Related
Bilbo is at his friend's place and there are N steps. Bilbo, being a
thoughtful person, wanted to know in how many ways can he reach the
Nth stair if he takes 1 or 2 steps at a time. Note that he can not
take more than or equal to 2 consecutive 2 steps at a time. One way of
reaching Nth stair is different from another if he touches at least
one different stair.
Here is my code so far; I can't figure out how to not allow taking 2 steps, twice in a row. Help?
public static int fibOptimized(int n) {
int arr[] = new int[n + 1];
for (int i = 0; i < arr.length; i++) {
arr[i] = -1;
}
int output = fibHelper(n, arr);
return output;
}
public static int fibHelper(int n, int[] arr) {
if (n == 0) {
return 0;
}
if (n == 1) {
return 1;
}
if (arr[n] > -1) {
return arr[n];
}
arr[n] = fibHelper(n - 1, arr) + fibHelper(n - 2, arr);
return arr[n];
}
I assume that your problem is the constraint against consecutive 2-step moves. The problem requires that the function know one bit of status information: was the previous step (if any) a 2-step? Simply include a Boolean flag in the parameter list.
int count_path(N, two_step) {
...
count += count_path(N-1, false)
if not two_step
count += count_path(N-2, true)
Will that un-block your train of thought?
EDIT AFTER ACCEPTANCE
I added the if statement to make the application clear.
Every positive integer divide some number whose representation (base 10) contains only zeroes and ones.
One can prove that:
Consider the numbers 1, 11, 111, 1111, etc. up to 111... 1, where the
last number has n+1 digits. Call these numbers m1, m2, ... , mn+1. Each has a
remainder when divided by n, and two of these remainders must be the same.
Because there are n+1 of them but only n values a remainder can take.
This is an application of the famous and useful “pigeonhole principle”;
Suppose the two numbers with the same remainder are mi and mj
, with i < j. Now subtract the smaller from the larger. The resulting number, mi−mj, consisting of j - i ones followed by i zeroes, must be a multiple of n.
But how to find the smallest answer? and effciently?
The question equals to using 10i mod n (for each i, it can be used at most once) to get a sum m of n. It's like a knapsack problem or subset sum problem. In this way, dynamic programming will do the task.
In dynamic programming the complexity is O(k*n). k is the number of digits in answer. For n<105, this code works perfectly.
Code:
#include <stdio.h>
#define NUM 2000
int main(int argc, char* argv[])
{
signed long pow[NUM],val[NUM],x,num,ten;
int i,j,count;
for(num=2; num<NUM; num++)
{
for(i=0; i<NUM; pow[i++]=0);
count=0;
for(ten=1,x=1; x<NUM; x++)
{
val[x]=ten;
for(j=0; j<NUM; j++)if(pow[j]&&!pow[(j+ten)%num]&&pow[j]!=x)pow[(j+ten)%num]=x;
if(!pow[ten])pow[ten]=x;
ten=(10*ten)%num;
if(pow[0])break;
}
x=num;
printf("%ld\tdivides\t",x=num);
if(pow[0])
{
while(x)
{
while(--count>pow[x%num]-1)printf("0");
count=pow[x%num]-1;
printf("1");
x=(num+x-val[pow[x%num]])%num;
}
while(count-->0)printf("0");
}
printf("\n");
}
}
PS:
This sequence in OEIS.
Nice question. I use BFS to solve this question with meet-in-the-middle and some other prunings. Now my code can solve n<109 in a reasonable time.
#include <cstdio>
#include <cstring>
class BIT {
private: int x[40000000];
public:
void clear() {memset(x, 0, sizeof(x));}
void setz(int p, int z) {x[p>>5]=z?(x[p>>5]|(1<<(p&31))):(x[p>>5]&~(1<<(p&31)));}
int bit(int p) {return x[p>>5]>>(p&31)&1;}
} bp, bq;
class UNIT {
private: int x[3];
public: int len, sum;
void setz(int z) {x[len>>5]=z?(x[len>>5]|(1<<(len&31))):(x[len>>5]&~(1<<(len&31)));}
int bit(int p) {return x[p>>5]>>(p&31)&1;}
} u;
class MYQUEUE {
private: UNIT x[5000000]; int h, t;
public:
void clear() {h = t = 0;}
bool empty() {return h == t;}
UNIT front() {return x[h];}
void pop() {h = (h + 1) % 5000000;}
void push(UNIT tp) {x[t] = tp; t = (t + 1) % 5000000;}
} p, q;
int n, md[100];
void bfs()
{
for (int i = 0, tp = 1; i < 200; i++) tp = 10LL * (md[i] = tp) % n;
u.len = -1; u.sum = 0; q.clear(); q.push(u); bq.clear();
while (1)
{
u = q.front(); if (u.len >= 40) break; q.pop();
u.len++; u.setz(0); q.push(u);
u.setz(1); u.sum = (u.sum + md[u.len]) % n;
if (!bq.bit(u.sum)) {bq.setz(u.sum, 1); q.push(u);}
if (!u.sum) {
for (int k = u.len; k >= 0; k--) printf("%d", u.bit(k));
puts(""); return;
}
}
u.len = 40; u.sum = 0; p.clear(); p.push(u); bp.clear();
while (1)
{
u = p.front(); p.pop();
u.len++; u.setz(0); p.push(u);
u.setz(1); u.sum = (u.sum + md[u.len]) % n;
if (!bp.bit(u.sum)) {bp.setz(u.sum, 1); p.push(u);}
int bf = (n - u.sum) % n;
if (bq.bit(bf)) {
for (int k = u.len; k > 40; k--) printf("%d", u.bit(k));
while (!q.empty())
{
u = q.front(); if (u.sum == bf) break; q.pop();
}
for (int k = 40; k >= 0; k--) printf("%d", u.bit(k));
puts(""); return;
}
}
}
int main(void)
{
// 0 < n < 10^9
while (~scanf("%d", &n)) bfs();
return 0;
}
There's an O(n)-time (arithmetic operations mod n, really) solution, which is more efficient than the answer currently accepted. The idea is to construct a graph on vertices 0..n-1 where vertex i has connections to (i*10)%n and (i*10+1)%n, then use breadth-first search to find the lexicographically least path from 1 to 0.
def smallest(n):
parents = {}
queue = [(1 % n, 1, None)]
i = 0
while i < len(queue):
residue, digit, parent = queue[i]
i += 1
if residue in parents:
continue
if residue == 0:
answer = []
while True:
answer.append(str(digit))
if parent is None:
answer.reverse()
return ''.join(answer)
digit, parent = parents[parent]
parents[residue] = (digit, parent)
for digit in (0, 1):
queue.append(((residue * 10 + digit) % n, digit, residue))
return None
Here is a readable solution using BFS in java. The approach is similar to David's with some improvements.
You build a decision tree of whether to append a 0 or 1 and perform BFS to find the lowest such valid multiple of the input number.
This solution also leverages modulo (of the input number) to compute really large results. Full description available in the comments in the code.
You can also access the same code snippet in ideone.
import java.util.ArrayDeque;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Queue;
import java.util.Scanner;
import java.util.Set;
public class Main {
// Return the smallest multiple of the number (as a string) consisting only of digits 0 and 1
//
// All possible digits that can be constructed using the digits 0/1 can be represented
// as a tree, where at each level, appending a 0 is one branch and appending a 1 is another
//
// If we perform BFS on this tree, the first number we see which is an exact multiple of the input
// number will be the result (since it will be the smallest). Make sure to consider left
// branch (i.e. 0) before considering the right branch (i.e. 1)
//
// The 2 paths we take at each level when the current number is num:
// (num * 10)
// (num * 10) + 1
//
// Since the result can grow huge quite easily, it might not be possible to store the result in a
// 32 or even a 64 bit int/long variable.
//
// One alternative is to use BigNumber, but a simpler alternative exists if we leverage modulo.
//
// The operations we perform above (i.e. multiplications and additions) will retain the useful part
// of the result when using modulo. We use the given number itself as the modulo, and when we see a
// result of 0, it means we have found a number which is an exact multiple of the input number.
