Find all points in sphere of radius r around arbitrary coordinate - algorithm

I'm looking for an efficient algorithm that for a space with known height, width and length, given a fixed radius R, and a list of points N, with 3-dimensional coordinates in that space, will find all the points within a fixed radius R of an arbitrary point on the grid. This query will be done many times with different points, so an expensive pre-processing/sorting step, in exchange for quick queries may be worth it. This is a bit of a bottleneck step of an application I'm working on, so any time I can cut off of it is useful
Things I have tried so far:
-The naive algorithm, iterate over all points and calculate distance
-Divide the space into a grid with cubes of length R, and put the points into these. That way, for each point, I only have to ever query the immediate neighboring buckets. This has a significant speedup
-I've tried using the manhattan distance as a heuristic. That is, within the buckets, before calculating a distance to any point, use the manhattan distance to filter out those that can't possibly be within radius R (that is, those with a manhattan distance of <= sqrt(3)*R). I thought this would offer a speedup, as it only needs addition instead of multiplication, but it actually slowed the program down by a little bit
EDIT: To compare the distances, I use the squared distance to eliminate having to use a sqrt function.
Obviously, there will be some limit on how much I can speed this up, but I could use any suggestions on things to try now.
Not that it probably matters on the algorithmic level, but I'm working in C.

You may get a speed benefit from storing your points in a k-d tree with three dimensions. That will give you searchs in O(log n) amortized time.

Don't compare on the radius, compare on the square of the radius. The reason being is, if the distance between two points is less than R, then the square of the distance is less than R^2.
This way, when you're using the distance formula, you don't need to compute the square root, which is a very expensive operation.

I would recommend using either K-D tree or z-curve:
http://en.wikipedia.org/wiki/Z-order_%28curve%29

How about Binary Indexed Tree ? (Topcoder tutorials referred) It can be extended to n Dimensions,and is simpler to code.

Nicolas Brodu's NEIGHAND library do exactly what you want, improving on the bin-lattice algorithm.
More details can be found in his article: Query Sphere Indexing for Neighborhood Requests

[I might be misunderstanding the question. I'm finding the problem statement difficult to parse.]
In the old days, it was often good to design a this type of algorithm with "early outs" that do tests to try to avoid a more expensive calculation. In modern processors, a failure of a branch-prediction is often very expensive, and those early-out tests can actually be more expensive that the full calculation. (The only way to know for sure is to measure.)
In this case, the calculation is pretty simple, so it may be best to avoid building a data structure or doing any clever early-out checks and instead try to optimize, vectorize, and parallelize to get the throughput you need.
For a point P(x, y, z) and a sphere S(x_s, y_s, z_s, radius), the membership test is:
(x - x_s)^2 + (x - y_s)^2 + (z - z_s)^2 < radius^2
where radius^2 can be pre-calculated once for all the points in the query (avoiding any square root calculations). These calculations are all independent, you can compute it for several points in parallel. With something like SSE, you could probably do four at a time. And if you have many points to test, you could split the list and further parallelize the work across multiple cores.

