Related
Question : Given an integer(n) denoting the no. of particles initially
Given an array of sizes of these particles
These particles can go into any number of simulations (possibly none)
In one simualtion two particles combines to give another particle with size as the difference between the size of them (possibly 0).
Find the smallest particle that can be formed.
constraints
n<=1000
size<=1e9
Example 1
3
30 10 8
Output
2
Explaination- 10 - 8 is the smallest we can achive
Example 2
4
1 2 4 8
output
1
explanation
We cannot make another 1 so as to get 0 so smallest without any simulation is 1
example 3
5
30 27 26 10 6
output
0
30-26=4
10-6 =4
4-4 =0
My thinking: I can only think of the brute force solution which will obviously time out. Can anyone help me out here with just the approach? I think it's related to dynamic programming
I think this can be solved in O(n^2log(n))
Consider your third example: 30 27 26 10 6
Sort the input to make it : 6 10 26 27 30
Build a list of differences for each (i,j) combination.
For:
i = 1 -> 4 20 21 24
i = 2 -> 16, 17, 20
i = 3 -> 1, 4
i = 4 -> 3
There is no list for i = 5 why? because it is already considered for combination with other particles before.
Now consider the below cases:
Case 1
The particle i is not combined with any other particle yet. This means some other particle should have been combined with a particle other than i.
This suggests us that we need to search for A[i] in the lists j = 1 to N except for j = i.
Get the nearest value. This can be done using binary search. Because your difference lists are sorted! Then your result for now is |A[i] - NearestValueFound|
Case 2
The particle i is combined with some other particle.
Take example i = 1 above and lets consider that its combined with particle 2. The result is 4.
So search for 4 in all the lists except list 2 - because we consider that particle 2 is already combined with particle 1 and we shouldn't search list 2.
Do we have a best match? It seems we have a match 4 found in the list 3. It needn't be 0 - in this case it is 0 so just return 0.
Repeat Case 1, 2 for all particles. Time complexity is O(n^2log(n)), because you are doing a binary search on all lists for each i except the list i.
import itertools as it
N = int(input())
nums = list()
for i in range(N):
nums.append(int(input()))
_min = min(nums)
def go(li):
global _min
if len(li)>1:
for i in it.combinations(li, 2):
temp = abs(i[0] - i[1])
if _min > temp:
_min = temp
k = li.copy()
k.remove(i[0])
k.remove(i[1])
k.append(temp)
go(k)
go(nums)
print(_min)
So I was looking at the various algorithms of solving Palindrome partitioning problem.
Like for a string "banana" minimum no of cuts so that each sub-string is a palindrome is 1 i.e. "b|anana"
Now I tried solving this problem using interval scheduling like:
Input: banana
Transformed string: # b # a # n # a # n # a #
P[] = lengths of palindromes considering each character as center of palindrome.
I[] = intervals
String: # b # a # n # a # n # a #
P[i]: 0 1 0 1 0 3 0 5 0 3 0 1 0
I[i]: 0 1 2 3 4 5 6 7 8 9 10 11 12
Example: Palindrome considering 'a' (index 7) as center is 5 "anana"
Now constructing intervals for each character based on P[i]:
b = (0,2)
a = (2,4)
n = (2,8)
a = (2,12)
n = (6,12)
a = (10,12)
So, now if I have to schedule these many intervals on time 0 to 12 such that minimum no of intervals should be scheduled and no time slot remain empty, I would choose (0,2) and (2,12) intervals and hence the answer for the solution would be 1 as I have broken down the given string in two palindromes.
Another test case:
String: # E # A # B # A # E # A # B #
P[i]: 0 1 0 1 0 5 0 1 0 5 0 1 0 1 0
I[i]: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Plotting on graph:
Now, the minimum no of intervals that can be scheduled are either:
1(0,2), 2(2,4), 5(4,14) OR
3(0,10), 6(10,12), 7(12,14)
Hence, we have 3 partitions so the no of cuts would be 2 either
E|A|BAEAB
EABAE|A|B
These are just examples. I would like to know if this algorithm will work for all cases or there are some cases where it would definitely fail.
