Related
how to reverse a number?
Example1: x = 123, return 321
Example2: x = -123, return -321
this is my answer:
public int reverse(int x) {
int result = 0;
while(x != 0){
result = result * 10 + x % 10;
x = x / 10;
}
return result;
}
but when I input 1534236469 , it will output 1056389759 , this is wrong. what do you think about my program? thanks.
One reason your program cannot give the right answer is that you
store result in an int but you expect to be able to
reverse the number 1534236469.
The correct answer would be 9646324351,
but that number is greater than the largest possible value of an int
so you end up with something else.
Try long long or try using input with no more than 9 digits.
Followup:
I suggested long long because that will fairly reliably give you
an 8-byte integer. You may also get 8 bytes in a long, depending on
where you are building your code,
but Visual C++ on 32-bit Windows (for example) will
give you only 4 bytes. Possibly the 4-byte long will go the way of the 2-byte int soon enough, but at this point in time some of us still have to deal with it.
Jason,
You should just change the type from int to long.
public long reverse(long x)
{
long result = 0;
while (x != 0)
{
result = result * 10 + x % 10;
x = x / 10;
}
return result;
}
You can write x >0 (doesn't matter though )also after that you have to consider negative numbers , I made that change to your logic as follows (Also use long long to avoid overflow):
long long reverse(long long x)
{
int sign = 1;
long long ans=0;
if(x < 0)
sign = -1;
x = abs(x);
while(x > 0)
{
ans *= 10;
ans += x%10;
x /=10;
}
return ans*sign;
}
How about convert to string and reverse? Quite simple:
int reverseDigits(int x) {
String s = Integer.toString(x);
for (int i = 0; i < s.length() / 2; i++) {
char t = s[i];
s[i] = s[s.length() - i - 1];
s[s.length() - i - 1] = t;
}
return Integer.parseInteger(s); // subject to overflow
}
can use long type to store the result
public int reverse(int x) {
long result = 0;
while (x != 0) {
result = result * 10 + x % 10;
x /= 10;
}
if (result > Integer.MAX_VALUE || result < Integer.MIN_VALUE)
return 0;
return (int)result;
}
This is a question posted on Leetcode and it gives a wrong answer expecting a 0. The clue is that before returning the reversed integer we have to check if it does not exceed the limit of a 32-bit int ie 2^31-1.
Code in Python 3:
class Solution:
def reverse(self, x: int) -> int:
s=[]
rev=0
neg=False
if x==0:
return 0
if x<0:
x=x* -1
neg=True
while x:
s.append(x%10)
x=int(x/10)
i=len(s)
j=0
while i:
rev=rev+s[j]*10**(i-1)
i=i-1
j=j+1
if(rev>2**31-1):
return 0
return rev * -1 if neg else rev
You are using int for storing the number whereas number is out of range of int. You have tagged algorithm in this question. So, better way would be by using link list. You can google more about it. There are lot of algorithms for reversing a link list.
Why not simply do:
while (x)
print x%10
x /= 10
with a double sign conversion if the value of x is originally negative, to avoid the question of what mod a -ve number is.
A shorter version of Schultz9999's answer:
int reverseDigits(int x) {
String s = Integer.toString(x);
s=new StringBuilder(s).reverse().toString();
return Integer.parseInt(s);
}
Here is the python code of reverse number::
n=int(input('Enter the number:'))
r=0
while (n!=0):
remainder=n%10
r=remainder+(r*10)
n=n//10
print('Reverse order is %d'%r)
A compact Python solution is
reverse = int(str(number)[::-1])
If negative numbers are a possibility, then
num = abs(number) # absolute value of the number
rev = int(str(num)[::-1]) # reverse the number
reverse = -rev # negate the reverse
In JS I wrote it in this way
function reverseNumber(n) {
const reversed = n
.toString()
.split('')
.reverse()
.join('');
return parseInt(reversed) * Math.sign(n);
}
Reverse Integer In JavaScript | Accepted LeetCode solution | Memory efficient
If reversing the number causes the value to go outside the signed 32-bit integer range [-2^31, 2^31 - 1], then returned 0.
Intuition:
First converted the integer to a string which is much easy to reverse and check characters.
Approach:
Converted number to string.
Checked for 1st character negative value.
Spliced (-) and stored if any which is concat in the last.