Related

Algorithm for nearest point

I've got a list of ~5000 points (specified as longitude/latitude pairs), and I want to find the nearest 5 of these to another point, specified by the user.
Can anyone suggest an efficient algorithm for working this out? I'm implementing this in Ruby, so if there's a suitable library then that would be good to know, but I'm still interested in the algorithm!
UPDATE: A couple of people have asked for more specific details on the problem. So here goes:
The 5000 points are mostly within the same city. There might be a few outside it, but it's safe to assume that 99% of them lie within a 75km radius, and that all of them lie within a 200km radius.
The list of points changes rarely. For the sake of argument, let's say it gets updated once per day, and we have to deal with a few thousand requests in that time.
You could accelerate the search by partitioning the 2D space with a quad-tree or a kd-tree and then once you've reach a leaf node you compare the remaining distances one by one until you find the closest match.
See also this blog post which refers to this other blog post which both discuss nearest neighbors searches with kd-trees in Ruby.
You can get a very fast upper-bound estimator on distance using Manhattan distance (scaled for latitude), this should be good enough for rejecting 99.9% of candidates if they're not close (EDIT: since then you tell us they are close. In that case, your metric should be distance-squared, as per Lars H comment).
Consider this equivalent to rejecting anything outside a spherical-rectangle bounding-box (as an approximation to a circle bounding-box).
I don't do Ruby so here is algorithm with pseudocode:
Let the latitude, longitude of your reference point P (pa,po) and the other point X (xa,xo).
Precompute ka, the latitude scaling factor for longitudinal distances: ka (= cos(pa in°)). (Strictly, ka = constant is a linearized approximation in the vicinity of P.)
Then the distance estimator is: D(X,P) = ka*|xa-pa| + |xo-po| = ka*da + do
where |z| means abs(z). At worst this overestimates true distance by a factor of √2 (when da==do), hence we allow for that as follows:
Do a running search and keep Dmin, the fifth-smallest scaled-Manhattan-distance-estimate.
Hence you can reject upfront all points for which D(X,P) > √2 * Dmin (since they must be at least farther away than √((ka*da)² + do²) - that should eliminate 99.9% of points).
Keep a list of all remaining candidate points with D(X,P) <= √2 * Dmin. Update Dmin if you found a new fifth-smallest D. Priority-queue, or else a list of (coord,D) are good data structures.
Note that we never computed Euclidean distance, we only used float multiplication and addition.
(Consider this similar to quadtree except filtering out everything except the region that interests us, hence no need to compute accurate distances upfront or build the data structure.)
It would help if you tell us the expected spread in latitudes, longitudes (degrees, minutes or what? If all the points are close, the √2 factor in this estimator will be too conservative and mark every point as a candidate; a lookup-table based distance estimator would be preferable.)
Pseudocode:
initialize Dmin with the fifth-smallest D from the first five points in list
for point X in list:
if D(X,P) <= √2 * Dmin:
insert the tuple (X,D) in the priority-queue of candidates
if (Dmin>D): Dmin = D
# after first pass, reject candidates with D > √2 * Dmin (use the final value of Dmin)
# ...
# then a second pass on candidates to find lowest 5 exact distances
Since your list is quite short, I'd highly recommend brute force. Just compare all 5000 to the user-specified point. It'll be O(n) and you'll get paid.
Other than that, a quad-tree or Kd-tree are the usual approaches to spacial subdivision. But in your case, you'll end up doing a linear number of insertions into the tree, and then a constant number of logarithmic lookups... a bit of a waste, when you're probably better off just doing a linear number of distance comparisons and being done with it.
Now, if you want to find the N nearest points, you're looking at sorting on the computed distances and taking the first N, but that's still O(n log n)ish.
EDIT: It's worth noting that building the spacial tree becomes worthwhile if you're going to reuse the list of points for multiple queries.
Rather than pure brute-force, for 5000 nodes, I would calculate the individual x+y distances for every node, rather than the straight line distance.
Once you've sorted that list, if e.g. x+y for the 5th node is 38, you can rule out any node where either x or y distance is > 38. This way, you can rule out a lot of nodes without having to calculate the straight line distance. Then brute force calculate the straight line distance for the remaining nodes.
These algorithms are not easily explained, thus I will only give you some hints in the right direction. You should look for Voronoi Diagrams. With a Voronoi Diagram you can easily precompute a graph in O(n^2 log n) time and search the closest point in O(log n) time.
Precomputation is done with a cron job at night and searching is live. This corresponds to your specification.
Now you could save the k closests pairs of each of your 5000 points and then starting from the nearest point from the Voronoi Diagram and search the remaining 4 points.
But be warned that these algorithms are not very easy to implement.
A good reference is:
de Berg: Computational Geometry Algorithms Applications (2008) chapters 7.1 and 7.2
Since you have that few points, I would recommend doing a brute-force search, to the effect of trying all points against each other with is an O(n^2) operation, with n = 5000, or roughly 25/2 million iterations of a suitable algorithm, and just storing the relevant results. This would have sub 100 ms execution time in C, so we are looking at a second or two at the most in Ruby.
When the user picks a point, you can use your stored data to give the results in constant time.
EDIT I re-read your question, and it seems as though the user provides his own last point. In that case it's faster to just do a O(n) linear search through your set each time user provides a point.
if you need to repeat this multiple times, with different user-entered locations, but don't want to implement a quad-tree (or can't find a library implementation) then you can use a locality-sensitive hashing (kind-of) approach that's fairly intuitive:
take your (x,y) pairs and create two lists, one of (x, i) and one of (y, i) where i is the index of the point
sort both lists
then, when given a point (X, Y),
bisection sort for X and Y
expand outwards on both lists, looking for common indices
for common indices, calculate exact distances
stop expanding when the differences in X and Y exceed the exact distance of the most-distant of the current 5 points.
all you're doing is saying that a nearby point must have a similar x and a similar y value...

Nearest neighbors in high-dimensional data?

