Run length encoding using O(1) space - algorithm

Can we do the run-length encoding in place(assuming the input array is very large)
We can do for the cases such as AAAABBBBCCCCDDDD
A4B4C4D4
But how to do it for the case such as ABCDEFG?
where the output would be A1B1C1D1E1F1G1

My first thought was to start encoding from the end, so we will use the free space (if any), after that we can shift the encoded array to the start. A problem with this approach is that it will not work for AAAAB, because there is no free space (it's not needed for A4B1) and we will try to write AAAAB1 on the first iteration.
Below is corrected solution:
(let's assume the sequence is AAABBC)
encode all groups with two or more elements and leave the rest unchanged (this will not increase length of the array) -> A3_B2C
shift everything right eliminating empty spaces after first step -> _A3B2C
encode the array from the start (reusing the already encoded groups of course) -> A3B2C1
Every step is O(n) and as far as I can see only constant additional memory is needed.
Limitations:
Digits are not supported, but that anyway would create problems with decoding as Petar Petrov mentioned.
We need some kind of "empty" character, but this can be worked around by adding zeros: A03 instead of A3_

C++ solution O(n) time O(1) space
string runLengthEncode(string str)
{
int len = str.length();
int j=0,k=0,cnt=0;
for(int i=0;i<len;i++)
{
j=i;
cnt=1;
while(i<len-1 && str[i]==str[i+1])
{
i++;
cnt++;
}
str[k++]=str[j];
string temp =to_string(cnt);
for(auto m:temp)
str[k++] = m;
}
str.resize(k);
return str;
}

null is used to indicate which items are empty and will be ignored for encoding. Also you can't encode digits (AAA2222 => A324 => 324 times 'A', but it's A3;24). Your question opens more questions.
Here's a "solution" in C#
public static void Encode(string[] input)
{
var writeIndex = 0;
var i = 0;
while (i < input.Length)
{
var symbol = input[i];
if (symbol == null)
{
break;
}
var nextIndex = i + 1;
var offset = 0;
var count = CountSymbol(input, symbol, nextIndex) + 1;
if (count == 1)
{
ShiftRight(input, nextIndex);
offset++;
}
input[writeIndex++] = symbol;
input[writeIndex++] = count.ToString();
i += count + offset;
}
Array.Clear(input, writeIndex, input.Length - writeIndex);
}
private static void ShiftRight(string[] input, int nextIndex)
{
var count = CountSymbol(input, null, nextIndex, (a, b) => a != b);
Array.Copy(input, nextIndex, input, nextIndex + 1, count);
}
private static int CountSymbol(string[] input, string symbol, int nextIndex)
{
return CountSymbol(input, symbol, nextIndex, (a, b) => a == b);
}
private static int CountSymbol(string[] input, string symbol, int nextIndex, Func<string, string, bool> cmp)
{
var count = 0;
var i = nextIndex;
while (i < input.Length && cmp(input[i], symbol))
{
count++;
i++;
}
return count;
}

The 1st solution does not take care of single characters. For example - 'Hi!' will not work. I've used totally different approach, used 'insert()' functions to add inplace. This take care of everything, whether the total 'same' character is > 10 or >100 or = 1.
#include<iostream>
#include<algorithm>
using namespace std;
int main(){
string name = "Hello Buddy!!";
int start = 0;
char distinct = name[0];
for(int i=1;i<name.length()+1;){
if(distinct!=name[i]){
string s = to_string(i-start);
name.insert(start+1,s);
name.erase(name.begin() + start + 1 + s.length(),name.begin() + s.length() + i);
i=start+s.length()+1;
start=i;
distinct=name[start];
continue;
}
i++;
}
cout<<name;
}
Suggest me if you find anything incorrect.

O(n), in-place RLE, I couldn't think better than this. It will not place a number, if chars occurence is just 1. Will also place a9a2, if the character comes 11 times.
void RLE(char *str) {
int len = strlen(str);
int count = 1, j = 0;
for (int i = 0; i < len; i++){
if (str[i] == str[i + 1])
count++;
else {
int times = count / 9;
int rem = count % 9;
for (int k = 0; k < times; k++) {
str[j++] = str[i];
_itoa(9, &str[j++], 10);
count = count - 9;
}
if (count > 1) {
str[j++] = str[i];
_itoa(rem, &str[j++], 10);
count = 1;
}
else
str[j++] = str[i];
}
}
cout << str;
}
I/P => aaabcdeeeefghijklaaaaa
O/P => a3bcde4fghijkla5

Inplace solution using c++ ( assumes length of encoding string is not more than actual string length):
#include <bits/stdc++.h>
#include<stdlib.h>
using namespace std;
void replacePattern(char *str)
{
int len = strlen(str);
if (len == 0)
return;
int i = 1, j = 1;
int count;
// for each character
while (str[j])
{
count = 1;
while (str[j] == str[j-1])
{
j = j + 1;
count++;
}
while(count > 0) {
int rem = count%10;
str[i++] = to_string(rem)[0];
count = count/10;
}
// copy character at current position j
// to position i and increment i and j
if (str[j])
str[i++] = str[j++];
}
// add a null character to terminate string
if(str[len-1] != str[len-2]) {
str[i] = '1';
i++;
}
str[i] = '\0';
}
// Driver code
int main()
{
char str[] = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabccccc";
replacePattern(str);
cout << str;
return 0;
}

Related

How to find the longest palindromic subsequence (not its length)

I want to find out the longest palindromic subsequence in a string. Everywhere I find the algorithm to find out the length of the subsequence, with the statement that the algo can be extended to return the subsequence as well, but nowhere have I found how. Can anybody explain how can I get the sequence as well?
Since you mentioned the link Longest Palindromic Subsequence in geeksforgeeks, I modified the solution to output the result. I think we need one auxiliary two-dimensions array to stored how the palindromic subsequence comes from, so we can get the result through the auxiliary array at last. You can see the logic in the below code:
#include<iostream>
#include<cstring>
using namespace std;
// A utility function to get max of two integers
int max (int x, int y) { return (x > y)? x : y; }
// Returns the length of the longest palindromic subsequence in seq
int lps(char *str,char *result)
{
int n = strlen(str);
int i, j, cl;
int L[n][n]; // Create a table to store results of subproblems
int Way[n][n];// Store how the palindrome come from.
// Strings of length 1 are palindrome of lentgh 1
for (i = 0; i < n; i++)
{
L[i][i] = 1;
Way[i][i]=0;
}
// Build the table. Note that the lower diagonal values of table are