//
// To reconstruct the number, we need to store the parent nodes of each node, when adding the node
// in the queue (similar to using BFS for computing shortest path)
//
// We will also need to know if we appended a 0 or a 1 at each step, and so we add this information
// as part of the node data structure as well.
//
// Re-visiting nodes is unecessary since we have seen this modulo result (i.e. value % num) already.
// Any additional digits we add from now will only make the number longer and we already are tracking
// the path for this same modulo result we've seen earlier.
//
public static String multiple(int num) {
if (num < 0) {
throw new IllegalArgumentException("Invalid args");
}
String result = "0";
if (num > 0) {
// An array to mark all the visited nodes
boolean[] isVisited = new boolean[num];
Arrays.fill(isVisited, false);
// The queue used by BFS
Queue<Node> queue = new ArrayDeque<>();
// Add the first number 1 and mark it visited
queue.add(new Node(true, 1 % num, null));
isVisited[1 % num] = true;
// The final destination node which represents the answer
Node destNode = null;
while (!queue.isEmpty()) {
// Get the next node from the queue
Node currNode = queue.remove();
if (currNode.val == 0) {
// We have reached a valid multiple of num
destNode = currNode;
break;
} else {
// Visit the next 2 neighbors
// Append 0 - (currNode.val * 10)
// Append 1 - (currNode.val * 10) + 1
// Append a '0'
int val1 = (currNode.val * 10) % num;
if (!isVisited[val1]) {
queue.add(new Node(false, val1, currNode));
isVisited[val1] = true;
}
// Append a '1'
int val2 = (val1 + 1) % num;
if (!isVisited[val2]) {
queue.add(new Node(true, val2, currNode));
isVisited[val2] = true;
}
}
}
// Trace the path from destination to source
if (destNode == null) {
throw new IllegalStateException("Result should not be null");
} else {
StringBuilder reverseResultBuilder = new StringBuilder();
Node currNode = destNode;
while (currNode != null) {
reverseResultBuilder.append(currNode.isDigitOne ? '1' : '0');
currNode = currNode.parent;
}
result = reverseResultBuilder.reverse().toString();
}
}
return result;
}
// Node represents every digit being appended in the decision tree
private static class Node {
// True if '1', false otherwise (i.e. '0')
public final boolean isDigitOne;
// The number represented in the tree modulo the input number
public final int val;
// The parent node in the tree
public final Node parent;
public Node(boolean isDigitOne, int val, Node parent) {
this.isDigitOne = isDigitOne;
this.val = val;
this.parent = parent;
}
}
public static void main(String[] args) {
int num = new Scanner(System.in).nextInt();
System.out.println("Input number: " + num);
System.out.println("Smallest multiple using only 0s and 1s as digits: " + Main.multiple(num));
}
}
I think this is a fair and interesting question.
Please note that though what you describe is a proof there always exist such number, the found number will not always be minimal.
Only solution I can think of is to compute the remainders of the powers of 10 modulus the given n and than try to construct a sum giving remainder 0 modulo n using at most one of each of these powers. You will never need more than n different powers(which you prove i your question).
This is a fast way to get the first 792 answers. Def the most simple code:
__author__ = 'robert'
from itertools import product
def get_nums(max_length):
assert max_length < 21 #Otherwise there will be over 2 million possibilities
for length in range(1, max_length + 1):
for prod in product("10", repeat=length):
if prod[0] == '1':
yield int("".join(prod))
print list(get_nums(4))
[1, 11, 10, 111, 110, 101, 100, 1111, 1110, 1101, 1100, 1011, 1010, 1001, 1000]
nums = sorted(get_nums(20))
print len(nums)
solution = {}
operations = 0
for factor in range(1, 1000):
for num in nums:
operations += 1
if num % factor == 0:
solution[factor] = num
break
print factor, operations
if factor not in solution:
print "no solution for factor %s" % factor
break
print solution[787]
max_v = max(solution.values())
for factor, val in solution.items():
if val == max_v:
print factor, max_v
[1, 11, 10, 111, 110, 101, 100, 1111, 1110, 1101, 1100, 1011, 1010, 1001, 1000]
1048575
1 1
2 3
3 10
4 14
5 16
6 30
7 39
8 47
9 558
10 560
11 563
12 591
13 600
14 618
15 632
16 648
17 677
18 1699
19 1724
20 1728
..
..
187 319781
188 319857
..
..
791 4899691
792 5948266
no solution for factor 792
10110001111
396 11111111111111111100
Here is a C# solution using linked list
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Collections;
namespace ConsoleApplication1
{
class Program
{
public static void print(LinkedList<int> lst)
{
foreach(int i in lst)
{
Console.Write(i);
}
}
static void Main(string[] args)
{
int number = Convert.ToInt32(Console.ReadLine());
int product;
LinkedList<int> list = new LinkedList<int>();
bool Istrue = true;
int range = 1;
while (range <= 10) {
Istrue = true;
product = number * range;
while (product > 0)
{
list.AddFirst(product % 10);
product /= 10;
}
foreach (int i in list)
{
if (i > 1) Istrue = false;
}
if (Istrue) { print(list); break; }
else
{
list.Clear();
}
range++;
}
Console.WriteLine("Done");
string s = Console.ReadLine();
}
}
}
My algorithm will be :-
1)Construct the sorted tree of of n possible numbers(say n initially is 10). So in this example it will contain 1,10,11,100,101,110,111....
2)Then loop over the list and perform on each no x%GivenNo, if its o its smallest possible no
3)Otherwise repeat step 3 with another 10 numbers
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace ConsoleApplication2
{
class Class1
{
public static void Main()
{
List<string> possibleCombination = new List<string>();
for (int i = 2; i < 10000; i++)
{
possibleCombination.Add(Convert.ToString(i, 2));
}
var input = Console.ReadLine();
long output = 0;
foreach (var item in possibleCombination)
{
if (Convert.ToInt64(item) % Convert.ToInt64(i) == 0)
{
output = Convert.ToInt64(item);
break;
}
}
Console.WriteLine(output);
Console.ReadLine();
}
}
}
Here is complete c# code in O(n) using graph and bfs approach.
using System;
using System.Collections.Generic;
using System.Collections;
using System.Security.Cryptography;
using System.Linq;
using System.Runtime.InteropServices;
class Solution {
public class Edge : IComparable
{
public int From
{
get;
set;
}
public int To
{
get;
set;
}
public int Weight
{
get;
set;
}
public bool IsDirected
{
get;
set;
}
public Edge(int from, int to, bool isDirected = false, int weight = 0)
{
this.From = from;
this.To = to;
this.Weight = weight;
this.IsDirected = isDirected;
}
public int CompareTo(object obj)
{
if (obj is Edge)
{
var comparingTo = obj as Edge;
return this.Weight.CompareTo(comparingTo.Weight);
}
return 0; //TODO:what should we return?