I have asked a question a few days back on how to find the nearest neighbors for a given vector. My vector is now 21 dimensions and before I proceed further, because I am not from the domain of Machine Learning nor Math, I am beginning to ask myself some fundamental questions:
Is Euclidean distance a good metric for finding the nearest neighbors in the first place? If not, what are my options?
In addition, how does one go about deciding the right threshold for determining the k-neighbors? Is there some analysis that can be done to figure this value out?
Previously, I was suggested to use kd-Trees but the Wikipedia page clearly says that for high-dimensions, kd-Tree is almost equivalent to a brute-force search. In that case, what is the best way to find nearest-neighbors in a million point dataset efficiently?
Can someone please clarify the some (or all) of the above questions?
I currently study such problems -- classification, nearest neighbor searching -- for music information retrieval.
You may be interested in Approximate Nearest Neighbor (ANN) algorithms. The idea is that you allow the algorithm to return sufficiently near neighbors (perhaps not the nearest neighbor); in doing so, you reduce complexity. You mentioned the kd-tree; that is one example. But as you said, kd-tree works poorly in high dimensions. In fact, all current indexing techniques (based on space partitioning) degrade to linear search for sufficiently high dimensions [1][2][3].
Among ANN algorithms proposed recently, perhaps the most popular is Locality-Sensitive Hashing (LSH), which maps a set of points in a high-dimensional space into a set of bins, i.e., a hash table [1][3]. But unlike traditional hashes, a locality-sensitive hash places nearby points into the same bin.
LSH has some huge advantages. First, it is simple. You just compute the hash for all points in your database, then make a hash table from them. To query, just compute the hash of the query point, then retrieve all points in the same bin from the hash table.
Second, there is a rigorous theory that supports its performance. It can be shown that the query time is sublinear in the size of the database, i.e., faster than linear search. How much faster depends upon how much approximation we can tolerate.
Finally, LSH is compatible with any Lp norm for 0 < p <= 2. Therefore, to answer your first question, you can use LSH with the Euclidean distance metric, or you can use it with the Manhattan (L1) distance metric. There are also variants for Hamming distance and cosine similarity.
A decent overview was written by Malcolm Slaney and Michael Casey for IEEE Signal Processing Magazine in 2008 [4].
LSH has been applied seemingly everywhere. You may want to give it a try.
[1] Datar, Indyk, Immorlica, Mirrokni, "Locality-Sensitive Hashing Scheme Based on p-Stable Distributions," 2004.
[2] Weber, Schek, Blott, "A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces," 1998.
[3] Gionis, Indyk, Motwani, "Similarity search in high dimensions via hashing," 1999.
[4] Slaney, Casey, "Locality-sensitive hashing for finding nearest neighbors", 2008.
I. The Distance Metric
First, the number of features (columns) in a data set is not a factor in selecting a distance metric for use in kNN. There are quite a few published studies directed to precisely this question, and the usual bases for comparison are:
the underlying statistical
distribution of your data;
the relationship among the features
that comprise your data (are they
independent--i.e., what does the
covariance matrix look like); and
the coordinate space from which your
data was obtained.
If you have no prior knowledge of the distribution(s) from which your data was sampled, at least one (well documented and thorough) study concludes that Euclidean distance is the best choice.
YEuclidean metric used in mega-scale Web Recommendation Engines as well as in current academic research. Distances calculated by Euclidean have intuitive meaning and the computation scales--i.e., Euclidean distance is calculated the same way, whether the two points are in two dimension or in twenty-two dimension space.
It has only failed for me a few times, each of those cases Euclidean distance failed because the underlying (cartesian) coordinate system was a poor choice. And you'll usually recognize this because for instance path lengths (distances) are no longer additive--e.g., when the metric space is a chessboard, Manhattan distance is better than Euclidean, likewise when the metric space is Earth and your distances are trans-continental flights, a distance metric suitable for a polar coordinate system is a good idea (e.g., London to Vienna is is 2.5 hours, Vienna to St. Petersburg is another 3 hrs, more or less in the same direction, yet London to St. Petersburg isn't 5.5 hours, instead, is a little over 3 hrs.)
But apart from those cases in which your data belongs in a non-cartesian coordinate system, the choice of distance metric is usually not material. (See this blog post from a CS student, comparing several distance metrics by examining their effect on kNN classifier--chi square give the best results, but the differences are not large; A more comprehensive study is in the academic paper, Comparative Study of Distance Functions for Nearest Neighbors--Mahalanobis (essentially Euclidean normalized by to account for dimension covariance) was the best in this study.
One important proviso: for distance metric calculations to be meaningful, you must re-scale your data--rarely is it possible to build a kNN model to generate accurate predictions without doing this. For instance, if you are building a kNN model to predict athletic performance, and your expectation variables are height (cm), weight (kg), bodyfat (%), and resting pulse (beats per minute), then a typical data point might look something like this: [ 180.4, 66.1, 11.3, 71 ]. Clearly the distance calculation will be dominated by height, while the contribution by bodyfat % will be almost negligible. Put another way, if instead, the data were reported differently, so that bodyweight was in grams rather than kilograms, then the original value of 86.1, would be 86,100, which would have a large effect on your results, which is exactly what you don't want. Probably the most common scaling technique is subtracting the mean and dividing by the standard deviation (mean and sd refer calculated separately for each column, or feature in that data set; X refers to an individual entry/cell within a data row):
X_new = (X_old - mu) / sigma
II. The Data Structure
If you are concerned about performance of the kd-tree structure, A Voronoi Tessellation is a conceptually simple container but that will drastically improve performance and scales better than kd-Trees.
This is not the most common way to persist kNN training data, though the application of VT for this purpose, as well as the consequent performance advantages, are well-documented (see e.g. this Microsoft Research report). The practical significance of this is that, provided you are using a 'mainstream' language (e.g., in the TIOBE Index) then you ought to find a library to perform VT. I know in Python and R, there are multiple options for each language (e.g., the voronoi package for R available on CRAN)