// useless and not filled in the process. The values are filled in a
// manner similar to Matrix Chain Multiplication DP solution (See
// http://www.geeksforgeeks.org/archives/15553). cl is length of
// substring
for (cl=2; cl<=n; cl++)
{
for (i=0; i<n-cl+1; i++)
{
j = i+cl-1;
if (str[i] == str[j] && cl == 2)
{
L[i][j] = 2;
Way[i][j]=0;
}
else if (str[i] == str[j])
{
L[i][j] = L[i+1][j-1] + 2;
Way[i][j]=0;
}
else
{
if(L[i][j-1]>L[i+1][j])
{
L[i][j]=L[i][j-1];
Way[i][j]=1;
}
else
{
L[i][j]=L[i+1][j];
Way[i][j]=2;
}
}
}
}
int index=0;
int s=0,e=n-1;
while(s<=e)
{
if(Way[s][e]==0)
{
result[index++]=str[s];
s+=1;
e-=1;
}
else if(Way[s][e]==1)e-=1;
else if(Way[s][e]==2)s+=1;
}
int endIndex=(L[0][n-1]%2)?index-1:index;
for(int k=0;k<endIndex;++k)result[L[0][n-1]-1-k]=result[k];
result[index+endIndex]='\0';
return L[0][n-1];
}
/* Driver program to test above functions */
int main()
{
char seq[] = "GEEKSFORGEEKS";
char result[20];
cout<<"The lnegth of the LPS is "<<lps(seq,result)<<":"<<endl;
cout<<result<<endl;
getchar();
return 0;
}
Hope it helps!
Below is the explanation:
Let X[0..n-1] be the input sequence of length n and L(0, n-1) be the length of the longest palindromic sub-sequence of X[0..n-1].
There are 5 cases in total.
1)Every single character is a palindrome of length 1.
L(i, i) = 1 for all indexes i in given sequence.
2)There are only 2 characters and both are same.
L(i, j) = 2.
3)There are more than two characters, and first and last characters are the same
L(i, j) = L(i + 1, j - 1) + 2
4)First and last characters are not the same and L(i + 1, j)< L(i, j - 1). L(i, j) = L(i, j - 1).
5)First and last characters are not the same and L(i + 1, j)>=L(i, j - 1). L(i, j) = L(i + 1, j).
We can observed that only in case 1,2 and 3, the character X[i] is included in the final result. We used a two-dimension auxiliary array to represent how the palindromic sub-sequence comes from.
value 0 for case 1,2,3; value 1 for case 4; value 2 for case 5.
With the auxiliary array Way. We can get the result as below:
Let two variables s=0 and e=n-1.
While s<=e
Loop
If Way[s][e]==0 Then X[s] should be included in the result and we store it in our result array.
Else if Way[s][e]==1 Then X[s] should not be include in the result and update e=e-1 (because our result comes from case 4).
Else if Way[s][e]==2 Then X[s] should not be include in the result and update s=s+1 (because our result comes from case 5).
The loop should be terminated when s>e. In that way we can get half part of the result and we can easily extend it to get the whole result.
Keep a backpointer as well as a value in your dynamic programming table for each cell. Then follow the traceback from the end of the table to reconstruct the subsequence.
The trick works like this:
save the reverse of your string in a temporary buffer
use the Longest Common Substring Algorithm to find the LCS.
Note that by definition of your second string, the LCS of both strings is the longest palindrome as well.
The below solution is pretty straight forward and requires no additional use of any other matrix.
Here we are just tracing back our path to generate the longest palindromic sub sequence.
int lps(char *str)
{
int n = strlen(str);
int i, j, cl;
int L[n][n];
for (i = 0; i < n; i++)
L[i][i] = 1;
for (cl=2; cl<=n; cl++)
{
for (i=0; i<n-cl+1; i++)
{
j = i+cl-1;
if (str[i] == str[j] && cl == 2)
L[i][j] = 2;
else if (str[i] == str[j])
L[i][j] = L[i+1][j-1] + 2;
else
L[i][j] = max(L[i][j-1], L[i+1][j]);
}
}
cout<<L[0][n-1]<<endl;
i = 0,j = n-1;
vector<char> result;
while(i<=j)
{
if(str[i]==str[j])
{
result.push_back(str[i]);
i++,j--;
}
else if(L[i][j-1]>L[i+1][j])
{
j--;
}
else
{
i++;
}
}
if(L[0][n-1]%2==0)
{
for(auto i = result.begin();i!=result.end();i++)
cout<<*i;
reverse(result.begin(),result.end());
for(auto i = result.begin();i!=result.end();i++)
cout<<*i;
}
else
{
for(auto i = result.begin();i!=result.end();i++)
cout<<*i;
reverse(result.begin(),result.end());
result.erase(result.begin());
for(auto i = result.begin();i!=result.end();i++)
cout<<*i;
}
}
A Java approach .Building the string from the LPS matrix generated during calculation of length of the palindromic sub-sequence.
private static void LongestPalindromicSubsequence(char a[])
{
int len=a.length;
int lps[][]=new int[len][len];
int l=1;
for(int i=0;i<len;i++)
{
lps[i][i]=1; //---------> Length of subsequence of string of length=1 is 1 <------------
}
for(int subsLen=2;subsLen<=len;subsLen++)
{
for( int i=0;i<(len-subsLen+1);i++)
{
int j=i+subsLen-1;
if(a[i]==a[j]&&subsLen==2)
{
lps[i][j]=2;
}
else
{
if(a[i]!=a[j])
{
lps[i][j]=Math.max(lps[i+1][j],lps[i][j-1]);
}
else
{
lps[i][j]=2+lps[i+1][j-1];
}
}
}
}
// System.out.println("Length of longest Palindromic subsequence: "+lps[0][len-1]);
printLongestPalindromicsubsequence(a,lps);
}
private static void printLongestPalindromicsubsequence(char[] a, int[][] lps)
{
int len=a.length;
int end=lps[0][len-1];
char str[]=new char[end+1];
str[end--]='\0';
int i=0,j=len-1;
while(end>=0&&i<=j)
{
if(a[i]==a[j])
{
str[end--]=a[i];
i++;
j--;
}
else
{
if(lps[i+1][j]>lps[i][j-1])
{
i++;
}
else
{
j--;
}
}
}
if(lps[0][len-1]%2!=0)
{
i=0;
int mid=lps[0][len-1]/2;
j=str.length-2;
while(j>mid)
{
str[i++]=str[j--];
}
}
else
{
i=0;
int mid=lps[0][len-1]/2;
j=str.length-2;
while(j>=mid)
{
str[i++]=str[j--];
}
}
for(i=0;i<str.length;i++)
System.out.print(str[i]);
}
A sample java implementation. Feel free to be brutal with your review comments.
public class LongestPalindrome {
public static void main(String... arguments) {
final String content = "GOBANANAS";
String palindrome = getLongestPalindrome(content);
System.out.println(palindrome);
}
private static String getLongestPalindrome(final String content) {
String lastPalindrome = "";
for (int lastIndex = content.length(); lastIndex >= 0; lastIndex--) {
for (int i = 0; i <= lastIndex; i++) {
String part = content.substring(i, lastIndex);
if (part.length() > lastPalindrome.length() && part.length() > 1) {
boolean isPalindrome = isPalindrome(part);
if (isPalindrome) {
lastPalindrome = part;
System.out.println(String.format("%s : %s", part, isPalindrome));
}
}
}
}
return lastPalindrome;
}
private static boolean isPalindrome(String string) {
String reverse = (new StringBuilder(string)).reverse().toString();
return (string.equals(reverse));
}
}

