I'm trying to draw a 3d image that displays a ripple:
function myFunc(x, y) {
let zRipple =
Math.pow(2, -0.005 * (Math.abs(x) + Math.abs(y))) *
Math.cos(((x * x + y * y) * 2 * pi) / 180 / width) *
height;
return zRipple;
}
width and height here are constants that define a drawing area and are equal to 200 in my tests.
My approach is based on what I recall from an article that I read 30 years ago and trying to recall now.
The idea is to:
split the whole drawing board into the 10-pixel grid
for each 'cell' of the grid, draw a line to the nearest cell along the Y- and the X-axis' (step=10, ds=0.0
for (let x3 = width; x3 >= - width; x3 -= step) {
for (let y3 = -height; y3 <= height; y3 += step) {
for (let s = 0; s < step; s += ds) {
let x = x3 + s;
if (x < width) {
let z3 = myFunc(x, y3);
drawPixel3d(x, y3, z3);
}
}
for (let s = 0; s < step; s += ds) {
let y = y3 + s;
if (y < height) {
let z3 = myFunc(x3, y);
drawPixel3d(x3, y, z3);
}
}
}
}
}
Here is how I convert 3d coordinates to 2d:
function drawPixel3d(x3, y3, z3) {
let x2 = (x3 + y3) * Math.sin((60 * pi) / 180);
let y2 = z3 - ((x3 - y3) * Math.sin((30 * pi) / 180)) / 4;
drawPixel(x2, y2);
}
As you see from the image below, I get a decent graphic, but there is a problem: I draw ALL dots, not only those, that are VISIBLE.
Question: How do I check if any pixel needs to be displayed or not?
From what I can recall in that article, we should follow the approach:
start drawing from the front part of the scene (which I believe I do, the closest to the viewer or screen if dot with coordinates (width, -height)
for each pixel column - remember the 'Z' coordinate and only draw the new pixel if its Z-coordinate is bigger than the last recorded one
To achieve this I've modified my 'drawPixel3d' method:
function drawPixel3d(x3, y3, z3) {
let x2 = (x3 + y3) * Math.sin((60 * pi) / 180);
let y2 = z3 - ((x3 - y3) * Math.sin((30 * pi) / 180)) / 4;
let n = Math.round(x2);
let visible = false;
if (zs[n] === undefined) {
zs[n] = z3;
visible = true;
} else {
if (z3 > zs[n]) {
visible = z3 > zs[n];
zs[n] = z3;
}
}
if (visible) drawPixel(x2, y2);
}
But the result is not expected:
What do I do wrong? Or an alternative question: how to draw a simple 3d graphic?
Thanks!
P.S. The last piece of the program (that illustrates inversion of Y-coordinate during actual drawing):
function drawPixel(x: number, y: number) {
ctx.fillRect(cX + x, cY - y, 1, 1); // TS-way to draw pixel on canvas is to draw a rectangle
} // cX and cY are coordinates of the center of the drawing canvas
P.P.S. I have an idea of the algorithmic solution, so added an 'algorithm' tag: maybe someone from this community can help?
Your surface is concave which means you can not use simple methods based on dot product between face normal and camera view direction.
You got 3 obvious options for this.
use ray tracing
as you got analytical equation of the surface this might be even better way
use depth buffering to mask out the invisible stuff
As you render wireframe then you need to do this in 2 passes:
render invisible filled surface (fill just depth buffer not the screen)
render wireframe
your depth buffer condition must contain also equal values so either z<=depth[y][x] or z>=depth[y][x]
However you need to use face rendering (triangles or quads ...) and I assume this is software rendering so if you not familiar on such stuff see:
how to rasterize rotated rectangle (in 2d by setpixel)
Algorithm to fill triangle
use depth sorting by exploiting topology
If you do not have view transform so your x,y,z coordinates are directly corresponding to camera space coordinates then you can render the grid in back to front order simply by ordering the for loops and direction of iteration (its common in isometric views). This does not need depth buffering however you need to render filled QUADS in order to obtain correct output (border is set to the plot color and the inside is filled with background color).