Please help me achieve a proof that it will work in every scenario.
Note: Please don't discourage me if this post makes no sense as i have put enough time and effort on this problem, just state a reason or provide some link from where I can move forward with this solution. Thank you.
As long as you can get a partition of the string, your algorith will work.
Recall to mind that a partion P of a set S is a set of non empty subset A1, ..., An:
The union of every set A1, ... An gives the set S
The intersection between any Ai, Aj (with i != j) is empty
Even if the palindrome partitioning deals with strings (which are a bit different from sets), the properties of a partition are still true.
Hence, if you have a partition, you consequently have a set of time intervals without "holes" to schedule.
Choosing the partition with the minimum number of subsets, makes you have the minimum number of time intervals and therefore the minimum number of cuts.
Furthermore, you always have at least one palindrome partition of a string: in the worst case, you get a palindrome partition made of single characters.
I want to convert a number in base 10 into a special base form like this:
A*2^2 + B*3^1 + C*2^0
A can take on values of [0,1]
B can take on values of [0,1,2]
C can take on values of [0,1]
For example, the number 8 would be
1*2^2 + 1*3 + 1.
It is guaranteed that the given number can be converted to this specialized base system.
I know how to convert from this base system back to base-10, but I do not know how to convert from base-10 to this specialized base system.
In short words, treat every base number (2^2, 3^1, 2^0 in your example) as weight of an item, and the whole number as the capacity of a bag. This problem wants us to find a combination of these items which they fill the bag exactly.
In the first place this problem is NP-complete. It is identical to the subset sum problem, which can also be seen as a derivative problem of the knapsack problem.
Despite this fact, this problem can however be solved by a pseudo-polynomial time algorithm using dynamic programming in O(nW) time, which n is the number of bases, and W is the number to decompose. The details can be find in this wikipedia page: http://en.wikipedia.org/wiki/Knapsack_problem#Dynamic_programming and this SO page: What's it called when I want to choose items to fill container as full as possible - and what algorithm should I use?.
Simplifying your "special base":
X = A * 4 + B * 3 + C
A E {0,1}
B E {0,1,2}
C E {0,1}
Obviously the largest number that can be represented is 4 + 2 * 3 + 1 = 11
To figure out how to get the values of A, B, C you can do one of two things:
There are only 12 possible inputs: create a lookup table. Ugly, but quick.
Use some algorithm. A bit trickier.
Let's look at (1) first:
A B C X
0 0 0 0
0 0 1 1
0 1 0 3
0 1 1 4
0 2 0 6
0 2 1 7
1 0 0 4
1 0 1 5
1 1 0 7
1 1 1 8
1 2 0 10
1 2 1 11
Notice that 2 and 9 cannot be expressed in this system, while 4 and 7 occur twice. The fact that you have multiple possible solutions for a given input is a hint that there isn't a really robust algorithm (other than a look up table) to achieve what you want. So your table might look like this:
int A[] = {0,0,-1,0,0,1,0,1,1,-1,1,1};
int B[] = {0,0,-1,1,1,0,2,1,1,-1,2,2};
int C[] = {0,1,-1,0,2,1,0,1,1,-1,0,1};
Then look up A, B, C. If A < 0, there is no solution.
given a sorted array of distinct integers, what is the minimum number of steps required to make the integers contiguous? Here the condition is that: in a step , only one element can be changed and can be either increased or decreased by 1 . For example, if we have 2,4,5,6 then '2' can be made '3' thus making the elements contiguous(3,4,5,6) .Hence the minimum steps here is 1 . Similarly for the array: 2,4,5,8:
Step 1: '2' can be made '3'
Step 2: '8' can be made '7'
Step 3: '7' can be made '6'
Thus the sequence now is 3,4,5,6 and the number of steps is 3.
I tried as follows but am not sure if its correct?
//n is the number of elements in array a
int count=a[n-1]-a[0]-1;
for(i=1;i<=n-2;i++)
{
count--;
}
printf("%d\n",count);
Thanks.