Using a VT for kNN works like this::
From your data, randomly select w points--these are your Voronoi centers. A Voronoi cell encapsulates all neighboring points that are nearest to each center. Imagine if you assign a different color to each of Voronoi centers, so that each point assigned to a given center is painted that color. As long as you have a sufficient density, doing this will nicely show the boundaries of each Voronoi center (as the boundary that separates two colors.
How to select the Voronoi Centers? I use two orthogonal guidelines. After random selecting the w points, calculate the VT for your training data. Next check the number of data points assigned to each Voronoi center--these values should be about the same (given uniform point density across your data space). In two dimensions, this would cause a VT with tiles of the same size.That's the first rule, here's the second. Select w by iteration--run your kNN algorithm with w as a variable parameter, and measure performance (time required to return a prediction by querying the VT).
So imagine you have one million data points..... If the points were persisted in an ordinary 2D data structure, or in a kd-tree, you would perform on average a couple million distance calculations for each new data points whose response variable you wish to predict. Of course, those calculations are performed on a single data set. With a V/T, the nearest-neighbor search is performed in two steps one after the other, against two different populations of data--first against the Voronoi centers, then once the nearest center is found, the points inside the cell corresponding to that center are searched to find the actual nearest neighbor (by successive distance calculations) Combined, these two look-ups are much faster than a single brute-force look-up. That's easy to see: for 1M data points, suppose you select 250 Voronoi centers to tesselate your data space. On average, each Voronoi cell will have 4,000 data points. So instead of performing on average 500,000 distance calculations (brute force), you perform far lesss, on average just 125 + 2,000.
III. Calculating the Result (the predicted response variable)
There are two steps to calculating the predicted value from a set of kNN training data. The first is identifying n, or the number of nearest neighbors to use for this calculation. The second is how to weight their contribution to the predicted value.
W/r/t the first component, you can determine the best value of n by solving an optimization problem (very similar to least squares optimization). That's the theory; in practice, most people just use n=3. In any event, it's simple to run your kNN algorithm over a set of test instances (to calculate predicted values) for n=1, n=2, n=3, etc. and plot the error as a function of n. If you just want a plausible value for n to get started, again, just use n = 3.
The second component is how to weight the contribution of each of the neighbors (assuming n > 1).
The simplest weighting technique is just multiplying each neighbor by a weighting coefficient, which is just the 1/(dist * K), or the inverse of the distance from that neighbor to the test instance often multiplied by some empirically derived constant, K. I am not a fan of this technique because it often over-weights the closest neighbors (and concomitantly under-weights the more distant ones); the significance of this is that a given prediction can be almost entirely dependent on a single neighbor, which in turn increases the algorithm's sensitivity to noise.
A must better weighting function, which substantially avoids this limitation is the gaussian function, which in python, looks like this:
def weight_gauss(dist, sig=2.0) :
return math.e**(-dist**2/(2*sig**2))
To calculate a predicted value using your kNN code, you would identify the n nearest neighbors to the data point whose response variable you wish to predict ('test instance'), then call the weight_gauss function, once for each of the n neighbors, passing in the distance between each neighbor the the test point.This function will return the weight for each neighbor, which is then used as that neighbor's coefficient in the weighted average calculation.
What you are facing is known as the curse of dimensionality. It is sometimes useful to run an algorithm like PCA or ICA to make sure that you really need all 21 dimensions and possibly find a linear transformation which would allow you to use less than 21 with approximately the same result quality.
Update:
I encountered them in a book called Biomedical Signal Processing by Rangayyan (I hope I remember it correctly). ICA is not a trivial technique, but it was developed by researchers in Finland and I think Matlab code for it is publicly available for download. PCA is a more widely used technique and I believe you should be able to find its R or other software implementation. PCA is performed by solving linear equations iteratively. I've done it too long ago to remember how. = )
The idea is that you break up your signals into independent eigenvectors (discrete eigenfunctions, really) and their eigenvalues, 21 in your case. Each eigenvalue shows the amount of contribution each eigenfunction provides to each of your measurements. If an eigenvalue is tiny, you can very closely represent the signals without using its corresponding eigenfunction at all, and that's how you get rid of a dimension.
Top answers are good but old, so I'd like to add up a 2016 answer.
As said, in a high dimensional space, the curse of dimensionality lurks around the corner, making the traditional approaches, such as the popular k-d tree, to be as slow as a brute force approach. As a result, we turn our interest in Approximate Nearest Neighbor Search (ANNS), which in favor of some accuracy, speedups the process. You get a good approximation of the exact NN, with a good propability.
Hot topics that might be worthy:
Modern approaches of LSH, such as Razenshteyn's.
RKD forest: Forest(s) of Randomized k-d trees (RKD), as described in FLANN,
or in a more recent approach I was part of, kd-GeRaF.
LOPQ which stands for Locally Optimized Product Quantization, as described here. It is very similar to the new Babenko+Lemptitsky's approach.
You can also check my relevant answers:
Two sets of high dimensional points: Find the nearest neighbour in the other set
Comparison of the runtime of Nearest Neighbor queries on different data structures
PCL kd-tree implementation extremely slow
To answer your questions one by one:
No, euclidean distance is a bad metric in high dimensional space. Basically in high dimensions, data points have large differences between each other. That decreases the relative difference in the distance between a given data point and its nearest and farthest neighbour.
