Generic solution to towers of Hanoi with variable number of poles? - algorithm

Given D discs, P poles, and the initial starting positions for the disks, and the required final destination for the poles, how can we write a generic solution to the problem?
For example,
Given D=6 and P=4, and the initial starting position looks like this:
5 1
6 2 4 3
Where the number represents the disk's radius, the poles are numbered 1-4 left-right, and we want to stack all the disks on pole 1.
How do we choose the next move?
The solution is (worked out by hand):
3 1
4 3
4 1
2 1
3 1
(format: <from-pole> <to-pole>)
The first move is obvious, move the "4" on top of the "5" because that its required position in the final solution.
Next, we probably want to move the next largest number, which would be the "3". But first we have to unbury it, which means we should move the "1" next. But how do we decide where to place it?
That's as far as I've gotten. I could write a recursive algorithm that tries all possible places, but I'm not sure if that's optimal.

We can't.
More precisely, as http://en.wikipedia.org/wiki/Tower_of_Hanoi#Four_pegs_and_beyond says, for 4+ pegs, proving what the optimal solution is is an open problem. There is a known very good algorithm, that is widely believed to be optimal, for the simple case where the pile of disks is on one peg and you want to transfer the whole pile to another. However we do not have an algorithm, or even a known heuristic, for an arbitrary starting position.
If we did have a proposed algorithm, then the open problem would presumably be much easier.

Related

Need an explanation of Grundy numbers from Competitive Programming Handbook

I am trying to understand the example from the book https://cses.fi/book/book.pdf at page 239 .
The example is described as follows:
What I don't get is just what exactly, say, number 3 next to lower right corner means, we can move 4 steps up and 3 steps left from it, how is it 3? Same for 4 just above it, it doesn't correspond to any set of moves I can think of. The book in general makes a lot of leaps of logic they think are obvious but usually I can infer what they mean after some time, here I am just lost.
The rule for computing these numbers is recursive.
You consider all the values you can reach, and then pick the smallest (non-negative) integer that is not reachable.
For example, the value in the top-left corner is 0 because no moves are possible.
For example, the value next to lower right is 3 because the reachable values are 0,4,1,0,2,1,4 so 3 is the smallest integer not in this list.
This explains how to compute the numbers, but to understand them it is probably better to start with understanding the game of Nim. In the game of Nim, the Sprague Grundy number for a pile is simply equal to the size of a pile.

TSP Genetic Algorithm - path representation and identical tour problem

We are implementing path representation to solve our travelling salesman problem using a genetic algorithm. However, we were wondering how to solve the issue that there might be identical tours in our individuals, but which are recognised by the path representation as different individuals. An example:
Each individual consists of an array, in which the elements are the cities visited in order.
Individual 1:
[1 2 3 4 5]
Individual 2:
[4 5 1 2 3]
You can see that the tour in 1 and 2 are actually identical, only the "starting" location is different.
We see some solutions to this problem, but we were wondering which one would be the best, or if there are best practices to overcome this problem from literature/experiments/....
Solution 1
Sort each individual to see if the individuals are identical:
1. pick an individual
2. shift the elements by 1 element to the right (at the end of the array, elements are placed at the beginning of the array)
3. check if this shift now matches an individual
4. if not, repeat steps 3 to 4
Solution 2
1. At the start if the simulations, choose a fixed starting point of the cities.
2. If the fixed starting point would change (mutation, recombination,...) then
3. Shift the array so that chosen starting point is back on first index.
Solution 3
1. Use the adjacency representation to check which individuals are identical.
2. Pass this information on to the path representation.
3. This is used to "correct" the individuals.
Solution 1 and 2 seem time consuming, although 2 would probably need much less computing time. Solution 3 would need to constantly switch from one to the other representation.
Then there is also the issue that in our example the tour can be read in 2 ways:
[1 2 3 4 5]
is the same as
[5 4 3 2 1]
Again here, are there any best practises the solve this?
Since you need to visit every city and return to the origin city, you can simply fix the origin. That solves your problem of shifted equivalent tours outright.
For the other, less important issue of mirrored tours, you can start by sorting your individuals by cost (which you probably already do), and check any pair of tours with equal costs using a simple palindrome-checking algorithm.

