViewCellContextMenuStripNeededEventArgs somehow? What about ListViewVirtualItemsSelectionRangeChangedEventArgs?
And I hate deep directory trees. If a library/project has a 5 level deep directory tree, I'm going to have trouble with it.
C and C++'s syntax is a bit quirky. They reuse operators for different things. You're probably so used to it that you don't think about it (nor do I), but consider how many meanings parentheses have:
int main() // function declaration / definition
printf("hello") // function call
(int)x // type cast
2*(7+8) // override precedence
int (*)(int) // function pointer
int x(3) // initializer
if (condition) // special part of syntax of if, while, for, switch
And if in C++ you saw
foo<bar>(baz(),baaz)
you couldn't know the meaning without the definition of foo and bar.
the < and > might be a template instantiation, or might be less-than and greater-than (unusual but legal)
the () might be a function call, or might be just surrounding the comma operator (ie. perform baz() for size-effects, then return baaz).
The silly thing is that other languages have copied some of these characteristics!
Java, and its checked exceptions. I left Java for a while, dwelling in the .NET world, then recently came back.
It feels like, sometimes, my throws clause is more voluminous than my method content.
There's nothing in the world I hate more than php.
Variables with $, that's one extra odd character for every variable.
Members are accessed with -> for no apparent reason, one extra character for every member access.
A freakshow of language really.
No namespaces.
Strings are concatenated with ..
A freakshow of language.
All the []s and #s in Objective C. Their use is so different from the underlying C's native syntax that the first time I saw them it gave the impression that all the object-orientation had been clumsily bolted on as an afterthought.
I abhor the boiler plate verbosity of Java.
writing getters and setters for properties
checked exception handling and all the verbiage that implies
long lists of imports
Those, in connection with the Java convention of using veryLongVariableNames, sometimes have me thinking I'm back in the 80's, writing IDENTIFICATION DIVISION. at the top of my programs.
Hint: If you can automate the generation of part of your code in your IDE, that's a good hint that you're producing boilerplate code. With automated tools, it's not a problem to write, but it's a hindrance every time someone has to read that code - which is more often.
While I think it goes a bit overboard on type bureaucracy, Scala has successfully addressed some of these concerns.
Coding Style inconsistencies in team projects.
I'm working on a large team project where some contributors have used 4 spaces instead of the tab character.
Working with their code can be very annoying - I like to keep my code clean and with a consistent style.
It's bad enough when you use different standards for different languages, but in a web project with HTML, CSS, Javascript, PHP and MySQL, that's 5 languages, 5 different styles, and multiplied by the number of people working on the project.
I'd love to re-format my co-workers code when I need to fix something, but then the repository would think I changed every line of their code.
It irritates me sometimes how people expect there to be one language for all jobs. Depending on the task you are doing, each language has its advantages and disadvantages. I like the C-based syntax languages because it's what I'm most used to and I like the flexibility they tend to bestow on the developer. Of course, with great power comes great responsibility, and having the power to write 150 line LINQ statements doesn't mean you should.
I love the inline XML in the latest version of VB.NET although I don't like working with VB mainly because I find the IDE less helpful than the IDE for C#.
If Microsoft had to invent yet another C++-like language in C# why didn't they correct Java's mistake and implement support for RAII?
Case sensitivity.
What kinda hangover do you need to think that differentiating two identifiers solely by caSE is a great idea?
I hate semi-colons. I find they add a lot of noise and you rarely need to put two statements on a line. I prefer the style of Python and other languages... end of line is end of a statement.
Any language that can't fully decide if Arrays/Loop/string character indexes are zero based or one based.
I personally prefer zero based, but any language that mixes the two, or lets you "configure" which is used can drive you bonkers. (Apache Velocity - I'm looking in your direction!)
snip from the VTL reference (default is 1, but you can set it to 0):
# Default starting value of the loop
# counter variable reference.
directive.foreach.counter.initial.value = 1
(try merging 2 projects that used different counter schemes - ugh!)