Find a pair of elements from an array whose sum equals a given number

Given array of n integers and given a number X, find all the unique pairs of elements (a,b), whose summation is equal to X.
The following is my solution, it is O(nLog(n)+n), but I am not sure whether or not it is optimal.
int main(void)
{
int arr [10] = {1,2,3,4,5,6,7,8,9,0};
findpair(arr, 10, 7);
}
void findpair(int arr[], int len, int sum)
{
std::sort(arr, arr+len);
int i = 0;
int j = len -1;
while( i < j){
while((arr[i] + arr[j]) <= sum && i < j)
{
if((arr[i] + arr[j]) == sum)
cout << "(" << arr[i] << "," << arr[j] << ")" << endl;
i++;
}
j--;
while((arr[i] + arr[j]) >= sum && i < j)
{
if((arr[i] + arr[j]) == sum)
cout << "(" << arr[i] << "," << arr[j] << ")" << endl;
j--;
}
}
}
There are 3 approaches to this solution:
Let the sum be T and n be the size of array
Approach 1:
The naive way to do this would be to check all combinations (n choose 2). This exhaustive search is O(n2).
Approach 2:
A better way would be to sort the array. This takes O(n log n)
Then for each x in array A,
use binary search to look for T-x. This will take O(nlogn).
So, overall search is O(n log n)
Approach 3 :
The best way
would be to insert every element into a hash table (without sorting). This takes O(n) as constant time insertion.
Then for every x,
we can just look up its complement, T-x, which is O(1).
Overall the run time of this approach is O(n).
You can refer more here.Thanks.
# Let arr be the given array.
# And K be the give sum
for i=0 to arr.length - 1 do
# key is the element and value is its index.
hash(arr[i]) = i
end-for
for i=0 to arr.length - 1 do
# if K-th element exists and it's different then we found a pair
if hash(K - arr[i]) != i
print "pair i , hash(K - arr[i]) has sum K"
end-if
end-for
Implementation in Java : Using codaddict's algorithm (Maybe slightly different)
import java.util.HashMap;
public class ArrayPairSum {
public static void main(String[] args) {
int []a = {2,45,7,3,5,1,8,9};
printSumPairs(a,10);
}
public static void printSumPairs(int []input, int k){
Map<Integer, Integer> pairs = new HashMap<Integer, Integer>();
for(int i=0;i<input.length;i++){
if(pairs.containsKey(input[i]))
System.out.println(input[i] +", "+ pairs.get(input[i]));
else
pairs.put(k-input[i], input[i]);
}
}
}
For input = {2,45,7,3,5,1,8,9} and if Sum is 10
Output pairs:
3,7
8,2
9,1
Some notes about the solution :
We iterate only once through the array --> O(n) time
Insertion and lookup time in Hash is O(1).
Overall time is O(n), although it uses extra space in terms of hash.
Solution in java. You can add all the String elements to an ArrayList of strings and return the list. Here I am just printing it out.
void numberPairsForSum(int[] array, int sum) {
HashSet<Integer> set = new HashSet<Integer>();
for (int num : array) {
if (set.contains(sum - num)) {
String s = num + ", " + (sum - num) + " add up to " + sum;
System.out.println(s);
}
set.add(num);
}
}
Python Implementation:
import itertools
list = [1, 1, 2, 3, 4, 5,]
uniquelist = set(list)
targetsum = 5
for n in itertools.combinations(uniquelist, 2):
if n[0] + n[1] == targetsum:
print str(n[0]) + " + " + str(n[1])
Output:
1 + 4
2 + 3
C++11, run time complexity O(n):
#include <vector>
#include <unordered_map>
#include <utility>
std::vector<std::pair<int, int>> FindPairsForSum(
const std::vector<int>& data, const int& sum)
{
std::unordered_map<int, size_t> umap;
std::vector<std::pair<int, int>> result;
for (size_t i = 0; i < data.size(); ++i)
{
if (0 < umap.count(sum - data[i]))
{
size_t j = umap[sum - data[i]];
result.push_back({data[i], data[j]});
}
else
{
umap[data[i]] = i;
}
}
return result;
}
Here is a solution witch takes into account duplicate entries. It is written in javascript and assumes array is sorted. The solution runs in O(n) time and does not use any extra memory aside from variable.
var count_pairs = function(_arr,x) {
if(!x) x = 0;
var pairs = 0;
var i = 0;
var k = _arr.length-1;
if((k+1)<2) return pairs;
var halfX = x/2;
while(i<k) {
var curK = _arr[k];
var curI = _arr[i];
var pairsThisLoop = 0;
if(curK+curI==x) {
// if midpoint and equal find combinations
if(curK==curI) {
var comb = 1;
while(--k>=i) pairs+=(comb++);
break;
}
// count pair and k duplicates
pairsThisLoop++;
while(_arr[--k]==curK) pairsThisLoop++;
// add k side pairs to running total for every i side pair found
pairs+=pairsThisLoop;
while(_arr[++i]==curI) pairs+=pairsThisLoop;
} else {
// if we are at a mid point
if(curK==curI) break;
var distK = Math.abs(halfX-curK);
var distI = Math.abs(halfX-curI);
if(distI > distK) while(_arr[++i]==curI);
else while(_arr[--k]==curK);
}
}
return pairs;
}
I solved this during an interview for a large corporation. They took it but not me.
So here it is for everyone.
Start at both side of the array and slowly work your way inwards making sure to count duplicates if they exist.
It only counts pairs but can be reworked to
find the pairs
find pairs < x
find pairs > x
Enjoy!
O(n)
def find_pairs(L,sum):
s = set(L)
edgeCase = sum/2
if L.count(edgeCase) ==2:
print edgeCase, edgeCase
s.remove(edgeCase)
for i in s:
diff = sum-i
if diff in s:
print i, diff
L = [2,45,7,3,5,1,8,9]
sum = 10
find_pairs(L,sum)
Methodology: a + b = c, so instead of looking for (a,b) we look for a = c -
b
Implementation in Java : Using codaddict's algorithm:
import java.util.Hashtable;
public class Range {
public static void main(String[] args) {
// TODO Auto-generated method stub
Hashtable mapping = new Hashtable();
int a[]= {80,79,82,81,84,83,85};
int k = 160;
for (int i=0; i < a.length; i++){
mapping.put(a[i], i);
}
for (int i=0; i < a.length; i++){
if (mapping.containsKey(k - a[i]) && (Integer)mapping.get(k-a[i]) != i){
System.out.println(k-a[i]+", "+ a[i]);
}
}
}
}
Output:
81, 79
79, 81
If you want duplicate pairs (eg: 80,80) also then just remove && (Integer)mapping.get(k-a[i]) != i from the if condition and you are good to go.
Just attended this question on HackerRank and here's my 'Objective C' Solution:
-(NSNumber*)sum:(NSArray*) a andK:(NSNumber*)k {
NSMutableDictionary *dict = [NSMutableDictionary dictionary];
long long count = 0;
for(long i=0;i<a.count;i++){
if(dict[a[i]]) {
count++;
NSLog(#"a[i]: %#, dict[array[i]]: %#", a[i], dict[a[i]]);
}
else{
NSNumber *calcNum = #(k.longLongValue-((NSNumber*)a[i]).longLongValue);
dict[calcNum] = a[i];
}
}
return #(count);
}
Hope it helps someone.
this is the implementation of O(n*lg n) using binary search implementation inside a loop.
#include <iostream>
using namespace std;
bool *inMemory;
int pairSum(int arr[], int n, int k)
{
int count = 0;
if(n==0)
return count;
for (int i = 0; i < n; ++i)
{
int start = 0;
int end = n-1;
while(start <= end)
{
int mid = start + (end-start)/2;
if(i == mid)
break;
else if((arr[i] + arr[mid]) == k && !inMemory[i] && !inMemory[mid])
{
count++;
inMemory[i] = true;
inMemory[mid] = true;
}
else if(arr[i] + arr[mid] >= k)
{
end = mid-1;
}
else
start = mid+1;
}
}
return count;
}
int main()
{
int arr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
inMemory = new bool[10];
for (int i = 0; i < 10; ++i)
{
inMemory[i] = false;
}
cout << pairSum(arr, 10, 11) << endl;
return 0;
}
In python
arr = [1, 2, 4, 6, 10]
diff_hash = {}
expected_sum = 3
for i in arr:
if diff_hash.has_key(i):
print i, diff_hash[i]
key = expected_sum - i
diff_hash[key] = i
Nice solution from Codeaddict. I took the liberty of implementing a version of it in Ruby:
def find_sum(arr,sum)
result ={}
h = Hash[arr.map {|i| [i,i]}]
arr.each { |l| result[l] = sum-l if h[sum-l] && !result[sum-l] }
result
end
To allow duplicate pairs (1,5), (5,1) we just have to remove the && !result[sum-l] instruction
Here is Java code for three approaches:
1. Using Map O(n), HashSet can also be used here.
2. Sort array and then use BinarySearch to look for complement O(nLog(n))
3. Traditional BruteForce two loops O(n^2)
public class PairsEqualToSum {
public static void main(String[] args) {
int a[] = {1,10,5,8,2,12,6,4};
findPairs1(a,10);
findPairs2(a,10);
findPairs3(a,10);
}
//Method1 - O(N) use a Map to insert values as keys & check for number's complement in map
static void findPairs1(int[]a, int sum){
Map<Integer, Integer> pairs = new HashMap<Integer, Integer>();
for(int i=0; i<a.length; i++){
if(pairs.containsKey(sum-a[i]))
System.out.println("("+a[i]+","+(sum-a[i])+")");
else
pairs.put(a[i], 0);
}
}
//Method2 - O(nlog(n)) using Sort
static void findPairs2(int[]a, int sum){
Arrays.sort(a);
for(int i=0; i<a.length/2; i++){
int complement = sum - a[i];
int foundAtIndex = Arrays.binarySearch(a,complement);
if(foundAtIndex >0 && foundAtIndex != i) //to avoid situation where binarySearch would find the original and not the complement like "5"
System.out.println("("+a[i]+","+(sum-a[i])+")");
}
}
//Method 3 - Brute Force O(n^2)
static void findPairs3(int[]a, int sum){
for(int i=0; i<a.length; i++){
for(int j=i; j<a.length;j++){
if(a[i]+a[j] == sum)
System.out.println("("+a[i]+","+a[j]+")");
}
}
}
}
A Simple program in java for arrays having unique elements:
import java.util.*;
public class ArrayPairSum {
public static void main(String[] args) {
int []a = {2,4,7,3,5,1,8,9,5};
sumPairs(a,10);
}
public static void sumPairs(int []input, int k){
Set<Integer> set = new HashSet<Integer>();
for(int i=0;i<input.length;i++){
if(set.contains(input[i]))
System.out.println(input[i] +", "+(k-input[i]));
else
set.add(k-input[i]);
}
}
}