What can be a possible algorithm for this combinatorics based program?

So, this contest is already over.
I was trying to solve this problem: http://codeforces.com/contest/554/problem/C
I spent like 1 hour to solve this problem. What I thought was, fill the last n positions of the array with one ball of each kind. Then, in the remaining positions, find the permutations by calculating remaining places in array divided by balls of each kind - 1 (since one is fixed at last position). This will obviously miss out on a lot of test cases, since I don't consider cases when 2 largest numbers will be together in the end or 3 largest numbers will be there. Similarly, along with 4 numbers, other similar numbers might be there before them. But I mean, I am not able to think of a approach how should I solve this?
Any inputs will be greatly appreciated. Thanks!
Also, the contest has already ended, so no issues there. :)
Hints
Consider the example given where we have 1,2,3,4 balls of each colour.
Place the first ball: 1 option.
Now consider placing the 2 balls of the next colour. Place one at any position (2 choices - either before or after the first ball), then place the second at the end.
Now consider placing the 3 balls of the next colour. Place two at any position C(1+2+2,2), and the last at the end.
Finally consider placing the 4 balls of the final colour. Place three at any position C(1+2+3+3,3), and the last at the end.
This gives 1680 choices.

How do I calculate the shanten number in mahjong?

This is a followup to my earlier question about deciding if a hand is ready.
Knowledge of mahjong rules would be excellent, but a poker- or romme-based background is also sufficient to understand this question.
In Mahjong 14 tiles (tiles are like
cards in Poker) are arranged to 4 sets
and a pair. A straight ("123") always
uses exactly 3 tiles, not more and not
less. A set of the same kind ("111")
consists of exactly 3 tiles, too. This
leads to a sum of 3 * 4 + 2 = 14
tiles.
There are various exceptions like Kan
or Thirteen Orphans that are not
relevant here. Colors and value ranges
(1-9) are also not important for the
algorithm.
A hand consists of 13 tiles, every time it's our turn we get to pick a new tile and have to discard any tile so we stay on 13 tiles - except if we can win using the newly picked tile.
A hand that can be arranged to form 4 sets and a pair is "ready". A hand that requires only 1 tile to be exchanged is said to be "tenpai", or "1 from ready". Any other hand has a shanten-number which expresses how many tiles need to be exchanged to be in tenpai. So a hand with a shanten number of 1 needs 1 tile to be tenpai (and 2 tiles to be ready, accordingly). A hand with a shanten number of 5 needs 5 tiles to be tenpai and so on.
I'm trying to calculate the shanten number of a hand. After googling around for hours and reading multiple articles and papers on this topic, this seems to be an unsolved problem (except for the brute force approach). The closest algorithm I could find relied on chance, i.e. it was not able to detect the correct shanten number 100% of the time.
Rules
I'll explain a bit on the actual rules (simplified) and then my idea how to tackle this task. In mahjong, there are 4 colors, 3 normal ones like in card games (ace, heart, ...) that are called "man", "pin" and "sou". These colors run from 1 to 9 each and can be used to form straights as well as groups of the same kind. The forth color is called "honors" and can be used for groups of the same kind only, but not for straights. The seven honors will be called "E, S, W, N, R, G, B".
Let's look at an example of a tenpai hand: 2p, 3p, 3p, 3p, 3p, 4p, 5m, 5m, 5m, W, W, W, E. Next we pick an E. This is a complete mahjong hand (ready) and consists of a 2-4 pin street (remember, pins can be used for straights), a 3 pin triple, a 5 man triple, a W triple and an E pair.
Changing our original hand slightly to 2p, 2p, 3p, 3p, 3p, 4p, 5m, 5m, 5m, W, W, W, E, we got a hand in 1-shanten, i.e. it requires an additional tile to be tenpai. In this case, exchanging a 2p for an 3p brings us back to tenpai so by drawing a 3p and an E we win.
1p, 1p, 5p, 5p, 9p, 9p, E, E, E, S, S, W, W is a hand in 2-shanten. There is 1 completed triplet and 5 pairs. We need one pair in the end, so once we pick one of 1p, 5p, 9p, S or W we need to discard one of the other pairs. Example: We pick a 1 pin and discard an W. The hand is in 1-shanten now and looks like this: 1p, 1p, 1p, 5p, 5p, 9p, 9p, E, E, E, S, S, W. Next, we wait for either an 5p, 9p or S. Assuming we pick a 5p and discard the leftover W, we get this: 1p, 1p, 1p, 5p, 5p, 5p, 9p, 9p, E, E, E, S, S. This hand is in tenpai in can complete on either a 9 pin or an S.
