Suggested Hadoop File Format for Tabular Data - hadoop

My application needs to process a couple of TB worth of tabular data. At the moment, the data is saved as several huge comma separated csv files. I can control how the files are being provided to my M/R job and I am wondering what is the preferred file format to make the job to run faster? For instance, is there any point in saving the input data as sequence files instead of the text file that I am using now? Will that make my M/R job to run noticeably faster?

From the perspective of "file format" I don't think using SequeceFile will be a great improvement over text file for csv data. If it was a single (Key,Value) pair in the CSV data, using SequenceFile over textfile would have made sense.
How ever, I am intrigued over use of RCFile (Record Columnar File) which should lend itself well for CSV like data. I have used it with hive tables and achieved some significant improvement in execution time for hive queries. I am assuming that that was due to execution efficiency in M/R since hive queries get translated to M/R programs.
Ref: http://www.ixwebhosting.mobi/2011/10/06/4823.html

Related

Best method to save intermediate tables in pyspark

This is my first question on Stackoverflow.
I am replicating a SAS codebase in Pyspark. The SAS codebase produces and stores scores of intermediate SAS datasets (100 when I last counted) which are used to cross check the final output and also for other analyses at a later point in time.
My purpose is to save numerous Pyspark dataframes in some format so that they can be re-used in a separate Pyspark session. I have thought of 2 options:
Save dataframes as hive tables.
Save them as parquet files.
Are there any other formats? Which method is faster? Will parquet files or csv files have schema related issues while re-reading the files as Pyspark dataframes?
The best option is to use parquet files as they have following advantages:
3x compressed saves space
Columnar format, faster pushdowns
Optimized with spark catalyst optimizer
Schema persists as parquet contains schema related info.
The only issue is make sure you are not generating multiple small files, the default parquet block size is 128 mb so make sure you have files sufficiently large. You can repartition the data to make sure the file size is large enough
Use Deleta Lake, to iterate over data changes, changeable schema, parquet advantages, easy updates, track chages, data versioning
Parquet is default for pyspark and goes well. So you can just store as parquet files / hive table. Before pushing to hdfs/hive you can repartition files if may small files on source. If it's a huge data try partitioning hive table with a suitable column.

Data format and database choices Spark/hadoop

I am working on structured data (one value per field, the same fields for each row) that I have to put in a NoSql environment with Spark (as analysing tool) and Hadoop. Though, I am wondering what format to use. i was thinking about json or csv but I'm not sure. What do you think and why? I don't have enough experience in this field to properly decide.
2nd question : I have to analyse these data (stored in an HDFS). So, as far as I know I have two possibilities to query them (before the analysis):
direct reading and filtering. i mean that it can be done with Spark, for exemple:
data = sqlCtxt.read.json(path_data)
Use Hbase/Hive to properly make a query and then process the data.
So, I don't know what is the standard way of doing all this and above all, what will be the fastest.
Thank you by advance!
Use Parquet. I'm not sure about CSV but definitely don't use JSON. My personal experience using JSON with spark was extremely, extremely slow to read from storage, after switching to Parquet my read times were much faster (e.g. some small files took minutes to load in compressed JSON, now they take less than a second to load in compressed Parquet).
On top of improving read speeds, compressed parquet can be partitioned by spark when reading, whereas compressed JSON cannot. What this means is that Parquet can be loaded onto multiple cluster workers, whereas JSON will just be read onto a single node with 1 partition. This isn't a good idea if your files are large and you'll get Out Of Memory Exceptions. It also won't parallelise your computations, so you'll be executing on one node. This isn't the 'Sparky' way of doing things.
Final point: you can use SparkSQL to execute queries on stored parquet files, without having to read them into dataframes first. Very handy.
Hope this helps :)

Modeling Data in Hadoop

Currently I am bringing into Hadoop around 10 tables from an EDW (Enterprise Data Warehouse), these tables are closely related to a Star Schema model. I'm usig Sqoop to bring all these tables across, resulting in 10 directories containing csv files.
I'm looking at what are some better ways to store these files before striking off MR jobs. Should I follow some kind of model or build an aggregate before working on MR jobs? I'm basically looking at how might be some ways of storing related data together.
Most things I have found by searching are storing trivial csv files and reading them with opencsv. I'm looking for something a bit more involved and not just for csv files. If moving towards another format works better than csv, then that is no problem.
Boils down to: How best to store a bunch of related data in HDFS to have a good experience with MR.
I suggest spending some time with Apache Avro.
With Sqoop v1.3 and beyond you can import data from your relational data sources as Avro files using a schema of your own design. What's nice about Avro is that it provides a lot of features in addition to being a serialization format...
It gives you data+schema in the same file but is compact and efficient for fast serialization. It gives you versioning facilities which are useful when bringing in updated data with a different schema. Hive supports it in both reading and writing and Map Reduce can use it seamlessly.
It can be used as a generic interchange format between applications (not just for Hadoop) making it an interesting option for a standard, cross-platform format for data exchange in your broader architecture.
Storing these files in csv is fine. Since you will be able to process these files using text output format and could also read it through hive using specific delimiter. You could change the delimiter if you do not like comma to pipe("|") that's what I do most of the time. Also you generally need to have large files in hadoop but if its large enough that you can partition these files and each file partition is in the size of few 100 gigs then it would be a good to partition these files into separate directory based on your partition column.
Also it would be better idea to have most of the columns in single table than having many normalized small tables. But that varies depending on your data size. Also make sure whenever you copy , move or create data you do all the constraint check on your applications as it will be difficult to make small changes in the table later on, you will need to modify the complete file for even small change.
Hive Partitioning and Bucketing concepts can be used to effectively used to put similar data together (not in nodes, but in files and folders) based on a particular column. Here are some nice tutorials for Partitioning and Bucketing.