Lot of papers/research are there in high dimension data, but most of the stuff requires a lot of mathematical sophistication.
KD tree is bad for high dimensional data ... avoid it by all means
Here is a nice paper to get you started in the right direction. "When in Nearest Neighbour meaningful?" by Beyer et all.
I work with text data of dimensions 20K and above. If you want some text related advice, I might be able to help you out.
Cosine similarity is a common way to compare high-dimension vectors. Note that since it's a similarity not a distance, you'd want to maximize it not minimize it. You can also use a domain-specific way to compare the data, for example if your data was DNA sequences, you could use a sequence similarity that takes into account probabilities of mutations, etc.
The number of nearest neighbors to use varies depending on the type of data, how much noise there is, etc. There are no general rules, you just have to find what works best for your specific data and problem by trying all values within a range. People have an intuitive understanding that the more data there is, the fewer neighbors you need. In a hypothetical situation where you have all possible data, you only need to look for the single nearest neighbor to classify.
The k Nearest Neighbor method is known to be computationally expensive. It's one of the main reasons people turn to other algorithms like support vector machines.
kd-trees indeed won't work very well on high-dimensional data. Because the pruning step no longer helps a lot, as the closest edge - a 1 dimensional deviation - will almost always be smaller than the full-dimensional deviation to the known nearest neighbors.
But furthermore, kd-trees only work well with Lp norms for all I know, and there is the distance concentration effect that makes distance based algorithms degrade with increasing dimensionality.
For further information, you may want to read up on the curse of dimensionality, and the various variants of it (there is more than one side to it!)
I'm not convinced there is a lot use to just blindly approximating Euclidean nearest neighbors e.g. using LSH or random projections. It may be necessary to use a much more fine tuned distance function in the first place!
A lot depends on why you want to know the nearest neighbors. You might look into the mean shift algorithm http://en.wikipedia.org/wiki/Mean-shift if what you really want is to find the modes of your data set.
I think cosine on tf-idf of boolean features would work well for most problems. That's because its time-proven heuristic used in many search engines like Lucene. Euclidean distance in my experience shows bad results for any text-like data. Selecting different weights and k-examples can be done with training data and brute-force parameter selection.
iDistance is probably the best for exact knn retrieval in high-dimensional data. You can view it as an approximate Voronoi tessalation.
I've experienced the same problem and can say the following.
Euclidean distance is a good distance metric, however it's computationally more expensive than the Manhattan distance, and sometimes yields slightly poorer results, thus, I'd choose the later.
The value of k can be found empirically. You can try different values and check the resulting ROC curves or some other precision/recall measure in order to find an acceptable value.
Both Euclidean and Manhattan distances respect the Triangle inequality, thus you can use them in metric trees. Indeed, KD-trees have their performance severely degraded when the data have more than 10 dimensions (I've experienced that problem myself). I found VP-trees to be a better option.
KD Trees work fine for 21 dimensions, if you quit early,
after looking at say 5 % of all the points.
FLANN does this (and other speedups)
to match 128-dim SIFT vectors. (Unfortunately FLANN does only the Euclidean metric,
and the fast and solid
scipy.spatial.cKDTree
does only Lp metrics;
these may or may not be adequate for your data.)
There is of course a speed-accuracy tradeoff here.
(If you could describe your Ndata, Nquery, data distribution,
that might help people to try similar data.)
Added 26 April, run times for cKDTree with cutoff on my old mac ppc, to give a very rough idea of feasibility:
kdstats.py p=2 dim=21 N=1000000 nask=1000 nnear=2 cutoff=1000 eps=0 leafsize=10 clustype=uniformp
14 sec to build KDtree of 1000000 points
kdtree: 1000 queries looked at av 0.1 % of the 1000000 points, 0.31 % of 188315 boxes; better 0.0042 0.014 0.1 %
3.5 sec to query 1000 points
distances to 2 nearest: av 0.131 max 0.253
kdstats.py p=2 dim=21 N=1000000 nask=1000 nnear=2 cutoff=5000 eps=0 leafsize=10 clustype=uniformp
14 sec to build KDtree of 1000000 points
kdtree: 1000 queries looked at av 0.48 % of the 1000000 points, 1.1 % of 188315 boxes; better 0.0071 0.026 0.5 %
15 sec to query 1000 points
distances to 2 nearest: av 0.131 max 0.245
You could try a z order curve. It's easy for 3 dimension.
I had a similar question a while back. For fast Approximate Nearest Neighbor Search you can use the annoy library from spotify: https://github.com/spotify/annoy
This is some example code for the Python API, which is optimized in C++.
from annoy import AnnoyIndex
import random
f = 40
t = AnnoyIndex(f, 'angular') # Length of item vector that will be indexed
for i in range(1000):
v = [random.gauss(0, 1) for z in range(f)]
t.add_item(i, v)
t.build(10) # 10 trees
t.save('test.ann')
# ...
u = AnnoyIndex(f, 'angular')
u.load('test.ann') # super fast, will just mmap the file
print(u.get_nns_by_item(0, 1000)) # will find the 1000 nearest neighbors
They provide different distance measurements. Which distance measurement you want to apply depends highly on your individual problem. Also consider prescaling (meaning weighting) certain dimensions for importance first. Those dimension or feature importance weights might be calculated by something like entropy loss or if you have a supervised learning problem gini impurity gain or mean average loss, where you check how much worse your machine learning model performs, if you scramble this dimensions values.
Often the direction of the vector is more important than it's absolute value. For example in the semantic analysis of text documents, where we want document vectors to be close when their semantics are similar, not their lengths. Thus we can either normalize those vectors to unit length or use angular distance (i.e. cosine similarity) as a distance measurement.
Hope this is helpful.
Is Euclidean distance a good metric for finding the nearest neighbors in the first place? If not, what are my options?
I would suggest soft subspace clustering, a pretty common approach nowadays, where feature weights are calculated to find the most relevant dimensions. You can use these weights when using euclidean distance, for example. See curse of dimensionality for common problems and also this article can enlighten you somehow:
A k-means type clustering algorithm for subspace clustering of mixed numeric and
categorical datasets