A simple Java code snippet for printing the pairs below:
public static void count_all_pairs_with_given_sum(int arr[], int S){
if(arr.length < 2){
return;
}
HashSet values = new HashSet(arr.length);
for(int value : arr)values.add(value);
for(int value : arr){
int difference = S - value;
if(values.contains(difference) && value<difference){
System.out.printf("(%d, %d) %n", value, difference);
}
}
}
Another solution in Swift: the idea is to create an hash that store values of (sum - currentValue) and compare this to the current value of the loop. The complexity is O(n).
func findPair(list: [Int], _ sum: Int) -> [(Int, Int)]? {
var hash = Set<Int>() //save list of value of sum - item.
var dictCount = [Int: Int]() //to avoid the case A*2 = sum where we have only one A in the array
var foundKeys = Set<Int>() //to avoid duplicated pair in the result.
var result = [(Int, Int)]() //this is for the result.
for item in list {
//keep track of count of each element to avoid problem: [2, 3, 5], 10 -> result = (5,5)
if (!dictCount.keys.contains(item)) {
dictCount[item] = 1
} else {
dictCount[item] = dictCount[item]! + 1
}
//if my hash does not contain the (sum - item) value -> insert to hash.
if !hash.contains(sum-item) {
hash.insert(sum-item)
}
//check if current item is the same as another hash value or not, if yes, return the tuple.
if hash.contains(item) &&
(dictCount[item] > 1 || sum != item*2) // check if we have item*2 = sum or not.
{
if !foundKeys.contains(item) && !foundKeys.contains(sum-item) {
foundKeys.insert(item) //add to found items in order to not to add duplicated pair.
result.append((item, sum-item))
}
}
}
return result
}
//test:
let a = findPair([2,3,5,4,1,7,6,8,9,5,3,3,3,3,3,3,3,3,3], 14) //will return (8,6) and (9,5)
My Solution - Java - Without duplicates
public static void printAllPairSum(int[] a, int x){
System.out.printf("printAllPairSum(%s,%d)\n", Arrays.toString(a),x);
if(a==null||a.length==0){
return;
}
int length = a.length;
Map<Integer,Integer> reverseMapOfArray = new HashMap<>(length,1.0f);
for (int i = 0; i < length; i++) {
reverseMapOfArray.put(a[i], i);
}
for (int i = 0; i < length; i++) {
Integer j = reverseMapOfArray.get(x - a[i]);
if(j!=null && i<j){
System.out.printf("a[%d] + a[%d] = %d + %d = %d\n",i,j,a[i],a[j],x);
}
}
System.out.println("------------------------------");
}
This prints the pairs and avoids duplicates using bitwise manipulation.
public static void findSumHashMap(int[] arr, int key) {
Map<Integer, Integer> valMap = new HashMap<Integer, Integer>();
for(int i=0;i<arr.length;i++)
valMap.put(arr[i], i);
int indicesVisited = 0;
for(int i=0;i<arr.length;i++) {
if(valMap.containsKey(key - arr[i]) && valMap.get(key - arr[i]) != i) {
if(!((indicesVisited & ((1<<i) | (1<<valMap.get(key - arr[i])))) > 0)) {
int diff = key-arr[i];
System.out.println(arr[i] + " " +diff);
indicesVisited = indicesVisited | (1<<i) | (1<<valMap.get(key - arr[i]));
}
}
}
}
I bypassed the bit manuplation and just compared the index values. This is less than the loop iteration value (i in this case). This will not print the duplicate pairs and duplicate array elements also.
public static void findSumHashMap(int[] arr, int key) {
Map<Integer, Integer> valMap = new HashMap<Integer, Integer>();
for (int i = 0; i < arr.length; i++) {
valMap.put(arr[i], i);
}
for (int i = 0; i < arr.length; i++) {
if (valMap.containsKey(key - arr[i])
&& valMap.get(key - arr[i]) != i) {
if (valMap.get(key - arr[i]) < i) {
int diff = key - arr[i];
System.out.println(arr[i] + " " + diff);
}
}
}
}
in C#:
int[] array = new int[] { 1, 5, 7, 2, 9, 8, 4, 3, 6 }; // given array
int sum = 10; // given sum
for (int i = 0; i <= array.Count() - 1; i++)
if (array.Contains(sum - array[i]))
Console.WriteLine("{0}, {1}", array[i], sum - array[i]);
One Solution can be this, but not optimul (The complexity of this code is O(n^2)):
public class FindPairsEqualToSum {
private static int inputSum = 0;
public static List<String> findPairsForSum(int[] inputArray, int sum) {
List<String> list = new ArrayList<String>();
List<Integer> inputList = new ArrayList<Integer>();
for (int i : inputArray) {
inputList.add(i);
}
for (int i : inputArray) {
int tempInt = sum - i;
if (inputList.contains(tempInt)) {
String pair = String.valueOf(i + ", " + tempInt);
list.add(pair);
}
}
return list;
}
}
A simple python version of the code that find a pair sum of zero and can be modify to find k:
def sumToK(lst):
k = 0 # <- define the k here
d = {} # build a dictionary
# build the hashmap key = val of lst, value = i
for index, val in enumerate(lst):
d[val] = index
# find the key; if a key is in the dict, and not the same index as the current key
for i, val in enumerate(lst):
if (k-val) in d and d[k-val] != i:
return True
return False
The run time complexity of the function is O(n) and Space: O(n) as well.
public static int[] f (final int[] nums, int target) {
int[] r = new int[2];
r[0] = -1;
r[1] = -1;
int[] vIndex = new int[0Xfff];
for (int i = 0; i < nums.length; i++) {
int delta = 0Xff;
int gapIndex = target - nums[i] + delta;
if (vIndex[gapIndex] != 0) {
r[0] = vIndex[gapIndex];
r[1] = i + 1;
return r;
} else {
vIndex[nums[i] + delta] = i + 1;
}
}
return r;
}
less than o(n) solution will be=>
function(array,k)
var map = {};
for element in array
map(element) = true;
if(map(k-element))
return {k,element}
Solution in Python using list comprehension
f= [[i,j] for i in list for j in list if j+i==X];
O(N2)
also gives two ordered pairs- (a,b) and (b,a) as well
I can do it in O(n). Let me know when you want the answer. Note it involves simply traversing the array once with no sorting, etc... I should mention too that it exploits commutativity of addition and doesn't use hashes but wastes memory.
using System;
using System.Collections.Generic;
/*
An O(n) approach exists by using a lookup table. The approach is to store the value in a "bin" that can easily be looked up(e.g., O(1)) if it is a candidate for an appropriate sum.
e.g.,
for each a[k] in the array we simply put the it in another array at the location x - a[k].
Suppose we have [0, 1, 5, 3, 6, 9, 8, 7] and x = 9
We create a new array,
indexes value
9 - 0 = 9 0
9 - 1 = 8 1
9 - 5 = 4 5
9 - 3 = 6 3
9 - 6 = 3 6
9 - 9 = 0 9
9 - 8 = 1 8
9 - 7 = 2 7
THEN the only values that matter are the ones who have an index into the new table.
So, say when we reach 9 or equal we see if our new array has the index 9 - 9 = 0. Since it does we know that all the values it contains will add to 9. (note in this cause it's obvious there is only 1 possible one but it might have multiple index values in it which we need to store).
So effectively what we end up doing is only having to move through the array once. Because addition is commutative we will end up with all the possible results.
For example, when we get to 6 we get the index into our new table as 9 - 6 = 3. Since the table contains that index value we know the values.
This is essentially trading off speed for memory.
*/
namespace sum
{
class Program
{
static void Main(string[] args)
{
int num = 25;
int X = 10;
var arr = new List<int>();
for(int i = 0; i <= num; i++) arr.Add((new Random((int)(DateTime.Now.Ticks + i*num))).Next(0, num*2));
Console.Write("["); for (int i = 0; i < num - 1; i++) Console.Write(arr[i] + ", "); Console.WriteLine(arr[arr.Count-1] + "] - " + X);
var arrbrute = new List<Tuple<int,int>>();
var arrfast = new List<Tuple<int,int>>();
for(int i = 0; i < num; i++)
for(int j = i+1; j < num; j++)
if (arr[i] + arr[j] == X)
arrbrute.Add(new Tuple<int, int>(arr[i], arr[j]));
int M = 500;
var lookup = new List<List<int>>();
for(int i = 0; i < 1000; i++) lookup.Add(new List<int>());
for(int i = 0; i < num; i++)
{
// Check and see if we have any "matches"
if (lookup[M + X - arr[i]].Count != 0)
{
foreach(var j in lookup[M + X - arr[i]])
arrfast.Add(new Tuple<int, int>(arr[i], arr[j]));
}
lookup[M + arr[i]].Add(i);
}
for(int i = 0; i < arrbrute.Count; i++)
Console.WriteLine(arrbrute[i].Item1 + " + " + arrbrute[i].Item2 + " = " + X);
Console.WriteLine("---------");
for(int i = 0; i < arrfast.Count; i++)
Console.WriteLine(arrfast[i].Item1 + " + " + arrfast[i].Item2 + " = " + X);
Console.ReadKey();
}
}
}
I implemented logic in Scala with out a Map. It gives duplicate pairs since the counter loops thru entire elements of the array. If duplicate pairs are needed, you can simply return the value pc
val arr = Array[Int](8, 7, 2, 5, 3, 1, 5)
val num = 10
var pc = 0
for(i <- arr.indices) {
if(arr.contains(Math.abs(arr(i) - num))) pc += 1
}
println(s"Pairs: ${pc/2}")
It is working with duplicates values in the array as well.
GOLANG Implementation
func findPairs(slice1 []int, sum int) [][]int {
pairMap := make(map[int]int)
var SliceOfPairs [][]int
for i, v := range slice1 {
if valuei, ok := pairMap[v]; ok {
//fmt.Println("Pair Found", i, valuei)
SliceOfPairs = append(SliceOfPairs, []int{i, valuei})
} else {
pairMap[sum-v] = i
}
}
return SliceOfPairs
}
function findPairOfNumbers(arr, targetSum) {
arr = arr.sort();
var low = 0, high = arr.length - 1, sum, result = [];
while(low < high) {
sum = arr[low] + arr[high];
if(sum < targetSum)
low++;
else if(sum > targetSum)
high--;
else if(sum === targetSum) {
result.push({val1: arr[low], val2: arr[high]});
high--;
}
}
return (result || false);
}
var pairs = findPairOfNumbers([1,2,3,4,5,6,7,8,9,0], 7);
if(pairs.length) {
console.log(pairs);
} else {
console.log("No pair of numbers found that sums to " + 7);
}