I did go for the #2 approach. When I ported the last link into 3D I got this (C++ code):
//---------------------------------------------------------------------------
const int col_transparent=-1; // transparent color
class gfx_main
{
public:
Graphics::TBitmap *bmp; // VCL bitmap for win32 rendering
int **scr,**zed,xs,ys; // screen,depth buffers and resolution
struct pbuf // convex polygon rasterization line buffer
{
int x,z; // values to interpolate during rendering
pbuf() {}
pbuf(pbuf& a) { *this=a; }
~pbuf() {}
pbuf* operator = (const pbuf *a) { *this=*a; return this; }
//pbuf* operator = (const pbuf &a) { ...copy... return this; }
} *pl,*pr; // left,right buffers
gfx_main();
gfx_main(gfx_main& a) { *this=a; }
~gfx_main();
gfx_main* operator = (const gfx_main *a) { *this=*a; return this; }
//gfx_main* operator = (const gfx_main &a) { ...copy... return this; }
void resize(int _xs=-1,int _ys=-1);
void clear(int z,int col); // clear buffers
void pixel(int x,int y,int z,int col); // render 3D point
void line(int x0,int y0,int z0,int x1,int y1,int z1,int col); // render 3D line
void triangle(int x0,int y0,int z0,int x1,int y1,int z1,int x2,int y2,int z2,int col); // render 3D triangle
void _triangle_line(int x0,int y0,int z0,int x1,int y1,int z1); // this is just subroutine
};
//---------------------------------------------------------------------------
gfx_main::gfx_main()
{
bmp=new Graphics::TBitmap;
scr=NULL;
zed=NULL;
pl =NULL;
pr =NULL;
xs=0; ys=0;
resize(1,1);
}
//---------------------------------------------------------------------------
gfx_main::~gfx_main()
{
if (bmp) delete bmp;
if (scr) delete[] scr;
if (zed)
{
if (zed[0]) delete[] zed[0];
delete[] zed;
}
if (pl) delete[] pl;
if (pr) delete[] pr;
}
//---------------------------------------------------------------------------
void gfx_main::resize(int _xs,int _ys)
{
// release buffers
if (scr) delete[] scr;
if (zed)
{
if (zed[0]) delete[] zed[0];
delete[] zed;
}
if (pl) delete[] pl;
if (pr) delete[] pr;
// set new resolution and pixelformat
if ((_xs>0)&&(_ys>0)) bmp->SetSize(_xs,_ys);
xs=bmp->Width;
ys=bmp->Height;
bmp->HandleType=bmDIB;
bmp->PixelFormat=pf32bit;
// allocate buffers
scr=new int*[ys];
zed=new int*[ys];
zed[0]=new int[xs*ys]; // allocate depth buffer as single block
for (int y=0;y<ys;y++)
{
scr[y]=(int*)bmp->ScanLine[y]; // screen buffer point directly to VCL bitmap (back buffer)
zed[y]=zed[0]+(y*xs); // just set pointers for each depth line instead of allocating it
}
pl=new pbuf[ys];
pr=new pbuf[ys];
}
//---------------------------------------------------------------------------
int rgb2bgr(int col) // just support function reversing RGB order as VCL/GDI and its direct pixel access are not the same pixelformat
{
union
{
BYTE db[4];
int dd;
} c;
BYTE q;
c.dd=col;
q=c.db[0]; c.db[0]=c.db[2]; c.db[2]=q;
return c.dd;
}
//---------------------------------------------------------------------------