The intuitive guess is that the "center" of the optimal sequence will be the arithmetic average, but this is not the case. Let's find the correct solution with some vector math:
Part 1: Assuming the first number is to be left alone (we'll deal with this assumption later), calculate the differences, so 1 12 3 14 5 16-1 2 3 4 5 6 would yield 0 -10 0 -10 0 -10.
sidenote: Notice that a "contiguous" array by your implied definition would be an increasing arithmetic sequence with difference 1. (Note that there are other reasonable interpretations of your question: some people may consider 5 4 3 2 1 to be contiguous, or 5 3 1 to be contiguous, or 1 2 3 2 3 to be contiguous. You also did not specify if negative numbers should be treated any differently.)
theorem: The contiguous numbers must lie between the minimum and maximum number. [proof left to reader]
Part 2: Now returning to our example, assuming we took the 30 steps (sum(abs(0 -10 0 -10 0 -10))=30) required to turn 1 12 3 14 5 16 into 1 2 3 4 5 6. This is one correct answer. But 0 -10 0 -10 0 -10+c is also an answer which yields an arithmetic sequence of difference 1, for any constant c. In order to minimize the number of "steps", we must pick an appropriate c. In this case, each time we increase or decrease c, we increase the number of steps by N=6 (the length of the vector). So for example if we wanted to turn our original sequence 1 12 3 14 5 16 into 3 4 5 6 7 8 (c=2), then the differences would have been 2 -8 2 -8 2 -8, and sum(abs(2 -8 2 -8 2 -8))=30.
Now this is very clear if you could picture it visually, but it's sort of hard to type out in text. First we took our difference vector. Imagine you drew it like so:
4|
3| *
2| * |
1| | | *
0+--+--+--+--+--*
-1| |
-2| *
We are free to "shift" this vector up and down by adding or subtracting 1 from everything. (This is equivalent to finding c.) We wish to find the shift which minimizes the number of | you see (the area between the curve and the x-axis). This is NOT the average (that would be minimizing the standard deviation or RMS error, not the absolute error). To find the minimizing c, let's think of this as a function and consider its derivative. If the differences are all far away from the x-axis (we're trying to make 101 112 103 114 105 116), it makes sense to just not add this extra stuff, so we shift the function down towards the x-axis. Each time we decrease c, we improve the solution by 6. Now suppose that one of the *s passes the x axis. Each time we decrease c, we improve the solution by 5-1=4 (we save 5 steps of work, but have to do 1 extra step of work for the * below the x-axis). Eventually when HALF the *s are past the x-axis, we can NO LONGER IMPROVE THE SOLUTION (derivative: 3-3=0). (In fact soon we begin to make the solution worse, and can never make it better again. Not only have we found the minimum of this function, but we can see it is a global minimum.)
Thus the solution is as follows: Pretend the first number is in place. Calculate the vector of differences. Minimize the sum of the absolute value of this vector; do this by finding the median OF THE DIFFERENCES and subtracting that off from the differences to obtain an improved differences-vector. The sum of the absolute value of the "improved" vector is your answer. This is O(N) The solutions of equal optimality will (as per the above) always be "adjacent". A unique solution exists only if there are an odd number of numbers; otherwise if there are an even number of numbers, AND the median-of-differences is not an integer, the equally-optimal solutions will have difference-vectors with corrective factors of any number between the two medians.
So I guess this wouldn't be complete without a final example.
input: 2 3 4 10 14 14 15 100
difference vector: 2 3 4 5 6 7 8 9-2 3 4 10 14 14 15 100 = 0 0 0 -5 -8 -7 -7 -91
note that the medians of the difference-vector are not in the middle anymore, we need to perform an O(N) median-finding algorithm to extract them...
medians of difference-vector are -5 and -7
let us take -5 to be our correction factor (any number between the medians, such as -6 or -7, would also be a valid choice)
thus our new goal is 2 3 4 5 6 7 8 9+5=7 8 9 10 11 12 13 14, and the new differences are 5 5 5 0 -3 -2 -2 -86*
this means we will need to do 5+5+5+0+3+2+2+86=108 steps
*(we obtain this by repeating step 2 with our new target, or by adding 5 to each number of the previous difference... but since you only care about the sum, we'd just add 8*5 (vector length times correct factor) to the previously calculated sum)
Alternatively, we could have also taken -6 or -7 to be our correction factor. Let's say we took -7...