}
}
public class AdjNode
{
public int EdgeWeight
{
get;
set;
}
public int Id
{
get;
set;
}
public AdjNode(int id)
{
this.Id = id;
this.EdgeWeight = 0;
}
public AdjNode(int id, int weight)
{
this.Id = id;
this.EdgeWeight = weight;
}
}
public class GraphAdj
{
public int V
{
get;
set;
}
public List<AdjNode>[] adj
{
get;
set;
}
public List<Edge> Edges
{
get;
set;
}
public GraphAdj(int v)
{
this.V = v;
this.adj = new List<AdjNode>[this.V];
for (int i = 0; i < this.V; i++)
{
this.adj[i] = new List<AdjNode>(); //allocate actual memory
}
this.Edges = new List<Edge>();
}
public void AddDirectedEdge(int from, int to)
{
adj[from].Add(new AdjNode(to));
this.Edges.Add(new Edge(from,to,true));
}
public void AddDirectedEdge(int from, int to, int weight)
{
adj[from].Add(new AdjNode(to,weight));
this.Edges.Add(new Edge(from, to, true, weight));
}
}
public string multiple(int A) {
int n = A;
GraphAdj directedGraphForNumber = new GraphAdj(n);
Queue<int> queueForNumbers = new Queue<int>();
string result = String.Empty;
bool[] visitedForNumbers = new bool[directedGraphForNumber.V];
int[] suffixes = new int[2] { 0, 1 };
//we will start from 1st node out of n node
queueForNumbers.Enqueue(1);
visitedForNumbers[1] = true;
while (true)
{
int from = queueForNumbers.Dequeue();
if (from == 0)
break;
for (int i = 0; i < suffixes.Length; i++)
{
int toNode = from * 10 + suffixes[i];
int reminder = toNode % n;
if (visitedForNumbers[reminder] == false)
{
visitedForNumbers[reminder] = true;
queueForNumbers.Enqueue(reminder);
directedGraphForNumber.AddDirectedEdge(from, reminder,suffixes[i]);
}
}
}
//Do BFS traversal with edges until zero th node encounters
bool[] visitedForBfs = new bool[directedGraphForNumber.V];
Queue<int> queueForBfs = new Queue<int>();
int[] parent = new int[directedGraphForNumber.V];
int source = 1;
visitedForBfs[source] = true;
queueForBfs.Enqueue(source);
parent[source] = -1;
while (queueForBfs.Count > 0)
{
int currentVertex = queueForBfs.Dequeue();
foreach (var adjacentVertex in directedGraphForNumber.adj[currentVertex])
{
if (visitedForBfs[adjacentVertex.Id] == false)
{
queueForBfs.Enqueue(adjacentVertex.Id);
parent[adjacentVertex.Id] = currentVertex;
visitedForBfs[adjacentVertex.Id] = true;
}
if (adjacentVertex.Id == 0) // we reach zero th node
{
queueForBfs.Clear(); //break out of bfs
}
}
}
//now time to find path all the way to start from zero using parent
List<int> pathListUsingParent = new List<int>();
int current = 0;
pathListUsingParent.Add(0); // add zero
while (current!=1)
{
pathListUsingParent.Add(parent[current]);
current = parent[current];
}
//reverse path to make number using edges
pathListUsingParent.Reverse();
result += "1"; //start node
//now read edges
for (int i = 0; i < pathListUsingParent.Count-1; i++)
{
int from = pathListUsingParent[i];
int to = pathListUsingParent[i + 1];
result += directedGraphForNumber.adj[from].FirstOrDefault(adj => adj.Id == to).EdgeWeight;
}
return result;
}
}
Here's a brute force version in Raku:
say (1..Inf).map( *.base(2) ).first( * %% $n );
The code generates a lazy (potentially infinite) sequence of candidate numbers and then searches for the first element that's divisible by n.
Being brute force it's not exceptionally fast, but the code is striking in its simplicity and expressiveness, as it is typical for Raku.
I recently went through an interview and was asked this question. Let me explain the question properly:
Given a number M (N-digit integer) and K number of swap operations(a swap
operation can swap 2 digits), devise an algorithm to get the maximum
possible integer?
Examples:
M = 132 K = 1 output = 312
M = 132 K = 2 output = 321
M = 7899 k = 2 output = 9987
My solution ( algorithm in pseudo-code). I used a max-heap to get the maximum digit out of N-digits in each of the K-operations and then suitably swapping it.
for(int i = 0; i<K; i++)
{
int max_digit_currently = GetMaxFromHeap();
// The above function GetMaxFromHeap() pops out the maximum currently and deletes it from heap
int index_to_swap_with = GetRightMostOccurenceOfTheDigitObtainedAbove();
// This returns me the index of the digit obtained in the previous function
// .e.g If I have 436659 and K=2 given,
// then after K=1 I'll have 936654 and after K=2, I should have 966354 and not 963654.
// Now, the swap part comes. Here the gotcha is, say with the same above example, I have K=3.
// If I do GetMaxFromHeap() I'll get 6 when K=3, but I should not swap it,
// rather I should continue for next iteration and
// get GetMaxFromHeap() to give me 5 and then get 966534 from 966354.
if (Value_at_index_to_swap == max_digit_currently)
continue;
else
DoSwap();
}
Time complexity: O(K*( N + log_2(N) ))
// K-times [log_2(N) for popping out number from heap & N to get the rightmost index to swap with]
The above strategy fails in this example:
M = 8799 and K = 2
Following my strategy, I'll get M = 9798 after K=1 and M = 9978 after K=2. However, the maximum I can get is M = 9987 after K=2.
What did I miss?
Also suggest other ways to solve the problem & ways to optimize my solution.
I think the missing part is that, after you've performed the K swaps as in the algorithm described by the OP, you're left with some numbers that you can swap between themselves. For example, for the number 87949, after the initial algorithm we would get 99748. However, after that we can swap 7 and 8 "for free", i.e. not consuming any of the K swaps. This would mean "I'd rather not swap the 7 with the second 9 but with the first".
So, to get the max number, one would perform the algorithm described by the OP and remember the numbers which were moved to the right, and the positions to which they were moved. Then, sort these numbers in decreasing order and put them in the positions from left to right.
This is something like a separation of the algorithm in two phases - in the first one, you choose which numbers should go in the front to maximize the first K positions. Then you determine the order in which you would have swapped them with the numbers whose positions they took, so that the rest of the number is maximized as well.
Not all the details are clear, and I'm not 100% sure it handles all cases correctly, so if anyone can break it - go ahead.
This is a recursive function, which sorts the possible swap values for each (current-max) digit:
function swap2max(string, K) {
// the recursion end:
if (string.length==0 || K==0)
return string
m = getMaxDigit(string)
// an array of indices of the maxdigits to swap in the string
indices = []
// a counter for the length of that array, to determine how many chars
// from the front will be swapped
len = 0
// an array of digits to be swapped
front = []
// and the index of the last of those:
right = 0
// get those indices, in a loop with 2 conditions:
// * just run backwards through the string, until we meet the swapped range
// * no more swaps than left (K)
for (i=string.length; i-->right && len<K;)
if (m == string[i])
// omit digits that are already in the right place
while (right<=i && string[right] == m)
right++
// and when they need to be swapped
if (i>=right)
front.push(string[right++])
indices.push(i)
len++
// sort the digits to swap with
front.sort()
// and swap them
for (i=0; i<len; i++)
string.setCharAt(indices[i], front[i])
// the first len digits are the max ones
// the rest the result of calling the function on the rest of the string
return m.repeat(right) + swap2max(string.substr(right), K-len)
}
This is all pseudocode, but converts fairly easy to other languages. This solution is nonrecursive and operates in linear worst case and average case time.
You are provided with the following functions:
function k_swap(n, k1, k2):
temp = n[k1]
n[k1] = n[k2]
n[k2] = temp
int : operator[k]
// gets or sets the kth digit of an integer
property int : magnitude
// the number of digits in an integer
You could do something like the following:
int input = [some integer] // input value
int digitcounts[10] = {0, ...} // all zeroes
int digitpositions[10] = {0, ...) // all zeroes
bool filled[input.magnitude] = {false, ...) // all falses
for d = input[i = 0 => input.magnitude]:
digitcounts[d]++ // count number of occurrences of each digit
digitpositions[0] = 0;
for i = 1 => input.magnitude:
digitpositions[i] = digitpositions[i - 1] + digitcounts[i - 1] // output positions
for i = 0 => input.magnitude:
digit = input[i]
if filled[i] == true:
continue
k_swap(input, i, digitpositions[digit])
filled[digitpositions[digit]] = true
digitpositions[digit]++
I'll walk through it with the number input = 724886771
computed digitcounts:
{0, 1, 1, 0, 1, 0, 1, 3, 2, 0}
computed digitpositions:
{0, 0, 1, 2, 2, 3, 3, 4, 7, 9}
swap steps:
swap 0 with 0: 724886771, mark 0 visited
swap 1 with 4: 724876781, mark 4 visited
swap 2 with 5: 724778881, mark 5 visited
swap 3 with 3: 724778881, mark 3 visited
skip 4 (already visited)
skip 5 (already visited)
swap 6 with 2: 728776481, mark 2 visited
swap 7 with 1: 788776421, mark 1 visited
swap 8 with 6: 887776421, mark 6 visited
output number: 887776421
Edit:
This doesn't address the question correctly. If I have time later, I'll fix it but I don't right now.