How to find nearest vector in {0,1,2}^12, over and over again

I'm searching a space of vectors of length 12, with entries 0, 1, 2. For example, one such vector is
001122001122. I have about a thousand good vectors, and about a thousand bad vectors. For each bad vector I need to locate the closest good vector. Distance between two vectors is just the number of coordinates which don't match. The good vectors aren't particularly nicely arranged, and the reason they're "good" doesn't seem to be helpful here. My main priority is that the algorithm be fast.
If I do a simple exhaustive search, I have to calculate about 1000*1000 distances. That seems pretty thick-headed.
If I apply Dijkstra's algorithm first using the good vectors, I can calculate the closest vector and minimal distance for every vector in the space, so that each bad vector requires a simple lookup. But the space has 3^12 = 531,441 vectors in it, so the precomputation is half a million distance computations. Not much savings.
Can you help me think of a better way?
Edit: Since people asked earnestly what makes them "good": Each vector represents a description of a hexagonal picture of six equilateral triangles, which is the 2D image of a 3D arrangement of cubes (think generalized Q-bert). The equilateral triangles are halves of faces of cubes (45-45-90), tilted into perspective. Six of the coordinates describe the nature of the triangle (perceived floor, left wall, right wall), and six coordinates describe the nature of the edges (perceived continuity, two kinds of perceived discontinuity). The 1000 good vectors are those that represent hexagons that can be witnessed when seeing cubes-in-perspective. The reason for the search is to apply local corrections to a hex map full of triangles...
Just to keep the things in perspective, and be sure you are not optimizing unnecessary things, the brute force approach without any optimization takes 12 seconds in my machine.
Code in Mathematica:
bad = Table[RandomInteger[5, 12], {1000}];
good = Table[RandomInteger[2, 12], {1000}];
distance[a_, b_] := Total[Sign#Abs[a - b]];
bestMatch = #[[2]] & /#
Position[
Table[Ordering#
Table[distance[good[[j]], bad[[i]]], {j, Length#good}], {i,
Length#bad}], 1] // Timing
As you may expect, the Time follows a O(n^2) law:
This sounds a lot like what spellcheckers have to do. The trick is generally to abuse tries.
The most basic thing you can do is build a trie over the good vectors, then do a flood-fill prioritizing branches with few mismatches. This will be very fast when there is a nearby vector, and degenerate to brute force when the closest vector is very far away. Not bad.
But I think you can do better. Bad vectors which share the same prefix will do the same initial branching work, so we can try to share that as well. So we also build a trie over the bad vectors and sortof do them all at once.
No guarantees this is correct, since both the algorithm and code are off the top of my head:
var goodTrie = new Trie(goodVectors)
var badTrie = new Trie(badVectors)
var result = new Map<Vector, Vector>()
var pq = new PriorityQueue(x => x.error)
pq.add(new {good: goodTrie, bad: badTrie, error: 0})
while pq.Count > 0
var g,b,e = q.Dequeue()
if b.Count == 0:
//all leafs of this path have been removed
continue
if b.IsLeaf:
//we have found a mapping with minimum error for this bad item
result[b.Item] = g.Item
badTrie.remove(b) //prevent redundant results
else:
//We are zipping down the tries. Branch to all possibilities.
q.EnqueueAll(from i in {0,1,2}
from j in {0,1,2}
select new {good: g[i], bad: b[j], error: e + i==j ? 0 : 1})
return result
A final optimization might be to re-order the vectors so positions with high agreement among the bad vectors come first and share more work.
3^12 isn't a very large search space. If speed is essential and generality of the algorithm is not, you could just map each vector to an int in the range 0..531440 and use it as an index into a precomputed table of "nearest good vectors".
If you gave each entry in that table a 32-bit word (which is more than enough), you'd be looking at about 2 MB for the table, in exchange for pretty much instantaneous "calculation".
edit: this is not much different from the precomputation the question suggests, but my point is just that depending on the application, there's not necessarily any problem with doing it that way, especially if you do all the precalculations before the application even runs.
My computational geometry is VERY rough, but it seems that you should be able to:
Calculate the Voronoi diagram for your set of good vectors.
Calculate the BSP tree for the cells of the diagram.
The Voronoi diagram will give you a 12th dimensional convex hull for each good vector that contains that all the points closest to that vector.
The BSP tree will give you a fast way to determine which cell a vector lies within and, therefore, which good vector it is closest to.
EDIT: I just noticed that you are using hamming distances instead of euclidean distances. I'm not sure how this could be adapted to fit that constraint. Sorry.
Assuming a packed representation for the vectors, one distance computation (comparing one good vector and one bad vector to yield the distance) can be completed in roughly 20 clock cycles or less. Hence a million such distance calculations can be done in 20 million cycles or (assuming a 2GHz cpu) 0.01 sec. Do these numbers help?
PS:- 20 cycles is a conservative overestimate.