Then reversed the string without (-).
var reverse = function(x) {
x= x.toString();
let s = Number(x[0]) ? '' : x[0],reverse='';
if(s) { //If x= -123 && here s='-'
x =x.substring(1) // removing '-' from the string
}
for(let i = x.length-1; i>=0; i--) {
if((Number(x[i]) && !reverse) || reverse){
reverse += x[i];
}
}
if(Number(s+reverse) > 2147483648 || (Number(s+reverse) < -2147483648 && Number(s+reverse) < 0)){
return 0
}
return Number(s+reverse); // s='-' or ''
};
I saw the following interview question on some online forum. What is a good solution for this?
Get the last 1000 digits of 5^1234566789893943
Simple algorithm:
1. Maintain a 1000-digits array which will have the answer at the end
2. Implement a multiplication routine like you do in school. It is O(d^2).
3. Use modular exponentiation by squaring.
Iterative exponentiation:
array ans;
int a = 5;
while (p > 0) {
if (p&1) {
ans = multiply(ans, a)
}
p = p>>1;
ans = multiply(ans, ans);
}
multiply: multiplies two large number using the school method and return last 1000 digits.
Time complexity: O(d^2*logp) where d is number of last digits needed and p is power.
A typical solution for this problem would be to use modular arithmetic and exponentiation by squaring to compute the remainder of 5^1234566789893943 when divided by 10^1000. However in your case this will still not be good enough as it would take about 1000*log(1234566789893943) operations and this is not too much, but I will propose a more general approach that would work for greater values of the exponent.
You will have to use a bit more complicated number theory. You can use Euler's theorem to get the remainder of 5^1234566789893943 modulo 2^1000 a lot more efficiently. Denote that r. It is also obvious that 5^1234566789893943 is divisible by 5^1000.
After that you need to find a number d such that 5^1000*d = r(modulo 2^1000). To solve this equation you should compute 5^1000(modulo 2^1000). After that all that is left is to do division modulo 2^1000. Using again Euler's theorem this can be done efficiently. Use that x^(phi(2^1000)-1)*x =1(modulo 2^1000). This approach is way faster and is the only feasible solution.
The key phrase is "modular exponentiation". Python has that built in:
Python 3.4.1 (v3.4.1:c0e311e010fc, May 18 2014, 10:38:22) [MSC v.1600 32 bit (Intel)] on win32
Type "copyright", "credits" or "license()" for more information.
>>> help(pow)
Help on built-in function pow in module builtins:
pow(...)
pow(x, y[, z]) -> number
With two arguments, equivalent to x**y. With three arguments,
equivalent to (x**y) % z, but may be more efficient (e.g. for ints).
>>> digits = pow(5, 1234566789893943, 10**1000)
>>> len(str(digits))
1000
>>> digits
4750414775792952522204114184342722049638880929773624902773914715850189808476532716372371599198399541490535712666678457047950561228398126854813955228082149950029586996237166535637925022587538404245894713557782868186911348163750456080173694616157985752707395420982029720018418176528050046735160132510039430638924070731480858515227638960577060664844432475135181968277088315958312427313480771984874517274455070808286089278055166204573155093723933924226458522505574738359787477768274598805619392248788499020057331479403377350096157635924457653815121544961705226996087472416473967901157340721436252325091988301798899201640961322478421979046764449146045325215261829432737214561242087559734390139448919027470137649372264607375942527202021229200886927993079738795532281264345533044058574930108964976191133834748071751521214092905298139886778347051165211279789776682686753139533912795298973229094197221087871530034608077419911440782714084922725088980350599242632517985214513078773279630695469677448272705078125
>>>
The technique we need to know is exponentiation by squaring and modulus. We also need to use BigInteger in Java.
Simple code in Java:
BigInteger m = //BigInteger of 10^1000
BigInteger pow(BigInteger a, long b) {
if (b == 0) {
return BigInteger.ONE;
}
BigInteger val = pow(a, b/2);
if (b % 2 == 0)
return (val.multiply(val)).mod(m);
else
return (val.multiply(val).multiply(a)).mod(m);
}
In Java, the function modPow has done it all for you (thank Java).
Use congruence and apply modular arithmetic.
Square and multiply algorithm.