How I would do it (in pseudo-c -- nothing fancy), assuming a fantasy integer array is passed where each element represents one decimal digit:
int[] sortToMaxInt(int[] M, int K) {
for (int i = 0; K > 0 && i < M.size() - 1; i++) {
if (swapDec(M, i)) K--;
}
return M;
}
bool swapDec(int[]& M, int i) {
/* no need to try and swap the value 9 as it is the
* highest possible value anyway. */
if (M[i] == 9) return false;
int max_dec = 0;
int max_idx = 0;
for (int j = i+1; j < M.size(); j++) {
if (M[j] >= max_dec) {
max_idx = j;
max_dec = M[j];
}
}
if (max_dec > M[i]) {
M.swapElements(i, max_idx);
return true;
}
return false;
}
From the top of my head so if anyone spots some fatal flaw please let me know.
Edit: based on the other answers posted here, I probably grossly misunderstood the problem. Anyone care to elaborate?
You start with max-number(M, N, 1, K).
max-number(M, N, pos, k)
{
if k == 0
return M
max-digit = 0
for i = pos to N
if M[i] > max-digit
max-digit = M[i]
if M[pos] == max-digit
return max-number(M, N, pos + 1, k)
for i = (pos + 1) to N
maxs.add(M)
if M[i] == max-digit
M2 = new M
swap(M2, i, pos)
maxs.add(max-number(M2, N, pos + 1, k - 1))
return maxs.max()
}
Here's my approach (It's not fool-proof, but covers the basic cases). First we'll need a function that extracts each DIGIT of an INT into a container:
std::shared_ptr<std::deque<int>> getDigitsOfInt(const int N)
{
int number(N);
std::shared_ptr<std::deque<int>> digitsQueue(new std::deque<int>());
while (number != 0)
{
digitsQueue->push_front(number % 10);
number /= 10;
}
return digitsQueue;
}
You obviously want to create the inverse of this, so convert such a container back to an INT:
const int getIntOfDigits(const std::shared_ptr<std::deque<int>>& digitsQueue)
{
int number(0);
for (std::deque<int>::size_type i = 0, iMAX = digitsQueue->size(); i < iMAX; ++i)
{
number = number * 10 + digitsQueue->at(i);
}
return number;
}
You also will need to find the MAX_DIGIT. It would be great to use std::max_element as it returns an iterator to the maximum element of a container, but if there are more you want the last of them. So let's implement our own max algorithm:
int getLastMaxDigitOfN(const std::shared_ptr<std::deque<int>>& digitsQueue, int startPosition)
{
assert(!digitsQueue->empty() && digitsQueue->size() > startPosition);
int maxDigitPosition(0);
int maxDigit(digitsQueue->at(startPosition));
for (std::deque<int>::size_type i = startPosition, iMAX = digitsQueue->size(); i < iMAX; ++i)
{
const int currentDigit(digitsQueue->at(i));
if (maxDigit <= currentDigit)
{
maxDigit = currentDigit;
maxDigitPosition = i;
}
}
return maxDigitPosition;
}
From here on its pretty straight what you have to do, put the right-most (last) MAX DIGITS to their places until you can swap:
const int solution(const int N, const int K)
{
std::shared_ptr<std::deque<int>> digitsOfN = getDigitsOfInt(N);
int pos(0);
int RemainingSwaps(K);
while (RemainingSwaps)
{
int lastHDPosition = getLastMaxDigitOfN(digitsOfN, pos);
if (lastHDPosition != pos)
{
std::swap<int>(digitsOfN->at(lastHDPosition), digitsOfN->at(pos));
++pos;
--RemainingSwaps;
}
}
return getIntOfDigits(digitsOfN);
}
There are unhandled corner-cases but I'll leave that up to you.
I assumed K = 2, but you can change the value!
Java code
public class Solution {
public static void main (String args[]) {
Solution d = new Solution();
System.out.println(d.solve(1234));
System.out.println(d.solve(9812));
System.out.println(d.solve(9876));
}
public int solve(int number) {
int[] array = intToArray(number);
int[] result = solve(array, array.length-1, 2);
return arrayToInt(result);
}
private int arrayToInt(int[] array) {
String s = "";
for (int i = array.length-1 ;i >= 0; i--) {
s = s + array[i]+"";
}
return Integer.parseInt(s);
}
private int[] intToArray(int number){
String s = number+"";
int[] result = new int[s.length()];
for(int i = 0 ;i < s.length() ;i++) {
result[s.length()-1-i] = Integer.parseInt(s.charAt(i)+"");
}
return result;
}
private int[] solve(int[] array, int endIndex, int num) {
if (endIndex == 0)
return array;
int size = num ;
int firstIndex = endIndex - size;
if (firstIndex < 0)
firstIndex = 0;
int biggest = findBiggestIndex(array, endIndex, firstIndex);
if (biggest!= endIndex) {
if (endIndex-biggest==num) {
while(num!=0) {
int temp = array[biggest];
array[biggest] = array[biggest+1];
array[biggest+1] = temp;
biggest++;
num--;
}
return array;
}else{
int n = endIndex-biggest;
for (int i = 0 ;i < n;i++) {
int temp = array[biggest];
array[biggest] = array[biggest+1];
array[biggest+1] = temp;
biggest++;
}
return solve(array, --biggest, firstIndex);
}
}else{
return solve(array, --endIndex, num);
}
}
private int findBiggestIndex(int[] array, int endIndex, int firstIndex) {
int result = firstIndex;
int max = array[firstIndex];
for (int i = firstIndex; i <= endIndex; i++){
if (array[i] > max){
max = array[i];
result = i;
}
}
return result;
}
}
Given a phone keypad as shown below:
1 2 3
4 5 6
7 8 9
0
How many different 10-digit numbers can be formed starting from 1? The constraint is that the movement from 1 digit to the next is similar to the movement of the Knight in a chess game.
For eg. if we are at 1 then the next digit can be either 6 or 8
if we are at 6 then the next digit can be 1, 7 or 0.
Repetition of digits are allowed - 1616161616 is a valid number.
Is there a polynomial time algorithm which solves this problem? The problem requires us to just give the count of 10-digit numbers and not necessarily list the numbers.
EDIT: I tried modeling this as a graph with each digit having 2 or 3 digits as its neighbors. Then I used DFS to navigate upto the depth of 10 nodes and then increment the count of numbers each time I reached the depth of 10. This obviously is not polynomial time. Assuming each digit had just 2 neighbors, this would have required at least 2^10 iterations.
The variable here is the number of digits. I have taken the eg. of 10 digit numbers. It could as well be n-digits.
Sure it can be done in polynomial time. It's an excellent exercise in dynamic programming or memoization.
Lets assume N (the number of digits) equals 10 for the example.
Think of it recursively like this: How many numbers can I construct using 10 digits starting from 1?
Answer is
[number of 9-digit numbers starting from 8] +
[number of 9-digit numbers starting from 6].
So how many "9-digit numbers starting from 8" are there? Well,
[number of 8-digit numbers starting from 1] +
[number of 8-digit numbers starting from 3]
and so on. Base case is reached when you get the question "How many 1-digit numbers are there starting from X" (and the answer is obviously 1).
When it comes to complexity, the key observation is that you reuse previously computed solutions. That is for instance, the answer to "how many 5-digit numbers starting from 3" there are, can be used both when answering "how many 6-digit numbers are there starting from 8" AND "how many 6-digit numbers are there starting from 4". This reuse make the complexity collapse from exponential to polynomial.
Let's take a closer look at the complexity of a dynamic programming solution:
Such implementation would fill in a matrix in the following way:
num[1][i] = 1, for all 0<=i<=9 -- there are one 1-digit number starting from X.
for digits = 2...N
for from = 0...9
num[digits][from] = num[digits-1][successor 1 of from] +
num[digits-1][successor 2 of from] +
...
num[digits-1][successor K of from]
return num[N][1] -- number of N-digit numbers starting from 1.
The algorithm simply fills the matrix one cell at a time, and the matrix is of dimension 10*N, and thus runs in linear time.