Fast way to compute the minimal distance of two sets of k-dimensional vectors

I two sets of k-dimensional vectors, where k is around 500 and the number of vectors is usually smaller. I want to compute the (arbitrarily defined) minimal distance between the two sets.
A naive approach would be this:
(loop for a in set1
for b in set2
minimizing (distance a b))
However, this requires O(n² * distance) computations. Is there a faster way of doing this?
I don't think you can do better than O(n^2) when the distance is arbitrary (you have to examine each of the possible distances!). For a given distance function we might be able to exploit the properties of the function, but there won't be any general algorithm which works with any distance function in better than O(n^2) (i.e. o(n^2) : note smallOh).
If your data is dynamic and you have to keep obtaining the closest pair of points at different times, for arbitrary distance function the following papers by Eppstein will probably help (which have special update operations in order to make finding the closest pair of points quick):
http://www.ics.uci.edu/~eppstein/projects/pairs/Papers/Epp-SODA-98.pdf. [O(nlog^2(n)) update time]
http://academic.research.microsoft.com/Paper/1847461.aspx
You will be able to adapt the above one set algorithms to a two set algorithm (for instance, by defining distance between points of same set to be infinity).
For Euclidean type (L^p) distance, there are known O(nlogn) time algorithms, which work with a given set of points (i.e. you dont need to have any special update algorithms):
http://www.cse.iitd.ernet.in/~ssen/cs852/scribe/scribe2/lec.pdf
http://en.wikipedia.org/wiki/Closest_pair_of_points_problem
Of course, the L^p is for one set, but you might be able to adapt it for two sets.
If you give your distance function, it might be easier for us to help you.
Hope it helps. Good luck!
If the components of your vectors are scalars I would guess that for your case of a moderate k=500 the O(n²) approach is probably as fast as you can get. You can simplify your calculation by minimizing distance². Also, the distance(A_i, B_i) = distance(B_i, A_i), so make sure you only compare them once (you only have 500!/(500-2)! pairs, not 500²).
If the components are m-dimensional vectors A and B instead, you could store the components of vector A in a R-tree or a kd-tree and then find the closest pair by iterating over all components of vector B and finding its closest partner from A--- this would be O(n). Don't forget that big-O is for n->infinity, so the trees might come with some pretty expensive constant term (i.e. this approach might only make sense for large k or if vector A is always the same).
Put the two sets of coordinates into a Spatial Index, e.g. a KD-tree.
You then compute the intersection of these two indices.