then the new goal would have been 2 3 4 5 6 7 8 9+7=9 10 11 12 13 14 15 16, and the new differences would have been 7 7 7 2 1 0 0 -84
this would have meant we'd need to do 7+7+7+2+1+0+0+84=108 steps, the same as above
If you simulate this yourself, can see the number of steps becomes >108 as we take offsets further away from the range [-5,-7].
Pseudocode:
def minSteps(array A of size N):
A' = [0,1,...,N-1]
diffs = A'-A
medianOfDiffs = leftMedian(diffs)
return sum(abs(diffs-medianOfDiffs))
Python:
leftMedian = lambda x:sorted(x)[len(x)//2]
def minSteps(array):
target = range(len(array))
diffs = [t-a for t,a in zip(target,array)]
medianOfDiffs = leftMedian(diffs)
return sum(abs(d-medianOfDiffs) for d in diffs)
edit:
It turns out that for arrays of distinct integers, this is equivalent to a simpler solution: picking one of the (up to 2) medians, assuming it doesn't move, and moving other numbers accordingly. This simpler method often gives incorrect answers if you have any duplicates, but the OP didn't ask that, so that would be a simpler and more elegant solution. Additionally we can use the proof I've given in this solution to justify the "assume the median doesn't move" solution as follows: the corrective factor will always be in the center of the array (i.e. the median of the differences will be from the median of the numbers). Thus any restriction which also guarantees this can be used to create variations of this brainteaser.
Get one of the medians of all the numbers. As the numbers are already sorted, this shouldn't be a big deal. Assume that median does not move. Then compute the total cost of moving all the numbers accordingly. This should give the answer.
community edit:
def minSteps(a):
"""INPUT: list of sorted unique integers"""
oneMedian = a[floor(n/2)]
aTarget = [oneMedian + (i-floor(n/2)) for i in range(len(a))]
# aTargets looks roughly like [m-n/2?, ..., m-1, m, m+1, ..., m+n/2]
return sum(abs(aTarget[i]-a[i]) for i in range(len(a)))
This is probably not an ideal solution, but a first idea.
Given a sorted sequence [x1, x2, …, xn]:
Write a function that returns the differences of an element to the previous and to the next element, i.e. (xn – xn–1, xn+1 – xn).
If the difference to the previous element is > 1, you would have to increase all previous elements by xn – xn–1 – 1. That is, the number of necessary steps would increase by the number of previous elements × (xn – xn–1 – 1). Let's call this number a.
If the difference to the next element is >1, you would have to decrease all subsequent elements by xn+1 – xn – 1. That is, the number of necessary steps would increase by the number of subsequent elements × (xn+1 – xn – 1). Let's call this number b.
If a < b, then increase all previous elements until they are contiguous to the current element. If a > b, then decrease all subsequent elements until they are contiguous to the current element. If a = b, it doesn't matter which of these two actions is chosen.
Add up the number of steps taken in the previous step (by increasing the total number of necessary steps by either a or b), and repeat until all elements are contiguous.
First of all, imagine that we pick an arbitrary target of contiguous increasing values and then calculate the cost (number of steps required) for modifying the array the array to match.
Original: 3 5 7 8 10 16
Target: 4 5 6 7 8 9
Difference: +1 0 -1 -1 -2 -7 -> Cost = 12
Sign: + 0 - - - -
Because the input array is already ordered and distinct, it is strictly increasing. Because of this, it can be shown that the differences will always be non-increasing.