Minimum window width in string x that contains all characters of string y

Find minimum window width in string x that contains all characters of another string y. For example:
String x = "coobdafceeaxab"
String y = "abc"
The answer should be 5, because the shortest substring in x that contains all three letters of y is "bdafc".
I can think of a naive solution with complexity O(n^2 * log(m)), where n = len(x) and m = len(y). Can anyone suggest a better solution? Thanks.
Update: now think of it, if I change my set to tr1::unordered_map, then I can cut the complexity down to O(n^2), because insertion and deletion should both be O(1).
time: O(n) (One pass)
space: O(k)
This is how I would do it:
Create a hash table for all the characters from string Y. (I assume all characters are different in Y).
First pass:
Start from first character of string X.
update hash table, for exa: for key 'a' enter location (say 1).
Keep on doing it until you get all characters from Y (until all key in hash table has value).
If you get some character again, update its newer value and erase older one.
Once you have first pass, take smallest value from hash table and biggest value.
Thats the minimum window observed so far.
Now, go to next character in string X, update hash table and see if you get smaller window.
Edit:
Lets take an example here:
String x = "coobdafceeaxab"
String y = "abc"
First initialize a hash table from characters of Y.
h[a] = -1
h[b] = -1
h[c] = -1
Now, Start from first character of X.
First character is c, h[c] = 0
Second character (o) is not part of hash, skip it.
..
Fourth character (b), h[b] = 3
..
Sixth character(a), enter hash table h[a] = 5.
Now, all keys from hash table has some value.
Smallest value is 0 (of c) and highest value is 5 (of a), minimum window so far is 6 (0 to 5).
First pass is done.
Take next character. f is not part of hash table, skip it.
Next character (c), update hash table h[c] = 7.
Find new window, smallest value is 3 (of b) and highest value is 7 (of c).
New window is 3 to 7 => 5.
Keep on doing it till last character of string X.
I hope its clear now.
Edit
There are some concerns about finding max and min value from hash.
We can maintain sorted Link-list and map it with hash table.
Whenever any element from Link list changes, it should be re-mapped to hash table.
Both these operation are O(1)
Total space would be m+m
Edit
Here is small visualisation of above problem:
For "coobdafceeaxab" and "abc"
step-0:
Initial doubly linked-list = NULL
Initial hash-table = NULL
step-1:
Head<->[c,0]<->tail
h[c] = [0, 'pointer to c node in LL']
step-2:
Head<->[c,0]<->[b,3]<->tail
h[c] = [0, 'pointer to c node in LL'], h[b] = [3, 'pointer to b node in LL'],
Step-3:
Head<->[c,0]<->[b,3]<->[a,5]<->tail
h[c] = [0, 'pointer to c node in LL'], h[b] = [3, 'pointer to b node in LL'], h[a] = [5, 'pointer to a node in LL']
Minimum Window => difference from tail and head => (5-0)+1 => Length: 6
Step-4:
Update entry of C to index 7 here. (Remove 'c' node from linked-list and append at the tail)
Head<->[b,3]<->[a,5]<->[c,7]<->tail
h[c] = [7, 'new pointer to c node in LL'], h[b] = [3, 'pointer to b node in LL'], h[a] = [5, 'pointer to a node in LL'],
Minimum Window => difference from tail and head => (7-3)+1 => Length: 5
And so on..
Note that above Linked-list update and hash table update are both O(1).
Please correct me if I am wrong..
Summary:
TIme complexity: O(n) with one pass
Space Complexity: O(k) where k is length of string Y
I found this very nice O(N) time complexity version here http://leetcode.com/2010/11/finding-minimum-window-in-s-which.html, and shortened it slightly (removed continue in a first while , which allowed to simplify condition for the second while loop). Note, that this solution allows for duplicates in the second string, while many of the above answers do not.
private static String minWindow(String s, String t) {
int[] needToFind = new int[256];
int[] hasFound = new int[256];
for(int i = 0; i < t.length(); ++i) {
needToFind[t.charAt(i)]++;
}
int count = 0;
int minWindowSize = Integer.MAX_VALUE;
int start = 0, end = -1;
String window = "";
while (++end < s.length()) {
char c = s.charAt(end);
if(++hasFound[c] <= needToFind[c]) {
count++;
}
if(count < t.length()) continue;
while (hasFound[s.charAt(start)] > needToFind[s.charAt(start)]) {
hasFound[s.charAt(start++)]--;
}
if(end - start + 1 < minWindowSize) {
minWindowSize = end - start + 1;
window = s.substring(start, end + 1);
}
}
return window;
}
Here's my solution in C++:
int min_width(const string& x, const set<char>& y) {
vector<int> at;
for (int i = 0; i < x.length(); i++)
if (y.count(x[i]) > 0)
at.push_back(i);
int ret = x.size();
int start = 0;
map<char, int> count;
for (int end = 0; end < at.size(); end++) {
count[x[at[end]]]++;
while (count[x[at[start]]] > 1)
count[x[at[start++]]]--;
if (count.size() == y.size() && ret > at[end] - at[start] + 1)
ret = at[end] - at[start] + 1;
}
return ret;
}
Edit: Here's an implementation of Jack's idea. It's the same time complexity as mine, but without the inner loop that confuses you.
int min_width(const string& x, const set<char>& y) {
int ret = x.size();
map<char, int> index;
set<int> index_set;
for (int j = 0; j < x.size(); j++) {
if (y.count(x[j]) > 0) {
if (index.count(x[j]) > 0)
index_set.erase(index[x[j]]);
index_set.insert(j);
index[x[j]] = j;
if (index.size() == y.size()) {
int i = *index_set.begin();
if (ret > j-i+1)
ret = j-i+1;
}
}
}
return ret;
}
In Java it can be implemented nicely with LinkedHashMap:
static int minWidth(String x, HashSet<Character> y) {
int ret = x.length();
Map<Character, Integer> index = new LinkedHashMap<Character, Integer>();
for (int j = 0; j < x.length(); j++) {
char ch = x.charAt(j);
if (y.contains(ch)) {
index.remove(ch);
index.put(ch, j);
if (index.size() == y.size()) {
int i = index.values().iterator().next();
if (ret > j - i + 1)
ret = j - i + 1;
}
}
}
return ret;
}
All operations inside the loop take constant time (assuming hashed elements disperse properly).
There is an O(n solution to this problem). It very well described in this article.
http://www.leetcode.com/2010/11/finding-minimum-window-in-s-which.html
Hope it helps.
This is my solution in C++, just for reference.
Update: originally I used std::set, now I change it to tr1::unordered_map to cut complexity down to n^2, otherwise these two implementations look pretty similar, to prevent this post from getting too long, I only list the improved solution.
#include <iostream>
#include <tr1/unordered_map>
#include <string>
using namespace std;
using namespace std::tr1;
typedef tr1::unordered_map<char, int> hash_t;
// Returns min substring width in which sentence contains all chars in word
// Returns sentence's length + 1 if not found
size_t get_min_width(const string &sent, const string &word) {
size_t min_size = sent.size() + 1;
hash_t char_set; // char set that word contains
for (size_t i = 0; i < word.size(); i++) {
char_set.insert(hash_t::value_type(word[i], 1));
}
for (size_t i = 0; i < sent.size() - word.size(); i++) {
hash_t s = char_set;
for (size_t j = i; j < min(j + min_size, sent.size()); j++) {
s.erase(sent[j]);
if (s.empty()) {
size_t size = j - i + 1;
if (size < min_size) min_size = size;
break;
}
}
}
return min_size;
}
int main() {
const string x = "coobdafceeaxab";
const string y = "abc";
cout << get_min_width(x, y) << "\n";
}
An implementation of Jack's idea.
public int smallestWindow(String str1, String str2){
if(str1==null || str2==null){
throw new IllegalArgumentException();
}
Map<String, Node> map=new HashMap<String, Node>();
Node head=null, current=null;
for(int i=0;i<str1.length();i++){
char c=str1.charAt(i);
if(head==null){
head=new Node(c);
current=head;
map.put(String.valueOf(c), head);
}
else{
current.next=new Node(c);
current.next.pre=current;
current=current.next;
map.put(String.valueOf(c), current);
}
}
Node end=current;
int min=Integer.MAX_VALUE;
int count=0;
for(int i=0;i<str2.length();i++){
char c = str2.charAt(i);
Node n=map.get(String.valueOf(c));
if(n!=null){
if(n.index==Integer.MAX_VALUE){
count++;
}
n.index=i;
if(n==head){
Node temp=head;
head=head.next;
if(head==null){//one node
return 1;
}
head.pre=null;
temp.pre=end;
end.next=temp;
temp.next=null;
end=temp;
}
else if(end!=n){
n.pre.next=n.next;
n.next.pre=n.pre;
n.pre=end;
n.next=null;
end.next=n;
end=n;
}
if(count==str1.length()){
min=Math.min(end.index-head.index+1, min);
}
}
}
System.out.println(map);
return min;
}
Simple java solution using the sliding window. Extending NitishMD's idea above:
public class StringSearchDemo {
public String getSmallestSubsetOfStringContaingSearchString(String toMatch,
String inputString) {
if (inputString.isEmpty() || toMatch.isEmpty()) {
return null;
}
// List<String> results = new ArrayList<String>(); // optional you can comment this out
String smallestMatch = "";
// String largestMatch = "";
int startPointer = 0, endPointer = 1;
HashMap<Character, Integer> toMatchMap = new HashMap<Character, Integer>();
for (char c : toMatch.toCharArray()) {
if (toMatchMap.containsKey(c)) {
toMatchMap.put(c, (toMatchMap.get(c) + 1));
} else {
toMatchMap.put(c, 1);
}
}
int totalCount = getCountofMatchingString(toMatchMap, toMatch);
for (int i = 0; i < inputString.length();) {
if (!toMatchMap.containsKey(inputString.charAt(i))) {
endPointer++;
i++;
continue;
}
String currentSubString = inputString.substring(startPointer,
endPointer);
if (getCountofMatchingString(toMatchMap, currentSubString) >= totalCount) {
// results.add(currentSubString); // optional you can comment this out
if (smallestMatch.length() > currentSubString.length()) {
smallestMatch = currentSubString;
} else if (smallestMatch.isEmpty()) {
smallestMatch = currentSubString;
}
// if (largestMatch.length() < currentSubString.length()) {
// largestMatch = currentSubString;
// }
startPointer++;
} else {
endPointer++;
i++;
}
}
// System.out.println("all possible combinations = " + results); // optional, you can comment this out
// System.out.println("smallest result = " + smallestMatch);
// System.out.println("largest result = " + largestMatch);
return smallestMatch;
}
public int getCountofMatchingString(HashMap<Character, Integer> toMatchMap,
String toMatch) {
int match = 0;
HashMap<Character, Integer> localMap = new HashMap<Character, Integer>();
for (char c : toMatch.toCharArray()) {
if (toMatchMap.containsKey(c)) {
if (localMap.containsKey(c)) {
if (localMap.get(c) < toMatchMap.get(c)) {
localMap.put(c, (localMap.get(c) + 1));
match++;
}
} else {
localMap.put(c, 1);
match++;
}
}
}
return match;
}
public static void main(String[] args) {
String inputString = "zxaddbddxyy由ccbbwwaay漢字由来";
String matchCriteria = "a由";
System.out.println("input=" + matchCriteria);
System.out.println("matchCriteria=" + inputString);
String result = (new StringSearchDemo())
.getSmallestSubsetOfStringContaingSearchString(matchCriteria, inputString);
System.out.println("smallest possbile match = " + result);
}
}