Wrote it down from the top of my head, please correct me if there are any typos.
I decided to tackle this problem and make it as extensible as I can. This solution allows you to:
Define your own board (phone pad, chess board, etc.)
Define your own chess piece (Knight, Rook, Bishop, etc.); you will have to write the concrete class and generate it from the factory.
Retrieve several pieces of information through some useful utility methods.
The classes are as follows:
PadNumber: Class defining a button on the phone pad. Could be renamed to 'Square' to represent a board square.
ChessPiece: Abstract class that defines fields for all chess pieces.
Movement: Interface that defines movement methods and allows for factory generation of pieces.
PieceFactory: Factory class to generate Chess pieces.
Knight: Concrete class that inherits from ChessPiece and implements Movement
PhoneChess: Entrance class.
Driver: Driver code.
OK, here's the code :)
package PhoneChess;
import java.awt.Point;
public class PadNumber {
private String number = "";
private Point coordinates = null;
public PadNumber(String number, Point coordinates)
{
if(number != null && number.isEmpty()==false)
this.number = number;
else
throw new IllegalArgumentException("Input cannot be null or empty.");
if(coordinates == null || coordinates.x < 0 || coordinates.y < 0)
throw new IllegalArgumentException();
else
this.coordinates = coordinates;
}
public String getNumber()
{
return this.number;
}
public Integer getNumberAsNumber()
{
return Integer.parseInt(this.number);
}
public Point getCoordinates()
{
return this.coordinates;
}
public int getX()
{
return this.coordinates.x;
}
public int getY()
{
return this.coordinates.y;
}
}
ChessPiece
package PhoneChess;
import java.util.HashMap;
import java.util.List;
public abstract class ChessPiece implements Movement {
protected String name = "";
protected HashMap<PadNumber, List<PadNumber>> moves = null;
protected Integer fullNumbers = 0;
protected int[] movesFrom = null;
protected PadNumber[][] thePad = null;
}
Movement Interface:
package PhoneChess;
import java.util.List;
public interface Movement
{
public Integer findNumbers(PadNumber start, Integer digits);
public abstract boolean canMove(PadNumber from, PadNumber to);
public List<PadNumber> allowedMoves(PadNumber from);
public Integer countAllowedMoves(PadNumber from);
}
PieceFactory
package PhoneChess;
public class PieceFactory
{
public ChessPiece getPiece(String piece, PadNumber[][] thePad)
{
if(thePad == null || thePad.length == 0 || thePad[0].length == 0)
throw new IllegalArgumentException("Invalid pad");
if(piece == null)
throw new IllegalArgumentException("Invalid chess piece");
if(piece.equalsIgnoreCase("Knight"))
return new Knight("Knight", thePad);
else
return null;
}
}
Knight class
package PhoneChess;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
public final class Knight extends ChessPiece implements Movement {
/**Knight movements
* One horizontal, followed by two vertical
* Or
* One vertical, followed by two horizontal
* #param name
*/
public Knight(String name, PadNumber[][] thePad)
{
if(name == null || name.isEmpty() == true)
throw new IllegalArgumentException("Name cannot be null or empty");
this.name = name;
this.thePad = thePad;
this.moves = new HashMap<>();
}
private Integer fullNumbers = null;
#Override
public Integer findNumbers(PadNumber start, Integer digits)
{
if(start == null || "*".equals(start.getNumber()) || "#".equals(start.getNumber()) ) { throw new IllegalArgumentException("Invalid start point"); }
if(start.getNumberAsNumber() == 5) { return 0; } //Consider adding an 'allowSpecialChars' condition
if(digits == 1) { return 1; };
//Init
this.movesFrom = new int[thePad.length * thePad[0].length];
for(int i = 0; i < this.movesFrom.length; i++)
this.movesFrom[i] = -1;
fullNumbers = 0;
findNumbers(start, digits, 1);
return fullNumbers;
}
private void findNumbers(PadNumber start, Integer digits, Integer currentDigits)
{
//Base condition
if(currentDigits == digits)
{
//Reset
currentDigits = 1;
fullNumbers++;
return;
}
if(!this.moves.containsKey(start))
allowedMoves(start);
List<PadNumber> options = this.moves.get(start);
if(options != null)
{
currentDigits++; //More digits to be got
for(PadNumber option : options)
findNumbers(option, digits, currentDigits);
}
}
#Override
public boolean canMove(PadNumber from, PadNumber to)
{
//Is the moves list available?
if(!this.moves.containsKey(from.getNumber()))
{
//No? Process.
allowedMoves(from);
}
if(this.moves.get(from) != null)
{
for(PadNumber option : this.moves.get(from))
{
if(option.getNumber().equals(to.getNumber()))
return true;
}
}
return false;
}
/***
* Overriden method that defines each Piece's movement restrictions.
*/
#Override
public List<PadNumber> allowedMoves(PadNumber from)
{
//First encounter
if(this.moves == null)
this.moves = new HashMap<>();
if(this.moves.containsKey(from))
return this.moves.get(from);
else
{
List<PadNumber> found = new ArrayList<>();
int row = from.getY();//rows
int col = from.getX();//columns
//Cases:
//1. One horizontal move each way followed by two vertical moves each way
if(col-1 >= 0 && row-2 >= 0)//valid
{
if(thePad[row-2][col-1].getNumber().equals("*") == false &&
thePad[row-2][col-1].getNumber().equals("#") == false)
{
found.add(thePad[row-2][col-1]);
this.movesFrom[from.getNumberAsNumber()] = this.movesFrom[from.getNumberAsNumber()] + 1;
}
}
if(col-1 >= 0 && row+2 < thePad.length)//valid
{
if(thePad[row+2][col-1].getNumber().equals("*") == false &&
thePad[row+2][col-1].getNumber().equals("#") == false)
{
found.add(thePad[row+2][col-1]);
this.movesFrom[from.getNumberAsNumber()] = this.movesFrom[from.getNumberAsNumber()] + 1;
}
}
if(col+1 < thePad[0].length && row+2 < thePad.length)//valid
{
if(thePad[row+2][col+1].getNumber().equals("*") == false &&
thePad[row+2][col+1].getNumber().equals("#") == false)
{
found.add(thePad[row+2][col+1]);
this.movesFrom[from.getNumberAsNumber()] = this.movesFrom[from.getNumberAsNumber()] + 1;
}
}
if(col+1 < thePad[0].length && row-2 >= 0)//valid
{
if(thePad[row-2][col+1].getNumber().equals("*") == false &&
thePad[row-2][col+1].getNumber().equals("#") == false)
found.add(thePad[row-2][col+1]);
}
//Case 2. One vertical move each way follow by two horizontal moves each way
if(col-2 >= 0 && row-1 >= 0)
{
if(thePad[row-1][col-2].getNumber().equals("*") == false &&
thePad[row-1][col-2].getNumber().equals("#") == false)
found.add(thePad[row-1][col-2]);
}
if(col-2 >= 0 && row+1 < thePad.length)
{
if(thePad[row+1][col-2].getNumber().equals("*") == false &&
thePad[row+1][col-2].getNumber().equals("#") == false)
found.add(thePad[row+1][col-2]);
}
if(col+2 < thePad[0].length && row-1 >= 0)
{
if(thePad[row-1][col+2].getNumber().equals("*") == false &&
thePad[row-1][col+2].getNumber().equals("#") == false)
found.add(thePad[row-1][col+2]);
}
if(col+2 < thePad[0].length && row+1 < thePad.length)
{
if(thePad[row+1][col+2].getNumber().equals("*") == false &&
thePad[row+1][col+2].getNumber().equals("#") == false)
found.add(thePad[row+1][col+2]);
}
if(found.size() > 0)
{
this.moves.put(from, found);
this.movesFrom[from.getNumberAsNumber()] = found.size();
}
else
{
this.moves.put(from, null); //for example the Knight cannot move from 5 to anywhere
this.movesFrom[from.getNumberAsNumber()] = 0;
}
}
return this.moves.get(from);
}
#Override
public Integer countAllowedMoves(PadNumber from)
{
int start = from.getNumberAsNumber();
if(movesFrom[start] != -1)
return movesFrom[start];
else
{
movesFrom[start] = allowedMoves(from).size();
}