If we change the target by increasing it by 1, the cost will change. Each position in which the difference is currently positive or zero will incur an increase in cost by 1. Each position in which the difference is currently negative will yield a decrease in cost by 1:
Original: 3 5 7 8 10 16
New target: 5 6 7 8 9 10
New Difference: +2 +1 0 0 -1 -6 -> Cost = 10 (decrease by 2)
Conversely, if we decrease the target by 1, each position in which the difference is currently positive will yield a decrease in cost by 1, while each position in which the difference is zero or negative will incur an increase in cost by 1:
Original: 3 5 7 8 10 16
New target: 3 4 5 6 7 8
New Difference: 0 -1 -2 -2 -3 -8 -> Cost = 16 (increase by 4)
In order to find the optimal values for the target array, we must find a target such that any change (increment or decrement) will not decrease the cost. Note that an increment of the target can only decrease the cost when there are more positions with negative difference than there are with zero or positive difference. A decrement can only decrease the cost when there are more positions with a positive difference than with a zero or negative difference.
Here are some example distributions of difference signs. Remember that the differences array is non-increasing, so positives always have to be first and negatives last:
C C
+ + + - - - optimal
+ + 0 - - - optimal
0 0 0 - - - optimal
+ 0 - - - - can increment (negatives exceed positives & zeroes)
+ + + 0 0 0 optimal
+ + + + - - can decrement (positives exceed negatives & zeroes)
+ + 0 0 - - optimal
+ 0 0 0 0 0 optimal
C C
Observe that if one of the central elements (marked C) is zero, the target must be optimal. In such a circumstance, at best any increment or decrement will not change the cost, but it may increase it. This result is important, because it gives us a trivial solution. We pick a target such that a[n/2] remains unchanged. There may be other possible targets that yield the same cost, but there are definitely none that are better. Here's the original code modified to calculate this cost:
//n is the number of elements in array a
int targetValue;
int cost = 0;
int middle = n / 2;
int startValue = a[middle] - middle;
for (i = 0; i < n; i++)
{
targetValue = startValue + i;
cost += abs(targetValue - a[i]);
}
printf("%d\n",cost);
You can not do it by iterating once on the array, that's for sure.
You need first to check the difference between each two numbers, for example:
2,7,8,9 can be 2,3,4,5 with 18 steps or 6,7,8,9 with 4 steps.
Create a new array with the difference like so: for 2,7,8,9 it wiil be 4,1,1. Now you can decide whether to increase or decrease the first number.
Lets assume that the contiguous array looks something like this -
c c+1 c+2 c+3 .. and so on
Now lets take an example -
5 7 8 10
The contiguous array in this case will be -
c c+1 c+2 c+3
In order to get the minimum steps, the sum of the modulus of the difference of the integers(before and after) w.r.t the ith index should be the minimum. In which case,
(c-5)^2 + (c-6)^2 + (c-6)^2 + (c-7)^2 should be minimum
Let f(c) = (c-5)^2 + (c-6)^2 + (c-6)^2 + (c-7)^2
= 4c^2 - 48c + 146
Applying differential calculus to get the minima,
f'(c) = 8c - 48 = 0
=> c = 6
So our contiguous array is 6 7 8 9 and the minimum cost here is 2.
To sum it up, just generate f(c), get the first differential and find out c.
This should take O(n).
Brute force approach O(N*M)
If one draws a line through each point in the array a then y0 is a value where each line starts at index 0. Then the answer is the minimum among number of steps reqired to get from a to every line that starts at y0, in Python:
y0s = set((y - i) for i, y in enumerate(a))
nsteps = min(sum(abs(y-(y0+i)) for i, y in enumerate(a))
for y0 in xrange(min(y0s), max(y0s)+1)))
Input
2,4,5,6
2,4,5,8
Output
1
3
This was one of my interview questions.
We have a matrix containing integers (no range provided). The matrix is randomly populated with integers. We need to devise an algorithm which finds those rows which match exactly with a column(s). We need to return the row number and the column number for the match. The order of of the matching elements is the same. For example, If, i'th row matches with j'th column, and i'th row contains the elements - [1,4,5,6,3]. Then jth column would also contain the elements - [1,4,5,6,3]. Size is n x n.