Generate all unique substrings for given string

Given a string s, what is the fastest method to generate a set of all its unique substrings?
Example: for str = "aba" we would get substrs={"a", "b", "ab", "ba", "aba"}.
The naive algorithm would be to traverse the entire string generating substrings in length 1..n in each iteration, yielding an O(n^2) upper bound.
Is a better bound possible?
(this is technically homework, so pointers-only are welcome as well)
As other posters have said, there are potentially O(n^2) substrings for a given string, so printing them out cannot be done faster than that. However there exists an efficient representation of the set that can be constructed in linear time: the suffix tree.
There is no way to do this faster than O(n2) because there are a total of O(n2) substrings in a string, so if you have to generate them all, their number will be n(n + 1) / 2 in the worst case, hence the upper lower bound of O(n2) Ω(n2).
First one is brute force which has complexity O(N^3) which could be brought down to O(N^2 log(N))
Second One using HashSet which has Complexity O(N^2)
Third One using LCP by initially finding all the suffix of a given string which has the worst case O(N^2) and best case O(N Log(N)).
First Solution:-
import java.util.Scanner;
public class DistinctSubString {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
System.out.print("Enter The string");
String s = in.nextLine();
long startTime = System.currentTimeMillis();
int L = s.length();
int N = L * (L + 1) / 2;
String[] Comb = new String[N];
for (int i = 0, p = 0; i < L; ++i) {
for (int j = 0; j < (L - i); ++j) {
Comb[p++] = s.substring(j, i + j + 1);
}
}
/*
* for(int j=0;j<N;++j) { System.out.println(Comb[j]); }
*/
boolean[] val = new boolean[N];
for (int i = 0; i < N; ++i)
val[i] = true;
int counter = N;
int p = 0, start = 0;
for (int i = 0, j; i < L; ++i) {
p = L - i;
for (j = start; j < (start + p); ++j) {
if (val[j]) {
//System.out.println(Comb[j]);
for (int k = j + 1; k < start + p; ++k) {
if (Comb[j].equals(Comb[k])) {
counter--;
val[k] = false;
}
}
}
}
start = j;
}
System.out.println("Substrings are " + N
+ " of which unique substrings are " + counter);
long endTime = System.currentTimeMillis();
System.out.println("It took " + (endTime - startTime) + " milliseconds");
}
}
Second Solution:-
import java.util.*;
public class DistictSubstrings_usingHashTable {
public static void main(String args[]) {
// create a hash set
Scanner in = new Scanner(System.in);
System.out.print("Enter The string");
String s = in.nextLine();
int L = s.length();
long startTime = System.currentTimeMillis();
Set<String> hs = new HashSet<String>();
// add elements to the hash set
for (int i = 0; i < L; ++i) {
for (int j = 0; j < (L - i); ++j) {
hs.add(s.substring(j, i + j + 1));
}
}
System.out.println(hs.size());
long endTime = System.currentTimeMillis();
System.out.println("It took " + (endTime - startTime) + " milliseconds");
}
}
Third Solution:-
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
public class LCPsolnFroDistinctSubString {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
System.out.println("Enter Desired String ");
String string = br.readLine();
int length = string.length();
String[] arrayString = new String[length];
for (int i = 0; i < length; ++i) {
arrayString[i] = string.substring(length - 1 - i, length);
}
Arrays.sort(arrayString);
for (int i = 0; i < length; ++i)
System.out.println(arrayString[i]);
long num_substring = arrayString[0].length();
for (int i = 0; i < length - 1; ++i) {
int j = 0;
for (; j < arrayString[i].length(); ++j) {
if (!((arrayString[i].substring(0, j + 1)).equals((arrayString)[i + 1]
.substring(0, j + 1)))) {
break;
}
}
num_substring += arrayString[i + 1].length() - j;
}
System.out.println("unique substrings = " + num_substring);
}
}
Fourth Solution:-
public static void printAllCombinations(String soFar, String rest) {
if(rest.isEmpty()) {
System.out.println(soFar);
} else {
printAllCombinations(soFar + rest.substring(0,1), rest.substring(1));
printAllCombinations(soFar , rest.substring(1));
}
}
Test case:- printAllCombinations("", "abcd");
For big oh ... Best you could do would be O(n^2)
No need to reinvent the wheel, its not based on a strings, but on a sets, so you will have to take the concepts and apply them to your own situation.
Algorithms
Really Good White Paper from MS
In depth PowerPoint
Blog on string perms
well, since there is potentially n*(n+1)/2 different substrings (+1 for the empty substring), I doubt you can be better than O(n*2) (worst case). the easiest thing is to generate them and use some nice O(1) lookup table (such as a hashmap) for excluding duplicates right when you find them.
class SubstringsOfAString {
public static void main(String args[]) {
String string = "Hello", sub = null;
System.out.println("Substrings of \"" + string + "\" are :-");
for (int i = 0; i < string.length(); i++) {
for (int j = 1; j <= string.length() - i; j++) {
sub = string.substring(i, j + i);
System.out.println(sub);
}
}
}
}
class program
{
List<String> lst = new List<String>();
String str = "abc";
public void func()
{
subset(0, "");
lst.Sort();
lst = lst.Distinct().ToList();
foreach (String item in lst)
{
Console.WriteLine(item);
}
}
void subset(int n, String s)
{
for (int i = n; i < str.Length; i++)
{
lst.Add(s + str[i].ToString());
subset(i + 1, s + str[i].ToString());
}
}
}
This prints unique substrings.
https://ideone.com/QVWOh0
def uniq_substring(test):
lista=[]
[lista.append(test[i:i+k+1]) for i in range(len(test)) for k in
range(len(test)-i) if test[i:i+k+1] not in lista and
test[i:i+k+1][::-1] not in lista]
print lista
uniq_substring('rohit')
uniq_substring('abab')
['r', 'ro', 'roh', 'rohi', 'rohit', 'o', 'oh', 'ohi', 'ohit', 'h',
'hi', 'hit', 'i', 'it', 't']
['a', 'ab', 'aba', 'abab', 'b', 'bab']
Many answers that include 2 for loops and a .substring() call claim O(N^2) time complexity. However, it is important to note that the worst case for a .substring() call in Java (post update 6 in Java 7) is O(N). So by adding a .substring() call in your code, the order of N has increased by one.
Therefore, 2 for loops and a .substring() call within those loops equals an O(N^3) time complexity.
It can only be done in o(n^2) time as total number of unique substrings of a string would be n(n+1)/2.
Example:
string s = "abcd"
pass 0: (all the strings are of length 1)
a, b, c, d = 4 strings
pass 1: (all the strings are of length 2)
ab, bc, cd = 3 strings
pass 2: (all the strings are of length 3)
abc, bcd = 2 strings
pass 3: (all the strings are of length 4)
abcd = 1 strings
Using this analogy, we can write solution with o(n^2) time complexity and constant space complexity.
The source code is as below:
#include<stdio.h>
void print(char arr[], int start, int end)
{
int i;
for(i=start;i<=end;i++)
{
printf("%c",arr[i]);
}
printf("\n");
}
void substrings(char arr[], int n)
{
int pass,j,start,end;
int no_of_strings = n-1;
for(pass=0;pass<n;pass++)
{
start = 0;
end = start+pass;
for(j=no_of_strings;j>=0;j--)
{
print(arr,start, end);
start++;
end = start+pass;
}
no_of_strings--;
}
}
int main()
{
char str[] = "abcd";
substrings(str,4);
return 0;
}
Naive algorithm takes O(n^3) time instead of O(n^2) time.
There are O(n^2) number of substrings.
And if you put O(n^2) number of substrings, for example, set,
then set compares O(lgn) comparisons for each string to check if it alrady exists in the set or not.
Besides it takes O(n) time for string comparison.
Therefore, it takes O(n^3 lgn) time if you use set. and you can reduce it O(n^3) time if you use hashtable instead of set.
The point is it is string comparisons not number comparisons.
So one of the best algorithm let's say if you use suffix array and longest common prefix (LCP) algorithm, it reduces O(n^2) time for this problem.
Building a suffix array using O(n) time algorithm.
Time for LCP = O(n) time.
Since for each pair of strings in suffix array, do LCP so total time is O(n^2) time to find the length of distinct subtrings.
Besides if you want to print all distinct substrings, it takes O(n^2) time.