In no particular order...
OCaml
Tuples definitions use * to separate items rather than ,. So, ("Juliet", 23, true) has the type (string * int * bool).
For being such an awesome language, the documentation has this haunting comment on threads: "The threads library is implemented by time-sharing on a single processor. It will not take advantage of multi-processor machines. Using this library will therefore never make programs run faster." JoCaml doesn't fix this problem.
^^^ I've heard the Jane Street guys were working to add concurrent GC and multi-core threads to OCaml, but I don't know how successful they've been. I can't imagine a language without multi-core threads and GC surviving very long.
No easy way to explore modules in the toplevel. Sure, you can write module q = List;; and the toplevel will happily print out the module definition, but that just seems hacky.
C#
Lousy type inference. Beyond the most trivial expressions, I have to give types to generic functions.
All the LINQ code I ever read uses method syntax, x.Where(item => ...).OrderBy(item => ...). No one ever uses expression syntax, from item in x where ... orderby ... select. Between you and me, I think expression syntax is silly, if for no other reason than that it looks "foreign" against the backdrop of all other C# and VB.NET code.
LINQ
Every other language uses the industry standard names are Map, Fold/Reduce/Inject, and Filter. LINQ has to be different and uses Select, Aggregate, and Where.
Functional Programming
Monads are mystifying. Having seen the Parser monad, Maybe monad, State, and List monads, I can understand perfectly how the code works; however, as a general design pattern, I can't seem to look at problems and say "hey, I bet a monad would fit perfect here".
Ruby
GRRRRAAAAAAAH!!!!! I mean... seriously.
VB
Module Hangups
Dim _juliet as String = "Too Wordy!"
Public Property Juliet() as String
Get
Return _juliet
End Get
Set (ByVal value as String)
_juliet = value
End Set
End Property
End Module
And setter declarations are the bane of my existence. Alright, so I change the data type of my property -- now I need to change the data type in my setter too? Why doesn't VB borrow from C# and simply incorporate an implicit variable called value?
.NET Framework
I personally like Java casing convention: classes are PascalCase, methods and properties are camelCase.
In C/C++, it annoys me how there are different ways of writing the same code.
e.g.
if (condition)
{
callSomeConditionalMethod();
}
callSomeOtherMethod();
vs.
if (condition)
callSomeConditionalMethod();
callSomeOtherMethod();
equate to the same thing, but different people have different styles. I wish the original standard was more strict about making a decision about this, so we wouldn't have this ambiguity. It leads to arguments and disagreements in code reviews!
I found Perl's use of "defined" and "undefined" values to be so useful that I have trouble using scripting languages without it.
Perl:
($lastname, $firstname, $rest) = split(' ', $fullname);
This statement performs well no matter how many words are in $fullname. Try it in Python, and it explodes if $fullname doesn't contain exactly three words.
SQL, they say you should not use cursors and when you do, you really understand why...
its so heavy going!
DECLARE mycurse CURSOR LOCAL FAST_FORWARD READ_ONLY
FOR
SELECT field1, field2, fieldN FROM atable
OPEN mycurse
FETCH NEXT FROM mycurse INTO #Var1, #Var2, #VarN
WHILE ##fetch_status = 0
BEGIN
-- do something really clever...
FETCH NEXT FROM mycurse INTO #Var1, #Var2, #VarN
END
CLOSE mycurse
DEALLOCATE mycurse
Although I program primarily in python, It irks me endlessly that lambda body's must be expressions.
I'm still wrapping my brain around JavaScript, and as a whole, Its mostly acceptable. Why is it so hard to create a namespace. In TCL they're just ugly, but in JavaScript, it's actually a rigmarole AND completely unreadable.
In SQL how come everything is just one, huge freekin SELECT statement.