My solution:
RCEQUAL(A,i1..12,j1..j2)// A is n*n matrix
if(i2-i1==2 && j2-j1==2 && b[n*i1+1..n*i2] has [j1..j2])
use brute force to check if the rows and columns are same.
if (any rows and columns are same)
store the row and column numbers in b[1..n^2].//b[1],b[n+2],b[2n+3].. store row no,
// b[2..n+1] stores columns that
//match with row 1, b[n+3..2n+2]
//those that match with row 2,etc..
else
RCEQUAL(A,1..n/2,1..n/2);
RCEQUAL(A,n/2..n,1..n/2);
RCEQUAL(A,1..n/2,n/2..n);
RCEQUAL(A,n/2..n,n/2..n);
Takes O(n^2). Is this correct? If correct, is there a faster algorithm?
you could build a trie from the data in the rows. then you can compare the columns with the trie.
this would allow to exit as soon as the beginning of a column do not match any row. also this would let you check a column against all rows in one pass.
of course the trie is most interesting when n is big (setting up a trie for a small n is not worth it) and when there are many rows and columns which are quite the same. but even in the worst case where all integers in the matrix are different, the structure allows for a clear algorithm...
You could speed up the average case by calculating the sum of each row/column and narrowing your brute-force comparison (which you have to do eventually) only on rows that match the sums of columns.
This doesn't increase the worst case (all having the same sum) but if your input is truly random that "won't happen" :-)
This might only work on non-singular matrices (not sure), but...
Let A be a square (and possibly non-singular) NxN matrix. Let A' be the transpose of A. If we create matrix B such that it is a horizontal concatenation of A and A' (in other words [A A']) and put it into RREF form, we will get a diagonal on all ones in the left half and some square matrix in the right half.
Example:
A = 1 2
3 4
A'= 1 3
2 4
B = 1 2 1 3
3 4 2 4
rref(B) = 1 0 0 -2
0 1 0.5 2.5
On the other hand, if a column of A were equal to a row of A then column of A would be equal to a column of A'. Then we would get another single 1 in of of the columns of the right half of rref(B).
Example
A=
1 2 3 4 5
2 6 -3 4 6
3 8 -7 6 9
4 1 7 -5 3
5 2 4 -1 -1
A'=
1 2 3 4 5
2 6 8 1 2
3 -3 -7 7 4
4 4 6 -5 -1
5 6 9 3 -1
B =
1 2 3 4 5 1 2 3 4 5
2 6 -3 4 6 2 6 8 1 2
3 8 -7 6 9 3 -3 -7 7 4
4 1 7 -5 3 4 4 6 -5 -1
5 2 4 -1 -1 5 6 9 3 -1
rref(B)=
1 0 0 0 0 1.000 -3.689 -5.921 3.080 0.495
0 1 0 0 0 0 6.054 9.394 -3.097 -1.024
0 0 1 0 0 0 2.378 3.842 -0.961 0.009
0 0 0 1 0 0 -0.565 -0.842 1.823 0.802
0 0 0 0 1 0 -2.258 -3.605 0.540 0.662
1.000 in the top row of the right half means that the first column of A matches on of its rows. The fact that the 1.000 is in the left-most column of the right half means that it is the first row.
Without looking at your algorithm or any of the approaches in the previous answers, but since the matrix has n^2 elements to begin with, I do not think there is a method which does better than that :)
IFF the matrix is truely random...
You could create a list of pointers to the columns sorted by the first element. Then create a similar list of the rows sorted by their first element. This takes O(n*logn).
Next create an index into each sorted list initialized to 0. If the first elements match, you must compare the whole row. If they do not match, increment the index of the one with the lowest starting element (either move to the next row or to the next column). Since each index cycles from 0 to n-1 only once, you have at most 2*n comparisons unless all the rows and columns start with the same number, but we said a matrix of random numbers.
The time for a row/column comparison is n in the worst case, but is expected to be O(1) on average with random data.
So 2 sorts of O(nlogn), and a scan of 2*n*1 gives you an expected run time of O(nlogn). This is of course assuming random data. Worst case is still going to be n**3 for a large matrix with most elements the same value.