return movesFrom[start];
}
#Override
public String toString()
{
return this.name;
}
}
PhoneChess entrant class
package PhoneChess;
public final class PhoneChess
{
private ChessPiece thePiece = null;
private PieceFactory factory = null;
public ChessPiece ThePiece()
{
return this.thePiece;
}
public PhoneChess(PadNumber[][] thePad, String piece)
{
if(thePad == null || thePad.length == 0 || thePad[0].length == 0)
throw new IllegalArgumentException("Invalid pad");
if(piece == null)
throw new IllegalArgumentException("Invalid chess piece");
this.factory = new PieceFactory();
this.thePiece = this.factory.getPiece(piece, thePad);
}
public Integer findPossibleDigits(PadNumber start, Integer digits)
{
if(digits <= 0)
throw new IllegalArgumentException("Digits cannot be less than or equal to zero");
return thePiece.findNumbers(start, digits);
}
public boolean isValidMove(PadNumber from, PadNumber to)
{
return this.thePiece.canMove(from, to);
}
}
Driver Code:
public static void main(String[] args) {
PadNumber[][] thePad = new PadNumber[4][3];
thePad[0][0] = new PadNumber("1", new Point(0,0));
thePad[0][1] = new PadNumber("2", new Point(1,0));
thePad[0][2] = new PadNumber("3",new Point(2,0));
thePad[1][0] = new PadNumber("4",new Point(0,1));
thePad[1][1] = new PadNumber("5",new Point(1,1));
thePad[1][2] = new PadNumber("6", new Point(2,1));
thePad[2][0] = new PadNumber("7", new Point(0,2));
thePad[2][1] = new PadNumber("8", new Point(1,2));
thePad[2][2] = new PadNumber("9", new Point(2,2));
thePad[3][0] = new PadNumber("*", new Point(0,3));
thePad[3][1] = new PadNumber("0", new Point(1,3));
thePad[3][2] = new PadNumber("#", new Point(2,3));
PhoneChess phoneChess = new PhoneChess(thePad, "Knight");
System.out.println(phoneChess.findPossibleDigits(thePad[0][1],4));
}
}
This can be done in O(log N). Consider the keypad and the possible moves on it as a graph G(V, E) where vertices are the available digits and edges say which digits can follow which. Now for each output position i we can form a vector Paths(i) containing the number of different paths each vertex can be reached in. Now it's pretty easy to see that for a given position i and digit v, the possible paths that it can be reached through is the sum of the different paths that possible preceding digits could be reached through, or Paths(i)[v] = sum(Paths(i-1)[v2] * (1 if (v,v2) in E else 0) for v2 in V ). Now, this is taking the sum of each position the preceding vector times a corresponding position in a column of the adjacency matrix. So we can simplify this as Paths(i) = Paths(i-1) · A, where A is the adjacency matrix of the graph. Getting rid of the recursion and taking advantage of associativity of matrix multiplication, this becomes Paths(i) = Paths(1) · A^(i-1). We know Paths(1): we have only one path, to the digit 1.
The total number of paths for an n digit number is the sum of the paths for each digit, so the final algorithm becomes: TotalPaths(n) = sum( [1,0,0,0,0,0,0,0,0,0] · A^(n-1) )
The exponentiation can be calculated via squaring in O(log(n)) time, given constant time multiplies, otherwise O(M(n) * log(n)) where M(n) is the complexity of your favorite arbitrary precision multiplication algorithm for n digit numbers.
A simpler answer.
#include<stdio.h>
int a[10] = {2,2,2,2,3,0,3,2,2,2};
int b[10][3] = {{4,6},{6,8},{7,9},{4,8},{0,3,9},{},{1,7,0},{2,6},{1,3},{2,4}};
int count(int curr,int n)
{
int sum = 0;
if(n==10)
return 1;
else
{
int i = 0;
int val = 0;
for(i = 0; i < a[curr]; i++)
{
val = count(b[curr][i],n+1);
sum += val;
}
return sum;
}
}
int main()
{
int n = 1;
int val = count(1,0);
printf("%d\n",val);
}
celebrate!!
Run time constant time solution:
#include <iostream>
constexpr int notValid(int x, int y) {
return !(( 1 == x && 3 == y ) || //zero on bottom.
( 0 <= x && 3 > x && //1-9
0 <= y && 3 > y ));
}
class Knight {
template<unsigned N > constexpr int move(int x, int y) {
return notValid(x,y)? 0 : jump<N-1>(x,y);
}
template<unsigned N> constexpr int jump( int x, int y ) {
return move<N>(x+1, y-2) +
move<N>(x-1, y-2) +
move<N>(x+1, y+2) +
move<N>(x-1, y+2) +
move<N>(x+2, y+1) +
move<N>(x-2, y+1) +
move<N>(x+2, y-1) +
move<N>(x-2, y-1);
}
public:
template<unsigned N> constexpr int count() {
return move<N-1>(0,1) + move<N-1>(0,2) +
move<N-1>(1,0) + move<N-1>(1,1) + move<N-1>(1,2) +
move<N-1>(2,0) + move<N-1>(2,1) + move<N-1>(2,2);
}
};
template<> constexpr int Knight::move<0>(int x, int y) { return notValid(x,y)? 0 : 1; }
template<> constexpr int Knight::count<0>() { return 0; } //terminal cases.
template<> constexpr int Knight::count<1>() { return 8; }
int main(int argc, char* argv[]) {
static_assert( ( 16 == Knight().count<2>() ), "Fail on test with 2 lenght" ); // prof of performance
static_assert( ( 35 == Knight().count<3>() ), "Fail on test with 3 lenght" );
std::cout<< "Number of valid Knight phones numbers:" << Knight().count<10>() << std::endl;
return 0;
}
Method returns list of 10 digit numbers starting with 1. Again the count is 1424.
public ArrayList<String> getList(int digit, int length, String base ){
ArrayList<String> list = new ArrayList<String>();
if(length == 1){
list.add(base);
return list;
}
ArrayList<String> temp;
for(int i : b[digit]){
String newBase = base +i;
list.addAll(getList(i, length -1, newBase ));
}
return list;
}
I'm not sure if I missed something, but reading the description of the problem I came to this solution. It has O(n) time complexity and O(1) space complexity.
I figured that number 1 is at a corner, right? In each corner you can either move to one of the sides (4 from 9 and 3, or 6 from 7 an 1) or one of the 'vertical' sides (8 from 3 and 1, or 2 from 9 and 7). So, corners add two moves: a side move and a 'vertical' move. This is true for all four corners (1,3,9,7).
From each side, you can either move to two corners (7 and 1 from 6, 9 and 3 from 4) or you can reach the bottom key (0). That's three moves. Two corners and one bottom.
On the bottom key (0), you can move to both sides (4 and 6). So, in each step, you check out all possible endings for the path of the previous length (that is, how many ended on a corner, a side, a 'vertical' or the 'bottom' zero key) and then generate new ending counts according to the generation rules stated before.
Each corner ending adds a side and a vertical.
Each side ending adds 2 corners and a bottom.
Each vertical ending adds 2 corners.
Each bottom ending adds 2 sides.
If you start from the '1' key, you start with one possible corner solution, in each step you count the number of corner, side, vertical and bottom endings of the previous step and then apply the rules to generate the next count.
In plain javascript code.
function paths(n) {
//Index to 0
var corners = 1;
var verticals = 0;
var bottom = 0;
var sides = 0;
if (n <= 0) {
//No moves possible for paths without length
return 0;
}
for (var i = 1; i < n; i++) {
var previousCorners = corners;
var previousVerticals = verticals;
var previousBottom = bottom;
var previousSides = sides;
sides = 1 * previousCorners + 2 * previousBottom;
verticals = 1 * previousCorners;
bottom = 1 * previousSides;
corners = 2 * previousSides + 2 * previousVerticals;
//console.log("Moves: %d, Length: %d, Sides: %d, Verticals: %d, Bottom: %d, Corners: %d, Total: %d", i, i + 1, sides, verticals, bottom, corners, sides+verticals+bottom+corners);
}
return sides + verticals + bottom + corners;
}
for (var i = 0; i <= 10; i++) {
console.log(paths(i));
}
This problem may be also modelled as a Constraint satisfaction problem (aka CSP for short).