To avoid drawing this text in length even more, you can read up on more example at wikipedia or using one of the various search results at google. All of them are a bit more technical though, so I hope the above description suffices.
Algorithm
As stated, I'd like to calculate the shanten number of a hand. My idea was to split the tiles into 4 groups according to their color. Next, all tiles are sorted into sets within their respective groups to we end up with either triplets, pairs or single tiles in the honor group or, additionally, streights in the 3 normal groups. Completed sets are ignored. Pairs are counted, the final number is decremented (we need 1 pair in the end). Single tiles are added to this number. Finally, we divide the number by 2 (since every time we pick a good tile that brings us closer to tenpai, we can get rid of another unwanted tile).
However, I can not prove that this algorithm is correct, and I also have trouble incorporating straights for difficult groups that contain many tiles in a close range. Every kind of idea is appreciated. I'm developing in .NET, but pseudo code or any readable language is welcome, too.
I've thought about this problem a bit more. To see the final results, skip over to the last section.
First idea: Brute Force Approach
First of all, I wrote a brute force approach. It was able to identify 3-shanten within a minute, but it was not very reliable (sometimes too a lot longer, and enumerating the whole space is impossible even for just 3-shanten).
Improvement of Brute Force Approach
One thing that came to mind was to add some intelligence to the brute force approach. The naive way is to add any of the remaining tiles, see if it produced Mahjong, and if not try the next recursively until it was found. Assuming there are about 30 different tiles left and the maximum depth is 6 (I'm not sure if a 7+-shanten hand is even possible [Edit: according to the formula developed later, the maximum possible shanten number is (13-1)*2/3 = 8]), we get (13*30)^6 possibilities, which is large (10^15 range).
However, there is no need to put every leftover tile in every position in your hand. Since every color has to be complete in itself, we can add tiles to the respective color groups and note down if the group is complete in itself. Details like having exactly 1 pair overall are not difficult to add. This way, there are max around (13*9)^6 possibilities, that is around 10^12 and more feasible.
A better solution: Modification of the existing Mahjong Checker
My next idea was to use the code I wrote early to test for Mahjong and modify it in two ways:
don't stop when an invalid hand is found but note down a missing tile
if there are multiple possible ways to use a tile, try out all of them
This should be the optimal idea, and with some heuristic added it should be the optimal algorithm. However, I found it quite difficult to implement - it is definitely possible though. I'd prefer an easier to write and maintain solution first.
An advanced approach using domain knowledge
Talking to a more experienced player, it appears there are some laws that can be used. For instance, a set of 3 tiles does never need to be broken up, as that would never decrease the shanten number. It may, however, be used in different ways (say, either for a 111 or a 123 combination).
Enumerate all possible 3-set and create a new simulation for each of them. Remove the 3-set. Now create all 2-set in the resulting hand and simulate for every tile that improves them to a 3-set. At the same time, simulate for any of the 1-sets being removed. Keep doing this until all 3- and 2-sets are gone. There should be a 1-set (that is, a single tile) be left in the end.
Learnings from implementation and final algorithm
I implemented the above algorithm. For easier understanding I wrote it down in pseudocode:
Remove completed 3-sets
If removed, return (i.e. do not simulate NOT taking the 3-set later)
Remove 2-set by looping through discarding any other tile (this creates a number of branches in the simulation)
If removed, return (same as earlier)
Use the number of left-over single tiles to calculate the shanten number
By the way, this is actually very similar to the approach I take when calculating the number myself, and obviously never to yields too high a number.
This works very well for almost all cases. However, I found that sometimes the earlier assumption ("removing already completed 3-sets is NEVER a bad idea") is wrong. Counter-example: 23566M 25667P 159S. The important part is the 25667. By removing a 567 3-set we end up with a left-over 6 tile, leading to 5-shanten. It would be better to use two of the single tiles to form 56x and 67x, leading to 4-shanten overall.