If you divide any number in base 10 by 10 then the remainder represents
the last digit. i.e. 23422222=2342222*10+2
So we know:
5=5(mod 10)
5^2=25=5(mod 10)
5^4=(5^2)*(5^2)=5*5=5(mod 10)
5^8=(5^4)*(5^4)=5*5=5(mod 10)
... and keep going until you get to that exponent
OR, you can realize that as we keep going you keep getting 5 as your remainder.
Convert the number to a string.
Loop on the string, starting at the last index up to 1000.
Then reverse the result string.
I posted a solution based on some hints here.
#include <vector>
#include <iostream>
using namespace std;
vector<char> multiplyArrays(const vector<char> &data1, const vector<char> &data2, int k) {
int sz1 = data1.size();
int sz2 = data2.size();
vector<char> result(sz1+sz2,0);
for(int i=sz1-1; i>=0; --i) {
char carry = 0;
for(int j=sz2-1; j>=0; --j) {
char value = data1[i] * data2[j]+result[i+j+1]+carry;
carry = value/10;
result[i+j+1] = value % 10;
}
result[i]=carry;
}
if(sz1+sz2>k){
vector<char> lastKElements(result.begin()+(sz1+sz2-k), result.end());
return lastKElements;
}
else
return result;
}
vector<char> calculate(unsigned long m, unsigned long n, int k) {
if(n == 0) {
return vector<char>(1, 1);
} else if(n % 2) { // odd number
vector<char> tmp(1, m);
vector<char> result1 = calculate(m, n-1, k);
return multiplyArrays(result1, tmp, k);
} else {
vector<char> result1 = calculate(m, n/2, k);
return multiplyArrays(result1, result1, k);
}
}
int main(int argc, char const *argv[]){
vector<char> v=calculate(5,8,1000);
for(auto c : v){
cout<<static_cast<unsigned>(c);
}
}
I don't know if Windows can show a big number (Or if my computer is fast enough to show it) But I guess you COULD use this code like and algorithm:
ulong x = 5; //There are a lot of libraries for other languages like C/C++ that support super big numbers. In this case I'm using C#'s default `Uint64` number.
for(ulong i=1; i<1234566789893943; i++)
{
x = x * x; //I will make the multiplication raise power over here
}
string term = x.ToString(); //Store the number to a string. I remember strings can store up to 1 billion characters.
char[] number = term.ToCharArray(); //Array of all the digits
int tmp=0;
while(number[tmp]!='.') //This will search for the period.
tmp++;
tmp++; //After finding the period, I will start storing 1000 digits from this index of the char array
string thousandDigits = ""; //Here I will store the digits.
for (int i = tmp; i <= 1000+tmp; i++)
{
thousandDigits += number[i]; //Storing digits
}
Using this as a reference, I guess if you want to try getting the LAST 1000 characters of this array, change to this in the for of the above code:
string thousandDigits = "";
for (int i = 0; i > 1000; i++)
{
thousandDigits += number[number.Length-i]; //Reverse array... ¿?
}
As I don't work with super super looooong numbers, I don't know if my computer can get those, I tried the code and it works but when I try to show the result in console it just leave the pointer flickering xD Guess it's still working. Don't have a pro Processor. Try it if you want :P
Is there a way, how to make modulo by 511 (and 127) faster than using "%" operator ?
int c = 758 % 511;
int d = 423 % 127;
Here is a way to do fast modulo by 511 assuming that x is at most 32767. It's about twice as fast as x%511. It does the modulo in five steps: two multiply, two addition, one shift.
inline int fast_mod_511(int x) {
int y = (513*x+64)>>18;
return x - 511*y;
}
Here is the theory at how I arrive at this. I posted the code I tested this at the end
Let's consider
y = x/511 = x/(512-1) = x/1000 * 1/(1-1/512).
Let's define z = 512, then
y = x/z*1/(1-1/z).
Using Taylor expansion
y = x/z(1 + 1/z + 1/z^2 + 1/z^3 + ...).
Now if we know that x has a limited range we can cut the expansion. Let's assume x is always less than 2^15=32768. Then we can write
512*512*y = (1+512)*x = 513*x.
After looking at the digits which are significant we arrive at
y = (513*x+64)>>18 //512^2 = 2^18.
We can divide x/511 (assuming x is less than 32768) in three steps:
multiply,
add,
shift.
Here is the code I just to profile this in MSVC2013 64-bit release mode on an Ivy Bridge core.