In Ruby, I very strongly dislike how methods do not require self. to be called on current instance, but properties do (otherwise they will clash with locals); i.e.:
def foo()
123
end
def foo=(x)
end
def bar()
x = foo() # okay, same as self.foo()
x = foo # not okay, reads unassigned local variable foo
foo = 123 # not okay, assigns local variable foo
end
To my mind, it's very inconsistent. I'd rather prefer to either always require self. in all cases, or to have a sigil for locals.
Java's packages. I find them complex, more so because I am not a corporation.
I vastly prefer namespaces. I'll get over it, of course - I'm playing with the Android SDK, and Eclipse removes a lot of the pain. I've never had a machine that could run it interactively before, and now I do I'm very impressed.
Prolog's if-then-else syntax.
x -> y ; z
The problem is that ";" is the "or" operator, so the above looks like "x implies y or z".
Java
Generics (Java version of templates) are limited. I can not call methods of the class and I can not create instances of the class. Generics are used by containers, but I can use containers of instances of Object.
No multiple inheritance. If a multiple inheritance use does not lead to diamond problem, it should be allowed. It should allow to write a default implementation of interface methods, a example of problem: the interface MouseListener has 5 methods, one for each event. If I want to handle just one of them, I have to implement the 4 other methods as an empty method.
It does not allow to choose to manually manage memory of some objects.
Java API uses complex combination of classes to do simple tasks. Example, if I want to read from a file, I have to use many classes (FileReader, FileInputStream).
Python
Indentation is part of syntax, I prefer to use the word "end" to indicate end of block and the word "pass" would not be needed.
In classes, the word "self" should not be needed as argument of functions.
C++
Headers are the worst problem. I have to list the functions in a header file and implement them in a cpp file. It can not hide dependencies of a class. If a class A uses the class B privately as a field, if I include the header of A, the header of B will be included too.
Strings and arrays came from C, they do not provide a length field. It is difficult to control if std::string and std::vector will use stack or heap. I have to use pointers with std::string and std::vector if I want to use assignment, pass as argument to a function or return it, because its "=" operator will copy entire structure.
I can not control the constructor and destructor. It is difficult to create an array of objects without a default constructor or choose what constructor to use with if and switch statements.
In most languages, file access. VB.NET is the only language so far where file access makes any sense to me. I do not understand why if I want to check if a file exists, I should use File.exists("") or something similar instead of creating a file object (actually FileInfo in VB.NET) and asking if it exists. And then if I want to open it, I ask it to open: (assuming a FileInfo object called fi) fi.OpenRead, for example. Returns a stream. Nice. Exactly what I wanted. If I want to move a file, fi.MoveTo. I can also do fi.CopyTo. What is this nonsense about not making files full-fledged objects in most languages? Also, if I want to iterate through the files in a directory, I can just create the directory object and call .GetFiles. Or I can do .GetDirectories, and I get a whole new set of DirectoryInfo objects to play with.
Admittedly, Java has some of this file stuff, but this nonsense of having to have a whole object to tell it how to list files is just silly.
Also, I hate ::, ->, => and all other multi-character operators except for <= and >= (and maybe -- and ++).
[Disclaimer: i only have a passing familiarity with VB, so take my comments with a grain of salt]
I Hate How Every Keyword In VB Is Capitalized Like This. I saw a blog post the other week (month?) about someone who tried writing VB code without any capital letters (they did something to a compiler that would let them compile VB code like that), and the language looked much nicer!
My big hangup is MATLAB's syntax. I use it, and there are things I like about it, but it has so many annoying quirks. Let's see.
Matrices are indexed with parentheses. So if you see something like Image(350,260), you have no clue from that whether we're getting an element from the Image matrix, or if we're calling some function called Image and passing arguments to it.
Scope is insane. I seem to recall that for loop index variables stay in scope after the loop ends.
If you forget to stick a semicolon after an assignment, the value will be dumped to standard output.
You may have one function per file. This proves to be very annoying for organizing one's work.
I'm sure I could come up with more if I thought about it.

Resources