To fix, we simple have to remove the wrong optimization, leading to this code:
Remove completed 3-sets
Remove 2-set by looping through discarding any other tile
Use the number of left-over single tiles to calculate the shanten number
I believe this always accurately finds the smallest shanten number, but I don't know how to prove that. The time taken is in a "reasonable" range (on my machine 10 seconds max, usually 0 seconds).
The final point is calculating the shanten out of the number of left-over single tiles. First of all, it is obvious that the number is in the form 3*n+1 (because we started out with 14 tiles and always subtracted 3 tiles).
If there is 1 tile left, we're shanten already (we're just waiting for the final pair). With 4 tiles left, we have to discard 2 of them to form a 3-set, leaving us with a single tile again. This leads to 2 additional discards. With 7 tiles, we have 2 times 2 discards, adding 4. And so on.
This leads to the simple formula shanten_added = (number_of_singles - 1) * (2/3).
The described algorithm works well and passed all my tests, so I'm assuming it is correct. As stated, I can't prove it though.
Since the algorithm removes the most likely tiles combinations first, it kind of has a built-in optimization. Adding a simple check if (current_depth > best_shanten) then return; it does very well even for high shanten numbers.
My best guess would be an A* inspired approach. You need to find some heuristic which never overestimates the shanten number and use it to search the brute-force tree only in the regions where it is possible to get into a ready state quickly enough.
Correct algorithm sample: syanten.cpp
Recursive cut forms from hand in order: sets, pairs, incomplete forms, - and count it. In all variations. And result is minimal Shanten value of all variants:
Shanten = Min(Shanten, 8 - * 2 - - )
C# sample (rewrited from c++) can be found here (in Russian).
I've done a little bit of thinking and came up with a slightly different formula than mafu's. First of all, consider a hand (a very terrible hand):
1s 4s 6s 1m 5m 8m 9m 9m 7p 8p West East North
By using mafu's algorithm all we can do is cast out a pair (9m,9m). Then we are left with 11 singles. Now if we apply mafu's formula we get (11-1)*2/3 which is not an integer and therefore cannot be a shanten number. This is where I came up with this:
N = ( (S + 1) / 3 ) - 1
N stands for shanten number and S for score sum.
What is score? It's a number of tiles you need to make an incomplete set complete. For example, if you have (4,5) in your hand you need either 3 or 6 to make it a complete 3-set, that is, only one tile. So this incomplete pair gets score 1. Accordingly, (1,1) needs only 1 to become a 3-set. Any single tile obviously needs 2 tiles to become a 3-set and gets score 2. Any complete set of course get score 0. Note that we ignore the possibility of singles becoming pairs. Now if we try to find all of the incomplete sets in the above hand we get:
(4s,6s) (8m,9m) (7p,8p) 1s 1m 5m 9m West East North
Then we count the sum of its scores = 1*3+2*7 = 17.
Now if we apply this number to the formula above we get (17+1)/3 - 1 = 5 which means this hand is 5-shanten. It's somewhat more complicated than Alexey's and I don't have a proof but so far it seems to work for me. Note that such a hand could be parsed in the other way. For example:
(4s,6s) (9m,9m) (7p,8p) 1s 1m 5m 8m West East North
However, it still gets score sum 17 and 5-shanten according to formula. I also can't proof this and this is a little bit more complicated than Alexey's formula but also introduces scores that could be applied(?) to something else.
Take a look here: ShantenNumberCalculator. Calculate shanten really fast. And some related stuff (in japanese, but with code examples) http://cmj3.web.fc2.com
The essence of the algorithm: cut out all pairs, sets and unfinished forms in ALL possible ways, and thereby find the minimum value of the number of shanten.
The maximum value of the shanten for an ordinary hand: 8.
That is, as it were, we have the beginnings for 4 sets and one pair, but only one tile from each (total 13 - 5 = 8).
Accordingly, a pair will reduce the number of shantens by one, two (isolated from the rest) neighboring tiles (preset) will decrease the number of shantens by one,
a complete set (3 identical or 3 consecutive tiles) will reduce the number of shantens by 2, since two suitable tiles came to an isolated tile.
Shanten = 8 - Sets * 2 - Pairs - Presets
Determining whether your hand is already in tenpai sounds like a multi-knapsack problem. Greedy algorithms won't work - as Dialecticus pointed out, you'll need to consider the entire problem space.