#include <stdio.h>
#include <stdlib.h>
#include <omp.h>
inline int fast_mod_511(int x) {
int y = (513*x+64)>>18;
return x - 511*y;
}
int main() {
unsigned int i, x;
volatile unsigned int r;
double dtime;
dtime = omp_get_wtime();
for(i=0; i<100000; i++) {
for(int j=0; j<32768; j++) {
r = j%511;
}
}
dtime =omp_get_wtime() - dtime;
printf("time %f\n", dtime);
dtime = omp_get_wtime();
for(i=0; i<100000; i++) {
for(int j=0; j<32768; j++) {
r = fast_mod_511(j);
}
}
dtime =omp_get_wtime() - dtime;
printf("time %f\n", dtime);
}
You can use a lookup table with the solutions pre-stored. If you create an array of a million integers looking up is about twice as fast as actually doing modulo in my C# app.
// fill an array
var mod511 = new int[1000000];
for (int x = 0; x < 1000000; x++) mod511[x] = x % 511;
and instead of using
c = 758 % 511;
you use
c = mod511[758];
This will cost you (possibly a lot of) memory, and will obviously not work if you want to use it for very large numbers also. But it is faster.
If you have to repeat those two modulus operations on a large number of data and your CPU supports SIMD (for example Intel's SSE/AVX/AVX2) then you can vectorize the operations, i.e., do the operations on many data in parallel. You can do this by using intrinsics or inline assembly. Yes the solution will be platform specific but maybe that is fine...
What is the best method to find the number of digits of a positive integer?
I have found this 3 basic methods:
conversion to string
String s = new Integer(t).toString();
int len = s.length();
for loop
for(long long int temp = number; temp >= 1;)
{
temp/=10;
decimalPlaces++;
}
logaritmic calculation
digits = floor( log10( number ) ) + 1;
where you can calculate log10(x) = ln(x) / ln(10) in most languages.
First I thought the string method is the dirtiest one but the more I think about it the more I think it's the fastest way. Or is it?
There's always this method:
n = 1;
if ( i >= 100000000 ) { n += 8; i /= 100000000; }
if ( i >= 10000 ) { n += 4; i /= 10000; }
if ( i >= 100 ) { n += 2; i /= 100; }
if ( i >= 10 ) { n += 1; }
Well the correct answer would be to measure it - but you should be able to make a guess about the number of CPU steps involved in converting strings and going through them looking for an end marker
Then think how many FPU operations/s your processor can do and how easy it is to calculate a single log.
edit: wasting some more time on a monday morning :-)
String s = new Integer(t).toString();
int len = s.length();
One of the problems with high level languages is guessing how much work the system is doing behind the scenes of an apparently simple statement. Mandatory Joel link
This statement involves allocating memory for a string, and possibly a couple of temporary copies of a string. It must parse the integer and copy the digits of it into a string, possibly having to reallocate and move the existing memory if the number is large. It might have to check a bunch of locale settings to decide if your country uses "," or ".", it might have to do a bunch of unicode conversions.
Then finding the length has to scan the entire string, again considering unicode and any local specific settings such as - are you in a right->left language?.
Alternatively:
digits = floor( log10( number ) ) + 1;
Just because this would be harder for you to do on paper doesn't mean it's hard for a computer! In fact a good rule in high performance computing seems to have been - if something is hard for a human (fluid dynamics, 3d rendering) it's easy for a computer, and if it's easy for a human (face recognition, detecting a voice in a noisy room) it's hard for a computer!
You can generally assume that the builtin maths functions log/sin/cos etc - have been an important part of computer design for 50years. So even if they don't map directly into a hardware function in the FPU you can bet that the alternative implementation is pretty efficient.
I don't know, and the answer may well be different depending on how your individual language is implemented.
So, stress test it! Implement all three solutions. Run them on 1 through 1,000,000 (or some other huge set of numbers that's representative of the numbers the solution will be running against) and time how long each of them takes.
Pit your solutions against one another and let them fight it out. Like intellectual gladiators. Three algorithms enter! One algorithm leaves!
