I have recently started using Ruby, so quite new to this. My current objective is to use a ruby module called retort, my problem is that I don't understand the configure method which is looking like this:
def configure
config = Config.new
yield config
##service = XMLRPC::Client.new2(config.url)
end
Config class is simple and looks like:
class Config
attr_accessor :url
end
I tried to create a small example to play around in order to understand how exactly that is supposed to work:
class TestClass
def test_method
config = String.new
yield config
p config
end
end
d = TestClass.new
d.test_method { 'test string' }
Of course it doesn't return 'test string' but an empty string.
Thank you for any help :)
Can you be clearer about what's confusing you? Does this code make sense to you?
class TestClass
def test_method
config = yield
p config
end
end
d.test_method { "test string" }
The yield statement invokes the block. The block returns a string, which is assigned to the config variable back in the test_method and is then printed. Does that make it clearer?
In your code, the line yield config is invoking the block while passing in the just-instantiated Config object. For instance:
def foo
s = "a string"
yield s
p "In foo printing " + s
end
foo { |x| p "In block printing " + x }
Related
So I am porting a tool from ruby were a callback block could be defined on an object and I want it to be called in case the callback was set.
So basically something like this.
def set_block(&block)
#new_kid_on_the_block = block
end
def call_the_block_if_it_was_defined
block.call("step by step") if block = #new_kid_on_the_block
end
I am pretty sure this is an easy task but somehow I just run into problems.
Thank you in advance!
In Crystal you almost always have to specify types of instance variables explicitly. So here is how it could look:
class A
alias BlockType = String -> String
def set_block(&block : BlockType)
#block = block
end
def call_block
#block.try &.call("step by step")
end
end
a = A.new
pp a.call_block # => nil
a.set_block { |a| a + "!" }
pp a.call_block # => "step by step!"
Take a look at Capturing blocks for more.
I would like to access a class' name in its superclass MySuperclass' self.inherited method. It works fine for concrete classes as defined by class Foo < MySuperclass; end but it fails when using anonymous classes. I tend to avoid creating (class-)constants in tests; I would like it to work with anonymous classes.
Given the following code:
class MySuperclass
def self.inherited(subclass)
super
# work with subclass' name
end
end
klass = Class.new(MySuperclass) do
def self.name
'FooBar'
end
end
klass#name will still be nil when MySuperclass.inherited is called as that will be before Class.new yields to its block and defines its methods.
I understand a class gets its name when it's assigned to a constant, but is there a way to set Class#name "early" without creating a constant?
I prepared a more verbose code example with failing tests to illustrate what's expected.
Probably #yield has taken place after the ::inherited is called, I saw the similar behaviour with class definition. However, you can avoid it by using ::klass singleton method instead of ::inherited callback.
def self.klass
#klass ||= (self.name || self.to_s).gsub(/Builder\z/, '')
end
I am trying to understand the benefit of being able to refer to an anonymous class by a name you have assigned to it after it has been created. I thought I might be able to move the conversation along by providing some code that you could look at and then tell us what you'd like to do differently:
class MySuperclass
def self.inherited(subclass)
# Create a class method for the subclass
subclass.instance_eval do
def sub_class() puts "sub_class here" end
end
# Create an instance method for the subclass
subclass.class_eval do
def sub_instance() puts "sub_instance here" end
end
end
end
klass = Class.new(MySuperclass) do
def self.name=(name)
#name = Object.const_set(name, self)
end
def self.name
#name
end
end
klass.sub_class #=> "sub_class here"
klass.new.sub_instance #=> "sub_instance here"
klass.name = 'Fido' #=> "Fido"
kn = klass.name #=> Fido
kn.sub_class #=> "sub_class here"
kn.new.sub_instance #=> "sub_instance here"
klass.name = 'Woof' #=> "Woof"
kn = klass.name #=> Fido (cannot change)
There is no way in pure Ruby to set a class name without assigning it to a constant.
If you're using MRI and want to write yourself a very small C extension, it would look something like this:
VALUE
force_class_name (VALUE klass, VALUE symbol_name)
{
rb_name_class(klass, SYM2ID(symbol_name));
return klass;
}
void
Init_my_extension ()
{
rb_define_method(rb_cClass, "force_class_name", force_class_name, 1);
}
This is a very heavy approach to the problem. Even if it works it won't be guaranteed to work across various versions of ruby, since it relies on the non-API C function rb_name_class. I'm also not sure what the behavior will be once Ruby gets around to running its own class-naming hooks afterward.