I suggest to use the Minion solver (fast and scalable) that you can find here.
Modelling maybe tedious and time consumming (steep learning curve).
Instead of using Minion language input, my advice is to formulate the model with solver independent modelling language such as ESSENCE and find a converter accordingly.
//Both the iterative and recursive with memorize shows count as 1424 for 10 digit numbers starting with 1.
int[][] b = {{4,6},{6,8},{7,9},{4,8},{0,3,9},{},{1,7,0},{2,6},{1,3},{2,4}};
public int countIterative(int digit, int length) {
int[][] matrix = new int[length][10];
for(int dig =0; dig <=9; dig++){
matrix[0][dig] = 1;
}
for(int len = 1; len < length; len++){
for(int dig =0; dig <=9; dig++){
int sum = 0;
for(int i : b[dig]){
sum += matrix[len-1][i];
}
matrix[len][dig] = sum;
}
}
return matrix[length-1][digit];
}
public int count(int index, int length, int[][] matrix ){
int sum = 0;
if(matrix[length-1][index] > 0){
System.out.println("getting value from memoize:"+index + "length:"+ length);
return matrix[length-1][index];
}
if( length == 1){
return 1;
}
for(int i: b[index] ) {
sum += count(i, length-1,matrix);
}
matrix[length-1][index] = sum;
return sum;
}
Recursive memoization approach:
vector<vector<int>> lupt = { {4, 6}, {6, 8}, {9, 7}, {4, 8}, {3, 9, 0},
{}, {1,7,0}, {6, 2}, {1, 3}, {2, 4} };
int numPhoneNumbersUtil(int startdigit, int& phonenumberlength, int currCount, map< pair<int,int>,int>& memT)
{
int noOfCombs = 0;
vector<int> enddigits;
auto it = memT.find(make_pair(startdigit,currCount));
if(it != memT.end())
{
noOfCombs = it->second;
return noOfCombs;
}
if(currCount == phonenumberlength)
{
return 1;
}
enddigits = lupt[startdigit];
for(auto it : enddigits)
{
noOfCombs += numPhoneNumbersUtil(it, phonenumberlength, currCount + 1, memT);
}
memT.insert(make_pair(make_pair(startdigit,currCount), noOfCombs));
return memT[make_pair(startdigit,currCount)];
}
int numPhoneNumbers(int startdigit, int phonenumberlength)
{
map<pair<int,int>,int> memT;
int currentCount = 1; //the first digit has already been added
return numPhoneNumbersUtil(startdigit, phonenumberlength, currentCount, memT);
}
I implemented both brute force and dynamic programming models
import queue
def chess_numbers_bf(start, length):
if length <= 0:
return 0
phone = [[7, 5], [6, 8], [3, 7], [9, 2, 8], [], [6, 9, 0], [1, 5], [0, 2], [3, 1], [5, 3]]
total = 0
q = queue.Queue()
q.put((start, 1))
while not q.empty():
front = q.get()
val = front[0]
len_ = front[1]
if len_ < length:
for elm in phone[val]:
q.put((elm, len_ + 1))
else:
total += 1
return total
def chess_numbers_dp(start, length):
if length <= 0:
return 0
phone = [[7, 5], [6, 8], [3, 7], [9, 2, 8], [], [6, 9, 0], [1, 5], [0, 2], [3, 1], [5, 3]]
memory = {}
def __chess_numbers_dp(s, l):
if (s, l) in memory:
return memory[(s, l)]
elif l == length - 1:
memory[(s, l)] = 1
return 1
else:
total_n_ways = 0
for number in phone[s]:
total_n_ways += __chess_numbers_dp(number, l+1)
memory[(s, l)] = total_n_ways
return total_n_ways
return __chess_numbers_dp(start, 0)
# bf
for i in range(0, 10):
print(i, chess_numbers_bf(3, i))
print('\n')
for i in range(0, 10):
print(i, chess_numbers_bf(9, i))
print('\n')
# dp
for i in range(0, 10):
print(i, chess_numbers_dp(3, i))
print('\n')
# dp
for i in range(0, 10):
print(i, chess_numbers_dp(9, i))
print('\n')
Recursive function in Java:
public static int countPhoneNumbers (int n, int r, int c) {
if (outOfBounds(r,c)) {
return 0;
} else {
char button = buttons[r][c];
if (button == '.') {
// visited
return 0;
} else {
buttons[r][c] = '.'; // record this position so don't revisit.
// Count all possible phone numbers with one less digit starting
int result=0;
result = countPhoneNumbers(n-1,r-2,c-1)
+ countPhoneNumbers(n-1,r-2,c+1)
+ countPhoneNumbers(n-1,r+2,c-1)
+ countPhoneNumbers(n-1,r+2,c+1)
+ countPhoneNumbers(n-1,r-1,c-2)
+ countPhoneNumbers(n-1,r-1,c+2)
+ countPhoneNumbers(n-1,r+1,c-2)
+ countPhoneNumbers(n-1,r+1,c+2);
}
buttons[r][c] = button; // Remove record from position.
return result;
}
}
}
Design an algorithm to find all pairs of integers within an array which sum to a specified value.
I have tried this problem using a hash table to store entries for the sum of array elements, but it is not an efficient solution.
What algorithm can I use to solve this efficiently?
I don't see why the hash table approach is inefficient, at least in algorithm analysis terms - in memory locality terms admittedly, it can be quite bad. Anyway, scan the array twice...
First scan - put all the array elements in the hash table - O(n) total. Individual inserts are only amortized O(1), but a neat thing about how amortized analysis works means the O(n) is absolute - not amortized.
Second scan - check for (sum - current) in the hash table - O(n) total.
This beats the O(n log n) sort-and-search methods, at least in theory.
Then, note that you can combine the two scans into one. You can spot a pair as soon as you encounter the second of that pair during the first scan. In pseudocode...
for i in array.range
hashset.insert (array [i])
diff = sum - array [i]
if hashset.includes (diff)
output diff, array [i]
If you need positions of the items, use a hashmap and store item positions in it. If you need to cope with duplicates, you might need to store counts in a hashmap. For positions and duplicates, you might need a hashmap of start pointers for linked lists of positions.
This makes assumptions about the hash table implementation, but fairly safe ones given the usual implementations in most current languages and libraries.
BTW - combining the scans shouldn't be seen as an optimisation. The iteration overhead should be insignificant. Memory locality issues could make a single pass slightly more efficient for very large arrays, but the real memory locality issues will be in the hashtable lookups anyway.
IMO the only real reason to combine the scans is because you only want each pair reported once - handling that in a two-scan approach would be a bit more hassle.
If the array is sorted:
Let i = 0, j = end of array, sum = the value you are looking for,
then do:
If i+j = sum, then output (i,j).
If i+j < sum, then move i to the right one position.
If i+j > sum, then move j to the left one position.
Time complexity: O(n). Space complexity: O(1).
If the array is not sorted, there are a few ways to approach this problem:
Sort the array and then use the above approach.
HashMap:
Store all elements in a HashMap.
a+b=sum, so b=sum-a. For each element a of the array, look up b from the HashMap.
HashMap lookup takes amortized O(1).
Time complexity: O(n). Space complexity: O(n).
BitMap:
Iterate through the input to create a bitmap where each bit corresponds to an element value. Say the input is {2,5,8}, then we toggle the bitmap array's indices 2, 5 and 8 from binary 0 to 1. This takes O(1) per element, thus O(n) in total.
Go through the input again. We know b=sum-a, so for every element a in the input, look up its b, which can be done in O(1) since it's a bitmap index. This also takes O(n) in total.
Time complexity: O(n) + O(n) = O(n). Space complexity: bitmap space = O(n).