Test conditions
Decimal numeral system
Positive integers
Up to 10 digits
Language: ActionScript 3
Results
digits: [1,10],
no. of runs: 1,000,000
random sample: 8777509,40442298,477894,329950,513,91751410,313,3159,131309,2
result: 7,8,6,6,3,8,3,4,6,1
CONVERSION TO STRING: 724ms
LOGARITMIC CALCULATION: 349ms
DIV 10 ITERATION: 229ms
MANUAL CONDITIONING: 136ms
Note: Author refrains from making any conclusions for numbers with more than 10 digits.
Script
package {
import flash.display.MovieClip;
import flash.utils.getTimer;
/**
* #author Daniel
*/
public class Digits extends MovieClip {
private const NUMBERS : uint = 1000000;
private const DIGITS : uint = 10;
private var numbers : Array;
private var digits : Array;
public function Digits() {
// ************* NUMBERS *************
numbers = [];
for (var i : int = 0; i < NUMBERS; i++) {
var number : Number = Math.floor(Math.pow(10, Math.random()*DIGITS));
numbers.push(number);
}
trace('Max digits: ' + DIGITS + ', count of numbers: ' + NUMBERS);
trace('sample: ' + numbers.slice(0, 10));
// ************* CONVERSION TO STRING *************
digits = [];
var time : Number = getTimer();
for (var i : int = 0; i < numbers.length; i++) {
digits.push(String(numbers[i]).length);
}
trace('\nCONVERSION TO STRING - time: ' + (getTimer() - time));
trace('sample: ' + digits.slice(0, 10));
// ************* LOGARITMIC CALCULATION *************
digits = [];
time = getTimer();
for (var i : int = 0; i < numbers.length; i++) {
digits.push(Math.floor( Math.log( numbers[i] ) / Math.log(10) ) + 1);
}
trace('\nLOGARITMIC CALCULATION - time: ' + (getTimer() - time));
trace('sample: ' + digits.slice(0, 10));
// ************* DIV 10 ITERATION *************
digits = [];
time = getTimer();
var digit : uint = 0;
for (var i : int = 0; i < numbers.length; i++) {
digit = 0;
for(var temp : Number = numbers[i]; temp >= 1;)
{
temp/=10;
digit++;
}
digits.push(digit);
}
trace('\nDIV 10 ITERATION - time: ' + (getTimer() - time));
trace('sample: ' + digits.slice(0, 10));
// ************* MANUAL CONDITIONING *************
digits = [];
time = getTimer();
var digit : uint;
for (var i : int = 0; i < numbers.length; i++) {
var number : Number = numbers[i];
if (number < 10) digit = 1;
else if (number < 100) digit = 2;
else if (number < 1000) digit = 3;
else if (number < 10000) digit = 4;
else if (number < 100000) digit = 5;
else if (number < 1000000) digit = 6;
else if (number < 10000000) digit = 7;
else if (number < 100000000) digit = 8;
else if (number < 1000000000) digit = 9;
else if (number < 10000000000) digit = 10;
digits.push(digit);
}
trace('\nMANUAL CONDITIONING: ' + (getTimer() - time));
trace('sample: ' + digits.slice(0, 10));
}
}
}
This algorithm might be good also, assuming that:
Number is integer and binary encoded (<< operation is cheap)
We don't known number boundaries
var num = 123456789L;
var len = 0;
var tmp = 1L;
while(tmp < num)
{
len++;
tmp = (tmp << 3) + (tmp << 1);
}
This algorithm, should have speed comparable to for-loop (2) provided, but a bit faster due to (2 bit-shifts, add and subtract, instead of division).
As for Log10 algorithm, it will give you only approximate answer (that is close to real, but still), since analytic formula for computing Log function have infinite loop and can't be calculated precisely Wiki.
Use the simplest solution in whatever programming language you're using. I can't think of a case where counting digits in an integer would be the bottleneck in any (useful) program.
C, C++:
char buffer[32];
int length = sprintf(buffer, "%ld", (long)123456789);
Haskell:
len = (length . show) 123456789
JavaScript:
length = String(123456789).length;
PHP:
$length = strlen(123456789);
Visual Basic (untested):
length = Len(str(123456789)) - 1
conversion to string: This will have to iterate through each digit, find the character that maps to the current digit, add a character to a collection of characters. Then get the length of the resulting String object. Will run in O(n) for n=#digits.
for-loop: will perform 2 mathematical operation: dividing the number by 10 and incrementing a counter. Will run in O(n) for n=#digits.
logarithmic: Will call log10 and floor, and add 1. Looks like O(1) but I'm not really sure how fast the log10 or floor functions are. My knowledge of this sort of things has atrophied with lack of use so there could be hidden complexity in these functions.