The code snippet for your use case would look like this:
require 'my_extension'
class MySuperclass
def self.inherited(subclass)
super
subclass.force_class_name(:FooBar)
# work with subclass' name
end
end
I understand that TOPLEVEL_BINDING is the Binding object for main. The following code confirms it:
def name
:outer
end
module Test
class Binder
def self.name
:inner
end
def self.test_it
eval 'name', TOPLEVEL_BINDING
end
end
end
p Test::Binder.test_it # => :outer
I got confused while looking at the source for rack. The problem was in understanding this code in the file lib/rack/builder.rb
def self.new_from_string(builder_script, file="(rackup)")
eval "Rack::Builder.new {\n" + builder_script + "\n}.to_app",
TOPLEVEL_BINDING, file, 0
end
def run(app)
end
The new_from_string method is passed the contents of a config.ru file which will be something like
run DemoApp::Application
Here it seems like TOPLEVEL_BINDING is referring to a Builder object, since the method run is defined for Builder but not for Object. However the earlier experiment establishes that TOPLEVEL_BINDING refers to main's binding. I do not understand how run method is working here. Please help me in understanding this code.
TOPLEVEL_BINDING is the top level binding.
That method is passing the string "run ..." into Builder.new { run ... }
Builder.new then does an instance_eval (https://github.com/rack/rack/blob/df1506b0825a096514fcb3821563bf9e8fd52743/lib/rack/builder.rb#L53-L55) on the block, thereby giving the code inside the block direct access to the instance's methods.
def initialize(default_app = nil,&block)
#use, #map, #run, #warmup = [], nil, default_app, nil
instance_eval(&block) if block_given?
end
run is an instance method of the Builder class, defined here -> https://github.com/rack/rack/blob/df1506b0825a096514fcb3821563bf9e8fd52743/lib/rack/builder.rb#L103-L105
def run(app)
#run = app
end
In short, "run DemoApp::Application" becomes:
Rack::Builder.new {
run DemoApp::Application
}.to_app
Edit: A simple example to illustrate the point:
class Builder
def initialize(&block)
instance_eval(&block)
end
def run(what)
puts "Running #{what}"
end
end
TOPLEVEL_BINDING.eval "Builder.new { run 10 }"
prints
Running 10
TOPLEVEL_BINDING gives you access to context in which the first file was executed:
a.rb:
a = 1
p TOPLEVEL_BINDING.local_variables #=> [:a]
require_relative 'b'
b.rb:
b = 1
p TOPLEVEL_BINDING.local_variables #=> [:a]
$ ruby a.rb
What rack developers are apparently trying to achieve is to isolate the builder line/script from all what is accessible from Rack::Builder.new_from_string (local variables, methods, you name it).
There's also a comment there these days:
# Evaluate the given +builder_script+ string in the context of
# a Rack::Builder block, returning a Rack application.
def self.new_from_string(builder_script, file = "(rackup)")
# We want to build a variant of TOPLEVEL_BINDING with self as a Rack::Builder instance.
# We cannot use instance_eval(String) as that would resolve constants differently.
binding, builder = TOPLEVEL_BINDING.eval('Rack::Builder.new.instance_eval { [binding, self] }')
eval builder_script, binding, file
return builder.to_app
end
I have this code:
l = lambda { a }
def some_function
a = 1
end
I just want to access a by the lambda and a special scope which has defined a already somewhere like inside some_function in the example, or just soon later in the same scope as:
l = lambda { a }
a = 1
l.call
Then I found when calling l, it is still using its own binding but not the new one where it was called.
And then I tried to use it as:
l.instance_eval do
a = 1
call
end
But this also failed, it is strange that I can't explain why.
I know the one of the solution is using eval, in which I could special a binding and executing some code in text, but I really do not want to use as so.
And, I know it is able to use a global variable or instance variable. However, actually my code is in a deeper embedded environment, so I don't want to break the completed parts if not quite necessary.
I have referred the Proc class in the documentation, and I found a function names binding that referred to the Proc's context. While the function only provided a way to access its binding but cannot change it, except using Binding#eval. It evaluate text also, which is exactly what I don't like to do.