plane bombing problems- help

I'm training code problems, and on this one I am having problems to solve it, can you give me some tips how to solve it please.
The problem is taken from here:
https://www.ieee.org/documents/IEEEXtreme2008_Competitition_book_2.pdf
Problem 12: Cynical Times.
The problem is something like this (but do refer to above link of the source problem, it has a diagram!):
Your task is to find the sequence of points on the map that the bomber is expected to travel such that it hits all vital links. A link from A to B is vital when its absence isolates completely A from B. In other words, the only way to go from A to B (or vice versa) is via that link.
Due to enemy counter-attack, the plane may have to retreat at any moment, so the plane should follow, at each moment, to the closest vital link possible, even if in the end the total distance grows larger.
Given all coordinates (the initial position of the plane and the nodes in the map) and the range R, you have to determine the sequence of positions in which the plane has to drop bombs.
This sequence should start (takeoff) and finish (landing) at the initial position. Except for the start and finish, all the other positions have to fall exactly in a segment of the map (i.e. it should correspond to a point in a non-hit vital link segment).
The coordinate system used will be UTM (Universal Transverse Mercator) northing and easting, which basically corresponds to a Euclidian perspective of the world (X=Easting; Y=Northing).
Input
Each input file will start with three floating point numbers indicating the X0 and Y0 coordinates of the airport and the range R. The second line contains an integer, N, indicating the number of nodes in the road network graph. Then, the next N (<10000) lines will each contain a pair of floating point numbers indicating the Xi and Yi coordinates (1 < i<=N). Notice that the index i becomes the identifier of each node. Finally, the last block starts with an integer M, indicating the number of links. Then the next M (<10000) lines will each have two integers, Ak and Bk (1 < Ak,Bk <=N; 0 < k < M) that correspond to the identifiers of the points that are linked together.
No two links will ever cross with each other.
Output
The program will print the sequence of coordinates (pairs of floating point numbers with exactly one decimal place), each one at a line, in the order that the plane should visit (starting and ending in the airport).
Sample input 1
102.3 553.9 0.2
14
342.2 832.5
596.2 638.5
479.7 991.3
720.4 874.8
744.3 1284.1
1294.6 924.2
1467.5 659.6
1802.6 659.6
1686.2 860.7
1548.6 1111.2
1834.4 1054.8
564.4 1442.8
850.1 1460.5
1294.6 1485.1
17
1 2
1 3
2 4
3 4
4 5
4 6
6 7
7 8
8 9
8 10
9 10
10 11
6 11
5 12
5 13
12 13
13 14
Sample output 1
102.3 553.9
720.4 874.8
850.1 1460.5
102.3 553.9
Pre-process the input first, so you identify the choke points. Algorithms like Floyd-Warshall would help you.
Model the problem as a Heuristic Search problem, you can compute a MST which covers all choke-points and take the sum of the costs of the edges as a heuristic.
As the commenters said, try to make concrete questions, either here or to the TA supervising your class.
Don't forget to mention where you got these hints.
The problem can be broken down into two parts.
1) Find the vital links.
These are nothing but the Bridges in the graph described. See the wiki page (linked to in the previous sentence), it mentions an algorithm by Tarjan to find the bridges.
2) Once you have the vital links, you need to find the smallest number of points which given the radius of the bomb, will cover the links. For this, for each link, you create a region around it, where dropping the bomb will destroy it. Now you form a graph of these regions (two regions are adjacent if they intersect). You probably need to find a minimum clique partition in this graph.
Haven't thought it through (especially part 2), but hope it helps.
And good luck in the contest!
I think Moron' is right about the first part, but on the second part...
The problem description does not tell anything about "smallest number of points". It tells that the plane flies to the closest vital link.
So, I think the part 2 will be much simpler:
Find the closest non-hit segment to the current location.
Travel to the closest point on the closest segment.
Bomb the current location (remove all segments intersecting a circle)
Repeat until there are no non-hit vital links left.
This straight-forward algorithm has a complexity of O(N*N), but this should be sufficient considering input constraints.

Resources