So I guess it comes down to: is looking up digit mappings faster than multiple mathematical operations or whatever is happening in log10? The answer will probably vary. There could be platforms where the character mapping is faster, and others where doing the calculations is faster. Also to keep in mind is that the first method will creats a new String object that only exists for the purpose of getting the length. This will probably use more memory than the other two methods, but it may or may not matter.
You can obviously eliminate the method 1 from the competition, because the atoi/toString algorithm it uses would be similar to method 2.
Method 3's speed depends on whether the code is being compiled for a system whose instruction set includes log base 10.
For very large integers, the log method is much faster. For instance, with a 2491327 digit number (the 11920928th Fibonacci number, if you care), Python takes several minutes to execute the divide-by-10 algorithm, and milliseconds to execute 1+floor(log(n,10)).
import math
def numdigits(n):
return ( int(math.floor(math.log10(n))) + 1 )
Regarding the three methods you propose for "determining the number of digits necessary to represent a given number in a given base", I don't like any of them, actually; I prefer the method I give below instead.
Re your method #1 (strings): Anything involving converting back-and-forth between strings and numbers is usually very slow.
Re your method #2 (temp/=10): This is fatally flawed because it assumes that x/10 always means "x divided by 10". But in many programming languages (eg: C, C++), if "x" is an integer type, then "x/10" means "integer division", which isn't the same thing as floating-point division, and it introduces round-off errors at every iteration, and they accumulate in a recursive formula such as your solution #2 uses.
Re your method #3 (logs): it's buggy for large numbers (at least in C, and probably other languages as well), because floating-point data types tend not to be as precise as 64-bit integers.
Hence I dislike all 3 of those methods: #1 works but is slow, #2 is broken, and #3 is buggy for large numbers. Instead, I prefer this, which works for numbers from 0 up to about 18.44 quintillion:
unsigned NumberOfDigits (uint64_t Number, unsigned Base)
{
unsigned Digits = 1;
uint64_t Power = 1;
while ( Number / Power >= Base )
{
++Digits;
Power *= Base;
}
return Digits;
}
Keep it simple:
long long int a = 223452355415634664;
int x;
for (x = 1; a >= 10; x++)
{
a = a / 10;
}
printf("%d", x);
You can use a recursive solution instead of a loop, but somehow similar:
#tailrec
def digits (i: Long, carry: Int=1) : Int = if (i < 10) carry else digits (i/10, carry+1)
digits (8345012978643L)
With longs, the picture might change - measure small and long numbers independently against different algorithms, and pick the appropriate one, depending on your typical input. :)
Of course nothing beats a switch:
switch (x) {
case 0: case 1: case 2: case 3: case 4: case 5: case 6: case 7: case 8: case 9: return 1;
case 10: case 11: // ...
case 99: return 2;
case 100: // you get the point :)
default: return 10; // switch only over int
}
except a plain-o-array:
int [] size = {1,1,1,1,1,1,1,1,1,2,2,2,2,2,... };
int x = 234561798;
return size [x];
Some people will tell you to optimize the code-size, but yaknow, premature optimization ...
log(x,n)-mod(log(x,n),1)+1
Where x is a the base and n is the number.
Here is the measurement in Swift 4.
Algorithms code:
extension Int {
var numberOfDigits0: Int {
var currentNumber = self
var n = 1
if (currentNumber >= 100000000) {
n += 8
currentNumber /= 100000000
}
if (currentNumber >= 10000) {
n += 4
currentNumber /= 10000
}
if (currentNumber >= 100) {
n += 2
currentNumber /= 100
}
if (currentNumber >= 10) {
n += 1
}
return n
}
var numberOfDigits1: Int {
return String(self).count
}
var numberOfDigits2: Int {
var n = 1
var currentNumber = self
while currentNumber > 9 {
n += 1
currentNumber /= 10
}
return n
}
}
Measurement code:
var timeInterval0 = Date()
for i in 0...10000 {
i.numberOfDigits0
}
print("timeInterval0: \(Date().timeIntervalSince(timeInterval0))")
var timeInterval1 = Date()
for i in 0...10000 {
i.numberOfDigits1
}
print("timeInterval1: \(Date().timeIntervalSince(timeInterval1))")
var timeInterval2 = Date()
for i in 0...10000 {
i.numberOfDigits2
}
print("timeInterval2: \(Date().timeIntervalSince(timeInterval2))")
Output
timeInterval0: 1.92149806022644
timeInterval1: 0.557608008384705
timeInterval2: 2.83262193202972
On this measurement basis String conversion is the best option for the Swift language.