Now the question is, do I have a better (or more elegant) way to implement this? Or using eval is already the regular manner?
Edit to reply to #Andrew:
Okay, this is a problem which I met when I'm writing a lexical parser, in which I defined a array with fixed-number of items, there including at least a Proc and a regular expression. My purpose is to matching the regular expressions and execute the Procs under my special scope, where the Proce will involved some local variables that should be defined later. And then I met the problem above.
Actually I suppose it is not same completely to that question, as mine is how to pass in binding to a Proc rather than how to pass it out.
#Niklas:
Got your answer, I think that is what exactly I want. It has solved my problem perfectly.
You can try the following hack:
class Proc
def call_with_vars(vars, *args)
Struct.new(*vars.keys).new(*vars.values).instance_exec(*args, &self)
end
end
To be used like this:
irb(main):001:0* lambda { foo }.call_with_vars(:foo => 3)
=> 3
irb(main):002:0> lambda { |a| foo + a }.call_with_vars({:foo => 3}, 1)
=> 4
This is not a very general solution, though. It would be better if we could give it Binding instance instead of a Hash and do the following:
l = lambda { |a| foo + a }
foo = 3
l.call_with_binding(binding, 1) # => 4
Using the following, more complex hack, this exact behaviour can be achieved:
class LookupStack
def initialize(bindings = [])
#bindings = bindings
end
def method_missing(m, *args)
#bindings.reverse_each do |bind|
begin
method = eval("method(%s)" % m.inspect, bind)
rescue NameError
else
return method.call(*args)
end
begin
value = eval(m.to_s, bind)
return value
rescue NameError
end
end
raise NoMethodError
end
def push_binding(bind)
#bindings.push bind
end
def push_instance(obj)
#bindings.push obj.instance_eval { binding }
end
def push_hash(vars)
push_instance Struct.new(*vars.keys).new(*vars.values)
end
def run_proc(p, *args)
instance_exec(*args, &p)
end
end
class Proc
def call_with_binding(bind, *args)
LookupStack.new([bind]).run_proc(self, *args)
end
end
Basically we define ourselves a manual name lookup stack and instance_exec our proc against it. This is a very flexible mechanism. It not only enables the implementation of call_with_binding, it can also be used to build up much more complex lookup chains:
l = lambda { |a| local + func(2) + some_method(1) + var + a }
local = 1
def func(x) x end
class Foo < Struct.new(:add)
def some_method(x) x + add end
end
stack = LookupStack.new
stack.push_binding(binding)
stack.push_instance(Foo.new(2))
stack.push_hash(:var => 4)
p stack.run_proc(l, 5)
This prints 15, as expected :)
UPDATE: Code is now also available at Github. I use this for one my projects too now.
class Proc
def call_with_obj(obj, *args)
m = nil
p = self
Object.class_eval do
define_method :a_temp_method_name, &p
m = instance_method :a_temp_method_name; remove_method :a_temp_method_name
end
m.bind(obj).call(*args)
end
end
And then use it as:
class Foo
def bar
"bar"
end
end
p = Proc.new { bar }
bar = "baz"
p.call_with_obj(self) # => baz
p.call_with_obj(Foo.new) # => bar
Perhaps you don't actually need to define a later, but instead only need to set it later.
Or (as below), perhaps you don't actually need a to be a local variable (which itself references an array). Instead, perhaps you can usefully employ a class variable, such as ##a. This works for me, by printing "1":
class SomeClass
def l
#l ||= lambda { puts ##a }
end
def some_function
##a = 1
l.call
end
end
SomeClass.new.some_function
a similar way:
class Context
attr_reader :_previous, :_arguments
def initialize(_previous, _arguments)
#_previous = _previous
#_arguments = _arguments
end
end
def _code_def(_previous, _arguments = [], &_block)
define_method("_code_#{_previous}") do |_method_previous, _method_arguments = []|
Context.new(_method_previous, _method_arguments).instance_eval(&_block)
end
end
_code_def('something') do
puts _previous
puts _arguments
end
Previously, I asked about a clever way to execute a method on a given condition "Ruby a clever way to execute a function on a condition."
The solutions and response time was great, though, upon implementation, having a hash of lambdas gets ugly quite quickly. So I started experimenting.