Try this code using a suffix array and longest common prefix. It can also give you the total number of unique substrings. The code might give a stack overflow in visual studio but runs fine in Eclipse C++. That's because it returns vectors for functions. Haven't tested it against extremely long strings. Will do so and report back.
// C++ program for building LCP array for given text
#include <bits/stdc++.h>
#include <vector>
#include <string>
using namespace std;
#define MAX 100000
int cum[MAX];
// Structure to store information of a suffix
struct suffix
{
int index; // To store original index
int rank[2]; // To store ranks and next rank pair
};
// A comparison function used by sort() to compare two suffixes
// Compares two pairs, returns 1 if first pair is smaller
int cmp(struct suffix a, struct suffix b)
{
return (a.rank[0] == b.rank[0])? (a.rank[1] < b.rank[1] ?1: 0):
(a.rank[0] < b.rank[0] ?1: 0);
}
// This is the main function that takes a string 'txt' of size n as an
// argument, builds and return the suffix array for the given string
vector<int> buildSuffixArray(string txt, int n)
{
// A structure to store suffixes and their indexes
struct suffix suffixes[n];
// Store suffixes and their indexes in an array of structures.
// The structure is needed to sort the suffixes alphabatically
// and maintain their old indexes while sorting
for (int i = 0; i < n; i++)
{
suffixes[i].index = i;
suffixes[i].rank[0] = txt[i] - 'a';
suffixes[i].rank[1] = ((i+1) < n)? (txt[i + 1] - 'a'): -1;
}
// Sort the suffixes using the comparison function
// defined above.
sort(suffixes, suffixes+n, cmp);
// At his point, all suffixes are sorted according to first
// 2 characters. Let us sort suffixes according to first 4
// characters, then first 8 and so on
int ind[n]; // This array is needed to get the index in suffixes[]
// from original index. This mapping is needed to get
// next suffix.
for (int k = 4; k < 2*n; k = k*2)
{
// Assigning rank and index values to first suffix
int rank = 0;
int prev_rank = suffixes[0].rank[0];
suffixes[0].rank[0] = rank;
ind[suffixes[0].index] = 0;
// Assigning rank to suffixes
for (int i = 1; i < n; i++)
{
// If first rank and next ranks are same as that of previous
// suffix in array, assign the same new rank to this suffix
if (suffixes[i].rank[0] == prev_rank &&
suffixes[i].rank[1] == suffixes[i-1].rank[1])
{
prev_rank = suffixes[i].rank[0];
suffixes[i].rank[0] = rank;
}
else // Otherwise increment rank and assign
{
prev_rank = suffixes[i].rank[0];
suffixes[i].rank[0] = ++rank;
}
ind[suffixes[i].index] = i;
}
// Assign next rank to every suffix
for (int i = 0; i < n; i++)
{
int nextindex = suffixes[i].index + k/2;
suffixes[i].rank[1] = (nextindex < n)?
suffixes[ind[nextindex]].rank[0]: -1;
}
// Sort the suffixes according to first k characters
sort(suffixes, suffixes+n, cmp);
}
// Store indexes of all sorted suffixes in the suffix array
vector<int>suffixArr;
for (int i = 0; i < n; i++)
suffixArr.push_back(suffixes[i].index);
// Return the suffix array
return suffixArr;
}
/* To construct and return LCP */
vector<int> kasai(string txt, vector<int> suffixArr)
{
int n = suffixArr.size();
// To store LCP array
vector<int> lcp(n, 0);
// An auxiliary array to store inverse of suffix array
// elements. For example if suffixArr[0] is 5, the
// invSuff[5] would store 0. This is used to get next
// suffix string from suffix array.
vector<int> invSuff(n, 0);
// Fill values in invSuff[]
for (int i=0; i < n; i++)
invSuff[suffixArr[i]] = i;
// Initialize length of previous LCP
int k = 0;
// Process all suffixes one by one starting from
// first suffix in txt[]
for (int i=0; i<n; i++)
{
/* If the current suffix is at n-1, then we don’t
have next substring to consider. So lcp is not
defined for this substring, we put zero. */
if (invSuff[i] == n-1)
{
k = 0;
continue;
}
/* j contains index of the next substring to
be considered to compare with the present
substring, i.e., next string in suffix array */
int j = suffixArr[invSuff[i]+1];
// Directly start matching from k'th index as
// at-least k-1 characters will match
while (i+k<n && j+k<n && txt[i+k]==txt[j+k])
k++;
lcp[invSuff[i]] = k; // lcp for the present suffix.
// Deleting the starting character from the string.
if (k>0)
k--;
}
// return the constructed lcp array
return lcp;
}
// Utility function to print an array
void printArr(vector<int>arr, int n)
{
for (int i = 0; i < n; i++)
cout << arr[i] << " ";
cout << endl;
}
// Driver program
int main()
{
int t;
cin >> t;
//t = 1;
while (t > 0) {
//string str = "banana";
string str;
cin >> str; // >> k;
vector<int>suffixArr = buildSuffixArray(str, str.length());
int n = suffixArr.size();
cout << "Suffix Array : \n";
printArr(suffixArr, n);
vector<int>lcp = kasai(str, suffixArr);
cout << "\nLCP Array : \n";
printArr(lcp, n);
// cum will hold number of substrings if that'a what you want (total = cum[n-1]
cum[0] = n - suffixArr[0];
// vector <pair<int,int>> substrs[n];
int count = 1;
for (int i = 1; i <= n-suffixArr[0]; i++) {
//substrs[0].push_back({suffixArr[0],i});
string sub_str = str.substr(suffixArr[0],i);
cout << count << " " << sub_str << endl;
count++;
}
for(int i = 1;i < n;i++) {
cum[i] = cum[i-1] + (n - suffixArr[i] - lcp[i - 1]);
int end = n - suffixArr[i];
int begin = lcp[i-1] + 1;
int begin_suffix = suffixArr[i];
for (int j = begin, k = 1; j <= end; j++, k++) {
//substrs[i].push_back({begin_suffix, lcp[i-1] + k});
// cout << "i push " << i << " " << begin_suffix << " " << k << endl;
string sub_str = str.substr(begin_suffix, lcp[i-1] +k);
cout << count << " " << sub_str << endl;
count++;
}
}
/*int count = 1;
cout << endl;
for(int i = 0; i < n; i++){
for (auto it = substrs[i].begin(); it != substrs[i].end(); ++it ) {
string sub_str = str.substr(it->first, it->second);
cout << count << " " << sub_str << endl;
count++;
}
}*/
t--;
}
return 0;
}
And here's a simpler algorithm:
#include <iostream>
#include <string.h>
#include <vector>
#include <string>
#include <algorithm>
#include <time.h>
using namespace std;
char txt[100000], *p[100000];
int m, n;
int cmp(const void *p, const void *q) {
int rc = memcmp(*(char **)p, *(char **)q, m);
return rc;
}
int main() {
std::cin >> txt;
int start_s = clock();
n = strlen(txt);
int k; int i;
int count = 1;
for (m = 1; m <= n; m++) {
for (k = 0; k+m <= n; k++)
p[k] = txt+k;
qsort(p, k, sizeof(p[0]), &cmp);
for (i = 0; i < k; i++) {
if (i != 0 && cmp(&p[i-1], &p[i]) == 0){
continue;
}
char cur_txt[100000];
memcpy(cur_txt, p[i],m);
cur_txt[m] = '\0';
std::cout << count << " " << cur_txt << std::endl;
count++;
}
}
cout << --count << endl;
int stop_s = clock();
float run_time = (stop_s - start_s) / double(CLOCKS_PER_SEC);
cout << endl << "distinct substrings \t\tExecution time = " << run_time << " seconds" << endl;
return 0;
}
Both algorithms listed a simply too slow for extremely long strings though. I tested the algorithms against a string of length over 47,000 and the algorithms took over 20 minutes to complete, with the first one taking 1200 seconds, and the second one taking 1360 seconds, and that's just counting the unique substrings without outputting to the terminal. So for probably strings of length up to 1000 you might get a working solution. Both solutions did compute the same total number of unique substrings though. I did test both algorithms against string lengths of 2000 and 10,000. The times were for the first algorithm: 0.33 s and 12 s; for the second algorithm it was 0.535 s and 20 s. So it looks like in general the first algorithm is faster.
Here is my code in Python. It generates all possible substrings of any given string.
def find_substring(str_in):
substrs = []
if len(str_in) <= 1:
return [str_in]
s1 = find_substring(str_in[:1])
s2 = find_substring(str_in[1:])
substrs.append(s1)
substrs.append(s2)
for s11 in s1:
substrs.append(s11)
for s21 in s2:
substrs.append("%s%s" %(s11, s21))
for s21 in s2:
substrs.append(s21)
return set(substrs)
If you pass str_ = "abcdef" to the function, it generates the following results:
a, ab, abc, abcd, abcde, abcdef, abcdf, abce, abcef, abcf, abd, abde, abdef, abdf, abe, abef, abf, ac, acd, acde, acdef, acdf, ace, acef, acf, ad, ade, adef, adf, ae, aef, af, b, bc, bcd, bcde, bcdef, bcdf, bce, bcef, bcf, bd, bde, bdef, bdf, be, bef, bf, c, cd, cde, cdef, cdf, ce, cef, cf, d, de, def, df, e, ef, f