I was curious after seeing #daniel.sedlacek results so I did some testing using Swift for numbers having more than 10 digits. I ran the following script in the playground.
let base = [Double(100090000000), Double(100050000), Double(100050000), Double(100000200)]
var rar = [Double]()
for i in 1...10 {
for d in base {
let v = d*Double(arc4random_uniform(UInt32(1000000000)))
rar.append(v*Double(arc4random_uniform(UInt32(1000000000))))
rar.append(Double(1)*pow(1,Double(i)))
}
}
print(rar)
var timeInterval = NSDate().timeIntervalSince1970
for d in rar {
floor(log10(d))
}
var newTimeInterval = NSDate().timeIntervalSince1970
print(newTimeInterval-timeInterval)
timeInterval = NSDate().timeIntervalSince1970
for d in rar {
var c = d
while c > 10 {
c = c/10
}
}
newTimeInterval = NSDate().timeIntervalSince1970
print(newTimeInterval-timeInterval)
Results of 80 elements
0.105069875717163 for floor(log10(x))
0.867973804473877 for div 10 iterations
Adding one more approach to many of the already mentioned approaches.
The idea is to use binarySearch on an array containing the range of integers based on the digits of the int data type.
The signature of Java Arrays class binarySearch is :
binarySearch(dataType[] array, dataType key) which returns the index of the search key, if it is contained in the array; otherwise, (-(insertion point) – 1).
The insertion point is defined as the point at which the key would be inserted into the array.
Below is the implementation:
static int [] digits = {9,99,999,9999,99999,999999,9999999,99999999,999999999,Integer.MAX_VALUE};
static int digitsCounter(int N)
{
int digitCount = Arrays.binarySearch(digits , N<0 ? -N:N);
return 1 + (digitCount < 0 ? ~digitCount : digitCount);
}
Please note that the above approach only works for : Integer.MIN_VALUE <= N <= Integer.MAX_VALUE, but can be easily extended for Long data type by adding more values to the digits array.
For example,
I) for N = 555, digitCount = Arrays.binarySearch(digits , 555) returns -3 (-(2)-1) as it's not present in the array but is supposed to be inserted at point 2 between 9 & 99 like [9, 55, 99].
As the index we got is negative we need to take the bitwise compliment of the result.
At last, we need to add 1 to the result to get the actual number of digits in the number N.
In Swift 5.x, you get the number of digit in integer as below :
Convert to string and then count number of character in string
let nums = [1, 7892, 78, 92, 90]
for i in nums {
let ch = String(describing: i)
print(ch.count)
}
Calculating the number of digits in integer using loop
var digitCount = 0
for i in nums {
var tmp = i
while tmp >= 1 {
tmp /= 10
digitCount += 1
}
print(digitCount)
}
let numDigits num =
let num = abs(num)
let rec numDigitsInner num =
match num with
| num when num < 10 -> 1
| _ -> 1 + numDigitsInner (num / 10)
numDigitsInner num
F# Version, without casting to a string.
Is there an algorithm for accurately multiplying two arbitrarily long integers together? The language I am working with is limited to 64-bit unsigned integer length (maximum integer size of 18446744073709551615). Realistically, I would like to be able to do this by breaking up each number, processing them somehow using the unsigned 64-bit integers, and then being able to put them back together in to a string (which would solve the issue of multiplied result storage).
Any ideas?
Most languages have functions or libraries that do this, usually called a Bignum library (GMP is a good one.)
If you want to do it yourself, I would do it the same way that people do long multiplication on paper. To do this you could either work with strings containing the number, or do it in binary using bitwise operations.
Example:
45
x67
---
315
+270
----
585
Or in binary:
101
x101
----
101
000
+101
------
11001
Edit: After doing it in binary I realized that it would be much simpler (and faster of course) to code using bitwise operations instead of strings containing the base-10 numbers. I've edited my binary multiplying example to show a pattern: for each 1-bit in the bottom number, add the top number, bit-shifted left the position of the 1-bit times to a variable. At the end, that variable will contain the product.