Difference between a linear problem and a non-linear problem? Essence of Dot-Product and Kernel trick

The kernel trick maps a non-linear problem into a linear problem.
My questions are:
1. What is the main difference between a linear and a non-linear problem? What is the intuition behind the difference of these two classes of problem? And How does kernel trick helps use the linear classifiers on a non-linear problem?
2. Why is the dot product so important in the two cases?
Thanks.
When people say linear problem with respect to a classification problem, they usually mean linearly separable problem. Linearly separable means that there is some function that can separate the two classes that is a linear combination of the input variable. For example, if you have two input variables, x1 and x2, there are some numbers theta1 and theta2 such that the function theta1.x1 + theta2.x2 will be sufficient to predict the output. In two dimensions this corresponds to a straight line, in 3D it becomes a plane and in higher dimensional spaces it becomes a hyperplane.
You can get some kind of intuition about these concepts by thinking about points and lines in 2D/3D. Here's a very contrived pair of examples...
This is a plot of a linearly inseparable problem. There is no straight line that can separate the red and blue points.
However, if we give each point an extra coordinate (specifically 1 - sqrt(x*x + y*y)... I told you it was contrived), then the problem becomes linearly separable since the red and blue points can be separated by a 2-dimensional plane going through z=0.
Hopefully, these examples demonstrate part of the idea behind the kernel trick:
Mapping a problem into a space with a larger number of dimensions makes it more likely that the problem will become linearly separable.
The second idea behind the kernel trick (and the reason why it is so tricky) is that it is usually very awkward and computationally expensive to work in a very high-dimensional space. However, if an algorithm only uses the dot products between points (which you can think of as distances), then you only have to work with a matrix of scalars. You can implicitly perform the calculations in the higher-dimensional space without ever actually having to do the mapping or handle the higher-dimensional data.
Many classifiers, among them the linear Support Vector Machine (SVM), can only solve problems that are linearly separable, i.e. where the points belonging to class 1 can be separated from the points belonging to class 2 by a hyperplane.
In many cases, a problem that is not linearly separable can be solved by applying a transform phi() to the data points; this transform is said to transform the points to feature space. The hope is that, in feature space, the points will be linearly separable. (Note: This is not the kernel trick yet... stay tuned.)
It can be shown that, the higher the dimension of the feature space, the greater the number of problems that are linearly separable in that space. Therefore, one would ideally want the feature space to be as high-dimensional as possible.
Unfortunately, as the dimension of feature space increases, so does the amount of computation required. This is where the kernel trick comes in. Many machine learning algorithms (among them the SVM) can be formulated in such a way that the only operation they perform on the data points is a scalar product between two data points. (I will denote a scalar product between x1 and x2 by <x1, x2>.)
If we transform our points to feature space, the scalar product now looks like this:
<phi(x1), phi(x2)>
The key insight is that there exists a class of functions called kernels that can be used to optimize the computation of this scalar product. A kernel is a function K(x1, x2) that has the property that
K(x1, x2) = <phi(x1), phi(x2)>
for some function phi(). In other words: We can evaluate the scalar product in the low-dimensional data space (where x1 and x2 "live") without having to transform to the high-dimensional feature space (where phi(x1) and phi(x2) "live") -- but we still get the benefits of transforming to the high-dimensional feature space. This is called the kernel trick.
Many popular kernels, such as the Gaussian kernel, actually correspond to a transform phi() that transforms into an infinte-dimensional feature space. The kernel trick allows us to compute scalar products in this space without having to represent points in this space explicitly (which, obviously, is impossible on computers with finite amounts of memory).
The main difference (for practical purposes) is: A linear problem either does have a solution (and then it's easily found), or you get a definite answer that there is no solution at all. You do know this much, before you even know the problem at all. As long as it's linear, you'll get an answer; quickly.
The intuition beheind this is the fact that if you have two straight lines in some space, it's pretty easy to see whether they intersect or not, and if they do, it's easy to know where.
If the problem is not linear -- well, it can be anything, and you know just about nothing.
The dot product of two vectors just means the following: The sum of the products of the corresponding elements. So if your problem is
c1 * x1 + c2 * x2 + c3 * x3 = 0
(where you usually know the coefficients c, and you're looking for the variables x), the left hand side is the dot product of the vectors (c1,c2,c3) and (x1,x2,x3).
The above equation is (pretty much) the very defintion of a linear problem, so there's your connection between the dot product and linear problems.
Linear equations are homogeneous, and superposition applies. You can create solutions using combinations of other known solutions; this is one reason why Fourier transforms work so well. Non-linear equations are not homogeneous, and superposition does not apply. Non-linear equations usually have to be solved numerically using iterative, incremental techniques.
I'm not sure how to express the importance of the dot product, but it does take two vectors and returns a scalar. Certainly a solution to a scalar equation is less work than solving a vector or higher-order tensor equation, simply because there are fewer components to deal with.
My intuition in this matter is based more on physics, so I'm having a hard time translating to AI.
I think following link also useful ...
http://www.simafore.com/blog/bid/113227/How-support-vector-machines-use-kernel-functions-to-classify-data

Resources