Efficiently reverse the order of the words (not characters) in an array of characters

Given an array of characters which forms a sentence of words, give an efficient algorithm to reverse the order of the words (not characters) in it.
Example input and output:
>>> reverse_words("this is a string")
'string a is this'
It should be O(N) time and O(1) space (split() and pushing on / popping off the stack are not allowed).
The puzzle is taken from here.
A solution in C/C++:
void swap(char* str, int i, int j){
char t = str[i];
str[i] = str[j];
str[j] = t;
}
void reverse_string(char* str, int length){
for(int i=0; i<length/2; i++){
swap(str, i, length-i-1);
}
}
void reverse_words(char* str){
int l = strlen(str);
//Reverse string
reverse_string(str,strlen(str));
int p=0;
//Find word boundaries and reverse word by word
for(int i=0; i<l; i++){
if(str[i] == ' '){
reverse_string(&str[p], i-p);
p=i+1;
}
}
//Finally reverse the last word.
reverse_string(&str[p], l-p);
}
This should be O(n) in time and O(1) in space.
Edit: Cleaned it up a bit.
The first pass over the string is obviously O(n/2) = O(n). The second pass is O(n + combined length of all words / 2) = O(n + n/2) = O(n), which makes this an O(n) algorithm.
pushing a string onto a stack and then popping it off - is that still O(1)?
essentially, that is the same as using split()...
Doesn't O(1) mean in-place? This task gets easy if we can just append strings and stuff, but that uses space...
EDIT: Thomas Watnedal is right. The following algorithm is O(n) in time and O(1) in space:
reverse string in-place (first iteration over string)
reverse each (reversed) word in-place (another two iterations over string)
find first word boundary
reverse inside this word boundary
repeat for next word until finished
I guess we would need to prove that step 2 is really only O(2n)...
#include <string>
#include <boost/next_prior.hpp>
void reverse(std::string& foo) {
using namespace std;
std::reverse(foo.begin(), foo.end());
string::iterator begin = foo.begin();
while (1) {
string::iterator space = find(begin, foo.end(), ' ');
std::reverse(begin, space);
begin = boost::next(space);
if (space == foo.end())
break;
}
}
Here is my answer. No library calls and no temp data structures.
#include <stdio.h>
void reverse(char* string, int length){
int i;
for (i = 0; i < length/2; i++){
string[length - 1 - i] ^= string[i] ;
string[i] ^= string[length - 1 - i];
string[length - 1 - i] ^= string[i];
}
}
int main () {
char string[] = "This is a test string";
char *ptr;
int i = 0;
int word = 0;
ptr = (char *)&string;
printf("%s\n", string);
int length=0;
while (*ptr++){
++length;
}
reverse(string, length);
printf("%s\n", string);
for (i=0;i<length;i++){
if(string[i] == ' '){
reverse(&string[word], i-word);
word = i+1;
}
}
reverse(&string[word], i-word); //for last word
printf("\n%s\n", string);
return 0;
}
In pseudo code:
reverse input string
reverse each word (you will need to find word boundaries)
#Daren Thomas
Implementation of your algorithm (O(N) in time, O(1) in space) in D (Digital Mars):
#!/usr/bin/dmd -run
/**
* to compile & run:
* $ dmd -run reverse_words.d
* to optimize:
* $ dmd -O -inline -release reverse_words.d
*/
import std.algorithm: reverse;
import std.stdio: writeln;
import std.string: find;
void reverse_words(char[] str) {
// reverse whole string
reverse(str);
// reverse each word
for (auto i = 0; (i = find(str, " ")) != -1; str = str[i + 1..length])
reverse(str[0..i]);
// reverse last word
reverse(str);
}
void main() {
char[] str = cast(char[])("this is a string");
writeln(str);
reverse_words(str);
writeln(str);
}
Output:
this is a string
string a is this
in Ruby
"this is a string".split.reverse.join(" ")
In C: (C99)
#include <stdio.h>
#include <string.h>
void reverseString(char* string, int length)
{
char swap;
for (int i = 0; i < length/2; i++)
{
swap = string[length - 1 - i];
string[length - 1 - i] = string[i];
string[i] = swap;
}
}
int main (int argc, const char * argv[]) {
char teststring[] = "Given an array of characters which form a sentence of words, give an efficient algorithm to reverse the order of the words (not characters) in it.";
printf("%s\n", teststring);
int length = strlen(teststring);
reverseString(teststring, length);
int i = 0;
while (i < length)
{
int wordlength = strspn(teststring + i, "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");
reverseString(teststring + i, wordlength);
i += wordlength + 1;
}
printf("%s\n", teststring);
return 0;
}
This gives output:
Given an array of characters which
form a sentence of words, give an
efficient algorithm to reverse the
order of the words (not characters) in
it.
.it in )characters not( words the
of order the reverse to algorithm
efficient an give ,words of sentence a
form which characters of array an
Given
This takes at most 4N time, with small constant space.
Unfortunately, It doesn't handle punctuation or case gracefully.
O(N) in space and O(N) in time solution in Python:
def reverse_words_nosplit(str_):
"""
>>> f = reverse_words_nosplit
>>> f("this is a string")
'string a is this'
"""
iend = len(str_)
s = ""
while True:
ispace = str_.rfind(" ", 0, iend)
if ispace == -1:
s += str_[:iend]
break
s += str_[ispace+1:iend]
s += " "
iend = ispace
return s
You would use what is known as an iterative recursive function, which is O(N) in time as it takes N (N being the number of words) iterations to complete and O(1) in space as each iteration holds its own state within the function arguments.
(define (reverse sentence-to-reverse)
(reverse-iter (sentence-to-reverse ""))
(define (reverse-iter(sentence, reverse-sentence)
(if (= 0 string-length sentence)
reverse-sentence
( reverse-iter( remove-first-word(sentence), add-first-word(sentence, reverse-sentence)))
Note: I have written this in scheme which I am a complete novice, so apologies for lack of correct string manipulation.
remove-first-word finds the first word boundary of sentence, then takes that section of characters (including space and punctuation) and removes it and returns new sentence
add-first-word finds the first word boundary of sentence, then takes that section of characters (including space and punctuation) and adds it to reverse-sentence and returns new reverse-sentence contents.
THIS PROGRAM IS TO REVERSE THE SENTENCE USING POINTERS IN "C language" By Vasantha kumar & Sundaramoorthy from KONGU ENGG COLLEGE, Erode.
NOTE: Sentence must end with dot(.)
because NULL character is not assigned automatically
at the end of the sentence*
#include<stdio.h>
#include<string.h>
int main()
{
char *p,*s="this is good.",*t;
int i,j,a,l,count=0;
l=strlen(s);
p=&s[l-1];
t=&s[-1];
while(*t)
{
if(*t==' ')
count++;
t++;
}
a=count;
while(l!=0)
{
for(i=0;*p!=' '&&t!=p;p--,i++);
p++;
for(;((*p)!='.')&&(*p!=' ');p++)
printf("%c",*p);
printf(" ");
if(a==count)
{
p=p-i-1;
l=l-i;
}
else
{
p=p-i-2;
l=l-i-1;
}
count--;
}
return 0;
}
Push each word onto a stack. Pop all the words off the stack.
using System;
namespace q47407
{
class MainClass
{
public static void Main(string[] args)
{
string s = Console.ReadLine();
string[] r = s.Split(' ');
for(int i = r.Length-1 ; i >= 0; i--)
Console.Write(r[i] + " ");
Console.WriteLine();
}
}
}
edit: i guess i should read the whole question... carry on.
Efficient in terms of my time: took under 2 minutes to write in REBOL:
reverse_words: func [s [string!]] [form reverse parse s none]
Try it out:
reverse_words "this is a string"
"string a is this"
A C++ solution:
#include <string>
#include <iostream>
using namespace std;
string revwords(string in) {
string rev;
int wordlen = 0;
for (int i = in.length(); i >= 0; --i) {
if (i == 0 || iswspace(in[i-1])) {
if (wordlen) {
for (int j = i; wordlen--; )
rev.push_back(in[j++]);
wordlen = 0;
}
if (i > 0)
rev.push_back(in[i-1]);
}
else
++wordlen;
}
return rev;
}
int main() {
cout << revwords("this is a sentence") << "." << endl;
cout << revwords(" a sentence with extra spaces ") << "." << endl;
return 0;
}
A Ruby solution.
# Reverse all words in string
def reverse_words(string)
return string if string == ''
reverse(string, 0, string.size - 1)
bounds = next_word_bounds(string, 0)
while bounds.all? { |b| b < string.size }
reverse(string, bounds[:from], bounds[:to])
bounds = next_word_bounds(string, bounds[:to] + 1)
end
string
end
# Reverse a single word between indices "from" and "to" in "string"
def reverse(s, from, to)
half = (from - to) / 2 + 1
half.times do |i|
s[from], s[to] = s[to], s[from]
from, to = from.next, to.next
end
s
end
# Find the boundaries of the next word starting at index "from"
def next_word_bounds(s, from)
from = s.index(/\S/, from) || s.size
to = s.index(/\s/, from + 1) || s.size
return { from: from, to: to - 1 }
end
in C#, in-place, O(n), and tested:
static char[] ReverseAllWords(char[] in_text)
{
int lindex = 0;
int rindex = in_text.Length - 1;
if (rindex > 1)
{
//reverse complete phrase
in_text = ReverseString(in_text, 0, rindex);
//reverse each word in resultant reversed phrase
for (rindex = 0; rindex <= in_text.Length; rindex++)
{
if (rindex == in_text.Length || in_text[rindex] == ' ')
{
in_text = ReverseString(in_text, lindex, rindex - 1);
lindex = rindex + 1;
}
}
}
return in_text;
}
static char[] ReverseString(char[] intext, int lindex, int rindex)
{
char tempc;
while (lindex < rindex)
{
tempc = intext[lindex];
intext[lindex++] = intext[rindex];
intext[rindex--] = tempc;
}
return intext;
}
This problem can be solved with O(n) in time and O(1) in space. The sample code looks as mentioned below:
public static string reverseWords(String s)
{
char[] stringChar = s.ToCharArray();
int length = stringChar.Length, tempIndex = 0;
Swap(stringChar, 0, length - 1);
for (int i = 0; i < length; i++)
{
if (i == length-1)
{
Swap(stringChar, tempIndex, i);
tempIndex = i + 1;
}
else if (stringChar[i] == ' ')
{
Swap(stringChar, tempIndex, i-1);
tempIndex = i + 1;
}
}
return new String(stringChar);
}
private static void Swap(char[] p, int startIndex, int endIndex)
{
while (startIndex < endIndex)
{
p[startIndex] ^= p[endIndex];
p[endIndex] ^= p[startIndex];
p[startIndex] ^= p[endIndex];
startIndex++;
endIndex--;
}
}
Algorithm:
1).Reverse each word of the string.
2).Reverse resultant String.
public class Solution {
public String reverseWords(String p) {
String reg=" ";
if(p==null||p.length()==0||p.equals(""))
{
return "";
}
String[] a=p.split("\\s+");
StringBuilder res=new StringBuilder();;
for(int i=0;i<a.length;i++)
{
String temp=doReverseString(a[i]);
res.append(temp);
res.append(" ");
}
String resultant=doReverseString(res.toString());
System.out.println(res);
return resultant.toString().replaceAll("^\\s+|\\s+$", "");
}
public String doReverseString(String s)`{`
char str[]=s.toCharArray();
int start=0,end=s.length()-1;
while(start<end)
{
char temp=str[start];
str[start]=str[end];
str[end]=temp;
start++;
end--;
}
String a=new String(str);
return a;
}
public static void main(String[] args)
{
Solution r=new Solution();
String main=r.reverseWords("kya hua");
//System.out.println(re);
System.out.println(main);
}
}
A one liner:
l="Is this as expected ??"
" ".join(each[::-1] for each in l[::-1].split())
Output:
'?? expected as this Is'
The algorithm to solve this problem is based on two steps process, first step will reverse the individual words of string,then in second step, reverse whole string. Implementation of algorithm will take O(n) time and O(1) space complexity.
#include <stdio.h>
#include <string.h>
void reverseStr(char* s, int start, int end);
int main()
{
char s[] = "This is test string";
int start = 0;
int end = 0;
int i = 0;
while (1) {
if (s[i] == ' ' || s[i] == '\0')
{
reverseStr(s, start, end-1);
start = i + 1;
end = start;
}
else{
end++;
}
if(s[i] == '\0'){
break;
}
i++;
}
reverseStr(s, 0, strlen(s)-1);
printf("\n\noutput= %s\n\n", s);
return 0;
}
void reverseStr(char* s, int start, int end)
{
char temp;
int j = end;
int i = start;
for (i = start; i < j ; i++, j--) {
temp = s[i];
s[i] = s[j];
s[j] = temp;
}
}

Resources