replace text in input file with hadoop MR

I am a newbie on the MR and Hadoop front.
I wrote an MR for finding missing's in csv file and it is working fine.
now I have an usecase where i need to parse a csv file and code it with the regarding category.
ex: "11,abc,xyz,51,61,78","11,adc,ryz,41,71,38",.............
now this has to be replaced as "1,abc,xyz,5,6,7","1,adc,ryz,4,7,3",.............
here i am doing a mod of 10 but there will be different cases of mod's.
data size is in gb's.
I want to know how to replace the content in-place for the input. Is this achievable with MR?
Basically i have not seen any file handling or writing based hadoop examples any where.
At this point i do not want to go to HBase or other db tools.
You can not replace data in place, since HDFS files are append only, and can not be edited.
I think simplest way to achiece your goal is to register your data in the Hive as external table, and write your trnasformation in HQL.
Hive is a system sitting aside of hadoop and translating your queries to MR Jobs.
Its usage is not serious infrastructure decision as HBASE usage

Running a MR Job on a portion of the HDFS file

Imagine you have a big file stored in hdtf which contains structured data. Now the goal is to process only a portion of data in the file like all the lines in the file where second column value is between so and so. Is it possible to launch the MR job such that hdfs only stream the relevant portion of the file versus streaming everything to the mappers.
The reason is that I want to expedite the job speed by only working on the portion that I need. Probably one approach is to run a MR job to get create a new file but I am wondering if one can avoid that?
Please note that the goal is to keep the data in HDFS and I do not want to read and write from database.
HDFS stores files as a bunch of bytes in blocks, and there is no indexing, and therefore no way to only read in a portion of your file (at least at the time of this writing). Furthermore, any given mapper may get the first block of the file or the 400th, and you don't get control over that.
That said, the whole point of MapReduce is to distribute the load over many machines. In our cluster, we run up to 28 mappers at a time (7 per node on 4 nodes), so if my input file is 1TB, each map slot may only end up reading 3% of the total file, or about 30GB. You just perform the filter that you want in the mapper, and only process the rows you are interested in.
If you really need filtered access, you might want to look at storing your data in HBase. It can act as a native source for MapReduce jobs, provides filtered reads, and stores its data on HDFS, so you are still in the distributed world.
One answer is looking at the way that hive solves this problem. The data is in "tables" which are really just meta data about files on disk. Hive allows you to set columns on which a table is partitioned. This creates a separate folder for each partition so if you were partitioning a file by date you would have:
/mytable/2011-12-01
/mytable/2011-12-02
Inside of the date directory would be you actual files. So if you then ran a query like:
SELECT * FROM mytable WHERE dt ='2011-12-01'
Only files in /mytable/2011-12-01 would be fed into the job.
Tho bottom line is that if you want functionality like this you either want to move to a higher level language (hive/pig) or you need to roll your own solutions.
Big part of the processing cost - is data parsing to produce Key-Values to the Mapper. We create there (usually) one java object per value + some container. It is costly both in terms of CPU and garbage collector pressure
I would suggest the solution "in the middle". You can write input format which will read the input stream and skip non-relevant data in the early stage (for example by looking into few first bytes of the string). As a result you will read all data, but actually parse and pass to the Mapper - only portion of it.
Another approach I would consider - is to use RCFile format (or other columnar format), and take care that relevant and non relevant data will sit in the different columns.
If the files that you want to process have some unique attribute about their filename (like extension or partial filename match), you can also use the setInputPathFilter method of FileInputFormat to ignore all but the ones you want for your MR job. Hadoop by default ignores all ".xxx" and _xxx" files/dirs, but you can extend with setInputPathFilter.
As others have noted above, you will likely get sub-optimal performance out of your cluster doing something like this which breaks the "one block per mapper" paradigm, but sometimes this is acceptable. Can sometimes take more to "do it right", esp if you're dealing with a small amount of data & the time to re-architect and/or re-dump into HBase would eclipse the extra time required to run your job sub-optimally.

Resources