To store the product, you'll have to have two 64-bit numbers and imagine one of them being the first 64 bits and the other one the second 64 bits of the product. You'll have to write code that carries the addition from bit 63 of the second number to bit 0 of the first number.
If you can't use an existing bignum library like GMP, check out Wikipedia's article on binary multiplication with computers. There are a number of good, efficient algorithms for this.
The simplest way would be to use the schoolbook mechanism, splitting your arbitrarily sized numbers into chunks of 32-bit each.
Given A B C D * E F G H (each chunk 32-bit, for a total 128 bit)
You need an output array 9 dwords wide.
Set Out[0..8] to 0
You'd start by doing: H * D + out[8] => 64 bit result.
Store the low 32-bits in out[8] and take the high 32-bits as carry
Next: (H * C) + out[7] + carry
Again, store low 32-bit in out[7], use the high 32-bits as carry
after doing H*A + out[4] + carry, you need to continue looping until you have no carry.
Then repeat with G, F, E.
For G, you'd start at out[7] instead of out[8], and so forth.
Finally, walk through and convert the large integer into digits (which will require a "divide large number by a single word" routine)
Yes, you do it using a datatype that is effectively a string of digits (just like a normal 'string' is a string of characters). How you do this is highly language-dependent. For instance, Java uses BigDecimal. What language are you using?
This is often given as a homework assignment. The algorithm you learned in grade school will work. Use a library (several are mentioned in other posts) if you need this for a real application.
Here is my code piece in C. Good old multiply method
char *multiply(char s1[], char s2[]) {
int l1 = strlen(s1);
int l2 = strlen(s2);
int i, j, k = 0, c = 0;
char *r = (char *) malloc (l1+l2+1); // add one byte for the zero terminating string
int temp;
strrev(s1);
strrev(s2);
for (i = 0;i <l1+l2; i++) {
r[i] = 0 + '0';
}
for (i = 0; i <l1; i ++) {
c = 0; k = i;
for (j = 0; j < l2; j++) {
temp = get_int(s1[i]) * get_int(s2[j]);
temp = temp + c + get_int(r[k]);
c = temp /10;
r[k] = temp%10 + '0';
k++;
}
if (c!=0) {
r[k] = c + '0';
k++;
}
}
r[k] = '\0';
strrev(r);
return r;
}
//Here is a JavaScript version of an Karatsuba Algorithm running with less time than the usual multiplication method
function range(start, stop, step) {
if (typeof stop == 'undefined') {
// one param defined
stop = start;
start = 0;
}
if (typeof step == 'undefined') {
step = 1;
}
if ((step > 0 && start >= stop) || (step < 0 && start <= stop)) {
return [];
}
var result = [];
for (var i = start; step > 0 ? i < stop : i > stop; i += step) {
result.push(i);
}
return result;
};
function zeroPad(numberString, zeros, left = true) {
//Return the string with zeros added to the left or right.
for (var i in range(zeros)) {
if (left)
numberString = '0' + numberString
else
numberString = numberString + '0'
}
return numberString
}
function largeMultiplication(x, y) {
x = x.toString();
y = y.toString();
if (x.length == 1 && y.length == 1)
return parseInt(x) * parseInt(y)
if (x.length < y.length)
x = zeroPad(x, y.length - x.length);
else
y = zeroPad(y, x.length - y.length);
n = x.length
j = Math.floor(n/2);
//for odd digit integers
if ( n % 2 != 0)
j += 1
var BZeroPadding = n - j
var AZeroPadding = BZeroPadding * 2
a = parseInt(x.substring(0,j));
b = parseInt(x.substring(j));
c = parseInt(y.substring(0,j));
d = parseInt(y.substring(j));
//recursively calculate
ac = largeMultiplication(a, c)
bd = largeMultiplication(b, d)
k = largeMultiplication(a + b, c + d)
A = parseInt(zeroPad(ac.toString(), AZeroPadding, false))
B = parseInt(zeroPad((k - ac - bd).toString(), BZeroPadding, false))
return A + B + bd
}
//testing the function here
example = largeMultiplication(12, 34)
console.log(example)