The following code works:
def a()
puts "hello world"
end
some_hash = { 0 => a() }
some_hash[0]
But if I wrap this in a class it stops working:
class A
#a = { 0 => a()}
def a()
puts "hello world"
end
def b()
#a[0]
end
end
d = A.new()
d.b()
I can't see why it should stop working, can anyone suggest how to make it work?
that code doesn't work. it executes a at the time it is added to the hash, not when it is retrieved from the hash (try it in irb).
It doesn't work in the class because there is no a method defined on the class (you eventually define a method a on the instance.
Try actually using lambdas like
{0 => lambda { puts "hello world" }}
instead
First of all, you are not putting a lambda in the hash. You're putting the result of calling a() in the current context.
Given this information, consider what the code in your class means. The context of a class definition is the class. So you define an instance method called a, and assign a class instance variable to the a hash containing the result of calling a in the current context. The current context is the class A, and class A does not have a class method called a, so you're trying to put the result of a nonexistent method there. Then in the instance method b, you try to access an instance variable called #a -- but there isn't one. The #a defined in the class context belongs to the class itself, not any particular instance.
So first of all, if you want a lambda, you need to make a lambda. Second, you need to be clear about the difference between a class and an instance of that class.
If you want to make a list of method names to be called on certain conditions, you can do it like this:
class A
def self.conditions() { 0 => :a } end
def a
puts "Hello!"
end
def b(arg)
send self.class.conditions[arg]
end
end
This defines the conditions hash as a method of the class (making it easy to access), and the hash merely contains the name of the method to call rather than a lambda or anything like that. So when you call b(0), it sends itself the message contained in A.conditions[0], which is a.
If you really just want to pretty this sort of thing up,
why not wrap all your methods in a class like so:
# a container to store all your methods you want to use a hash to access
class MethodHash
alias [] send
def one
puts "I'm one"
end
def two
puts "I'm two"
end
end
x = MethodHash.new
x[:one] # prints "I'm one"
x.two # prints "I'm one"
or, to use your example:
# a general purpose object that transforms a hash into calls on methods of some given object
class DelegateHash
def initialize(target, method_hash)
#target = target
#method_hash = method_hash.dup
end
def [](k)
#target.send(#method_hash[k])
end
end
class A
def initialize
#a = DelegateHash.new(self, { 0 => :a })
end
def a()
puts "hello world"
end
def b()
#a[0]
end
end
x = A.new
x.a #=> prints "hello world"
x.b #=> prints "hello world"
One other basic error that you made is that you initialized #a outside of any instance method -
just bare inside of the definition of A. This is a big time no-no, because it just doesn't work.
Remember, in ruby, everything is an object, including classes, and the # prefix means the instance
variable of whatever object is currently self. Inside an instance method definitions, self is an instance
of the class. But outside of that, just inside the class definition, self is the class object - so you defined
an instance variable named #a for the class object A, which none of the instances of A can get to directly.
Ruby does have a reason for this behaviour (class instance variables can be really handy if you know what
you're doing), but this is a more advanced technique.
In short, only initialize instance variables in the initialize method.
table = {
:a => 'test',
:b => 12,
:c => lambda { "Hallo" },
:d => def print(); "Hallo in test"; end
}
puts table[:a]
puts table[:b]
puts table[:c].call
puts table[:d].send( :print )
Well, the first line in your class calls a method that doesn't exist yet. It won't even exist after the whole class is loaded though, since that would be a call to the class method and you've only defined instance methods.
Also keep in mind that {0 => a()} will call the method a(), not create a reference to the method a(). If you wanted to put a function in there that doesn't get evaluated until later, you'd have to use some kind of Lambda.
I am pretty new to using callbacks in Ruby and this is how I explained it to myself using an example:
require 'logger'
log = Logger.new('/var/tmp/log.out')
def callit(severity, msg, myproc)
myproc.call(sev, msg)
end
lookup_severity = {}
lookup_severity['info'] = Proc.new { |x| log.info(x) }
lookup_severity['debug'] = Proc.new { |x| log.debug(x) }
logit = Proc.new { |x,y| lookup_sev[x].call(y) }
callit('info', "check4", logit)
callit('debug', "check5", logit)
a = ->(string="No string passed") do
puts string
end
some_hash = { 0 => a }
some_hash[0].call("Hello World")
some_hash[0][]