You don't even need to store all the elements in hashmap, and then scan. You can scan during the first iteration itself.
void foo(int[] A, int sum) {
HashSet<Integer> set = new HashSet<Integer>();
for (int e : A) {
if (set.contains(sum-e)) {
System.out.println(e + "," + (sum-e));
// deal with the duplicated case
set.remove(sum-e);
} else {
set.add(e);
}
}
}
How about sorting the array, then marching in from both ends?
Assume required sum = R
sort the array
for each number in the array A(n), do a binary search to find the number A(x) such that A(n) + A(x) = R
If you don't mind spending O(M) in space, where M is the sum you are seeking, you can do this in O(N + M) time. Set sums[i] = 1 when i <= M on a single pass over N, then check (sums[i] && sums[M-i]) on a single pass over M/2.
#include <iostream>
using namespace std;
#define MAX 15
int main()
{
int array[MAX] = {-12,-6,-4,-2,0,1,2,4,6,7,8,12,13,20,24};
const int find_sum = 0;
int max_index = MAX - 1;
int min_index = 0;
while(min_index < max_index)
{
if(array[min_index] + array[max_index-min_index] == find_sum)
{
cout << array[min_index] << " & " << array[max_index-min_index] << " Matched" << endl;
return 0;
}
if(array[min_index]+array[max_index-min_index] < find_sum)
{
min_index++;
//max_index++;
}
if(array[min_index]+array[max_index-min_index] > find_sum)
{
max_index--;
}
}
cout << "NO MATCH" << endl;
return 0;
}
//-12 & 12 matched
Implemented in Python 2.7:
import itertools
list = [1, 1, 2, 3, 4, 5,]
uniquelist = set(list)
targetsum = 5
for n in itertools.combinations(uniquelist, 2):
if n[0] + n[1] == targetsum:
print str(n[0]) + " + " + str(n[1])
Output:
1 + 4
2 + 3
We can use C++ STL map to solve this
void subsetSum(int arr[], int n, int sum)
{
map<int, int>Map;
for(int i=0; i<n; i++)
{
Map[arr[i]]++;
if(Map.count(sum-arr[i]))
{
cout<<arr[i]<<" "<<sum-arr[i]<<"\n";
}
}
}
Here is a solution witch takes into account duplicate entries. It is written in javascript and assumes array is sorted. The solution runs in O(n) time and does not use any extra memory aside from variable.
var count_pairs = function(_arr,x) {
if(!x) x = 0;
var pairs = 0;
var i = 0;
var k = _arr.length-1;
if((k+1)<2) return pairs;
var halfX = x/2;
while(i<k) {
var curK = _arr[k];
var curI = _arr[i];
var pairsThisLoop = 0;
if(curK+curI==x) {
// if midpoint and equal find combinations
if(curK==curI) {
var comb = 1;
while(--k>=i) pairs+=(comb++);
break;
}
// count pair and k duplicates
pairsThisLoop++;
while(_arr[--k]==curK) pairsThisLoop++;
// add k side pairs to running total for every i side pair found
pairs+=pairsThisLoop;
while(_arr[++i]==curI) pairs+=pairsThisLoop;
} else {
// if we are at a mid point
if(curK==curI) break;
var distK = Math.abs(halfX-curK);
var distI = Math.abs(halfX-curI);
if(distI > distK) while(_arr[++i]==curI);
else while(_arr[--k]==curK);
}
}
return pairs;
}
So here it is for everyone.
Start at both side of the array and slowly work your way inwards making sure to count duplicates if they exist.
It only counts pairs but can be reworked to
find the pairs
find pairs < x
find pairs > x
Enjoy and don't forget to bump it if its the best answer!!
A solution that takes into account duplicates and uses every number only one time:
void printPairs(int[] numbers, int S) {
// toMap(numbers) converts the numbers array to a map, where
// Key is a number from the original array
// Value is a count of occurrences of this number in the array
Map<Integer, Integer> numbersMap = toMap(numbers);
for (Entry<Integer, Integer> entry : numbersMap.entrySet()) {
if (entry.getValue().equals(0)) {
continue;
}
int number = entry.getKey();
int complement = S - number;
if (numbersMap.containsKey(complement) && numbersMap.get(complement) > 0) {
for (int j = 0; j < min(numbersMap.get(number),
numbersMap.get(complement)); j++) {
if (number.equals(complement) && numbersMap.get(number) < 2) {
break;
}
System.out.println(number, complement);
numbersMap.put(number, numbersMap.get(number) - 1);
numbersMap.put(complement, numbersMap.get(complement) - 1);
}
}
}
}
Hashtable solution, in Ruby (quite straightforward to understand):
value = 100
pairs = [1,99,5,95]
hash_of_pairs = {}
pairs.map! do |pair|
# Adds to hashtable the pair
hash_of_pairs[pair] = pair
# Finds the value the pair needs
new_pair = hash_of_pairs[value - pair]
# Returns the pair whenever the pair exists, or nil
[new_pair, pair] if !new_pair.nil?
end.compact! # Cleans up the array, removing all nil values
print pairs # [[1,99], [5,95]]
#Test
public void hasPairWithSum() {
assertFalse(hasPairWithSum_Ordered_Logarithmic(new int[] { 1, 2, 3, 9 }, 8));
assertTrue(hasPairWithSum_Ordered_Logarithmic(new int[] { 1, 2, 4, 4 }, 8));
assertFalse(hasPairWithSum_Ordered_Linear(new int[] { 1, 2, 3, 9 }, 8));
assertTrue(hasPairWithSum_Ordered_Linear(new int[] { 1, 2, 4, 4 }, 8));
assertFalse(hasPairWithSum_Unsorted_Linear(new int[] { 9, 1, 3, 2 }, 8));
assertTrue(hasPairWithSum_Unsorted_Linear(new int[] { 4, 2, 1, 4 }, 8));
assertFalse(hasPairWithSum_Unsorted_Quadratic(new int[] { 9, 1, 3, 2 }, 8));
assertTrue(hasPairWithSum_Unsorted_Quadratic(new int[] { 4, 2, 1, 4 }, 8));
}
private boolean hasPairWithSum_Ordered_Logarithmic(int[] data, int sum) {
for (int i = 0; i < data.length; i++) {
int current = data[i];
int complement = sum - current;
int foundIndex = Arrays.binarySearch(data, complement);
if (foundIndex >= 0 && foundIndex != i) {
return true;
}
}
return false;
}
private boolean hasPairWithSum_Ordered_Linear(int[] data, int sum) {
int low = 0;
int high = data.length - 1;
while (low < high) {
int total = data[low] + data[high];
if (total == sum) {
return true;
} else if (total < sum) {
low++;
} else {
high--;
}
}
return false;
}
private boolean hasPairWithSum_Unsorted_Linear(int[] data, int sum) {
Set<Integer> complements = Sets.newHashSet();
for (int current : data) {
if (complements.contains(current)) {
return true;
}
complements.add(sum - current);
}
return false;
}
private boolean hasPairWithSum_Unsorted_Quadratic(int[] data, int sum) {
for (int i = 0; i < data.length; i++) {
int current = data[i];
int complement = sum - current;
for (int j = 0; j < data.length; j++) {
if (data[j] == complement && i != j) {
return true;
}
}
}
return false;
}
Creating a hash table and then looking for value in it.
function sum_exist(num : number, arr : any[]) {
var number_seen = {};
for(let item of arr){
if(num - item in number_seen){
return true
}
number_seen[item] = 0;
}
return false;
}
Test case (using Jest)
test('Given a list of numbers, return whether any two sums equal to the set number.', () => {
expect(sum_exist(17 , [10, 15, 3, 7])).toEqual(true);
});
test('Given a list of numbers, return whether any two sums equal to the set number.', () => {
expect(sum_exist(16 , [10, 15, 3, 7])).toEqual(false);
});
#python 3.x
def sum_pairs(list_data, number):
list_data.sort()
left = 0
right = len(list_data)-1
pairs = []
while left < right:
if list_data[left]+list_data[right] == number:
find_pairs = [list_data[left], list_data[right]]
pairs.append(find_pairs)
right = right-1
elif list_data[left]+list_data[right] < number:
left = left+1
else:
right = right-1
return pairs