void gfx_main::clear(int z,int col)
{
// clear buffers
int x,y;
col=rgb2bgr(col);
for (y=0;y<ys;y++)
for (x=0;x<xs;x++)
{
scr[y][x]= 0x00000000; // black
zed[y][x]=-0x7FFFFFFF; // as far as posible
}
}
//---------------------------------------------------------------------------
void gfx_main::pixel(int x,int y,int z,int col)
{
col=rgb2bgr(col);
if ((x>=0)&&(x<xs)&&(y>=0)&&(y<ys)) // inside screen
if (zed[y][x]<=z) // not after something already rendered (GL_LEQUAL)
{
zed[y][x]=z; // update depth
if (col!=col_transparent) scr[y][x]=col;// update color
}
}
//---------------------------------------------------------------------------
void gfx_main::line(int x0,int y0,int z0,int x1,int y1,int z1,int col)
{
int i,n,x,y,z,kx,ky,kz,dx,dy,dz,cx,cy,cz;
// DDA variables (d)abs delta,(k)step direction
kx=0; dx=x1-x0; if (dx>0) kx=+1; if (dx<0) { kx=-1; dx=-dx; }
ky=0; dy=y1-y0; if (dy>0) ky=+1; if (dy<0) { ky=-1; dy=-dy; }
kz=0; dz=z1-z0; if (dz>0) kz=+1; if (dz<0) { kz=-1; dz=-dz; }
n=dx; if (n<dy) n=dy; if (n<dz) n=dz; if (!n) n=1;
// integer DDA
for (x=x0,y=y0,z=z0,cx=cy=cz=n,i=0;i<n;i++)
{
pixel(x,y,z,col);
cx-=dx; if (cx<=0){ cx+=n; x+=kx; }
cy-=dy; if (cy<=0){ cy+=n; y+=ky; }
cz-=dz; if (cz<=0){ cz+=n; z+=kz; }
}
}
//---------------------------------------------------------------------------
void gfx_main::triangle(int x0,int y0,int z0,int x1,int y1,int z1,int x2,int y2,int z2,int col)
{
int x,xx0,xx1,y,yy0,yy1,z,zz0,zz1,dz,dx,kz,cz;
// boundary line coordinates to buffers
_triangle_line(x0,y0,z0,x1,y1,z1);
_triangle_line(x1,y1,z1,x2,y2,z2);
_triangle_line(x2,y2,z2,x0,y0,z0);
// y range
yy0=y0; if (yy0>y1) yy0=y1; if (yy0>y2) yy0=y2;
yy1=y0; if (yy1<y1) yy1=y1; if (yy1<y2) yy1=y2;
// fill with horizontal lines
for (y=yy0;y<=yy1;y++)
if ((y>=0)&&(y<ys))
{
if (pl[y].x<pr[y].x){ xx0=pl[y].x; zz0=pl[y].z; xx1=pr[y].x; zz1=pr[y].z; }
else { xx1=pl[y].x; zz1=pl[y].z; xx0=pr[y].x; zz0=pr[y].z; }
dx=xx1-xx0;
kz=0; dz=zz1-zz0; if (dz>0) kz=+1; if (dz<0) { kz=-1; dz=-dz; }
for (cz=dx,x=xx0,z=zz0;x<=xx1;x++)
{
pixel(x,y,z,col);
cz-=dz; if (cz<=0){ cz+=dx; z+=kz; }
}
}
}
//---------------------------------------------------------------------------
void gfx_main::_triangle_line(int x0,int y0,int z0,int x1,int y1,int z1)
{
pbuf *pp;
int i,n,x,y,z,kx,ky,kz,dx,dy,dz,cx,cy,cz;
// DDA variables (d)abs delta,(k)step direction
kx=0; dx=x1-x0; if (dx>0) kx=+1; if (dx<0) { kx=-1; dx=-dx; }
ky=0; dy=y1-y0; if (dy>0) ky=+1; if (dy<0) { ky=-1; dy=-dy; }
kz=0; dz=z1-z0; if (dz>0) kz=+1; if (dz<0) { kz=-1; dz=-dz; }
n=dx; if (n<dy) n=dy; if (n<dz) n=dz; if (!n) n=1;
// target buffer according to ky direction
if (ky>0) pp=pl; else pp=pr;
// integer DDA line start point
x=x0; y=y0;
// fix endpoints just to be sure (wrong division constants by +/-1 can cause that last point is missing)
if ((y0>=0)&&(y0<ys)){ pp[y0].x=x0; pp[y0].z=z0; }
if ((y1>=0)&&(y1<ys)){ pp[y1].x=x1; pp[y1].z=z1; }
// integer DDA (into pbuf)
for (x=x0,y=y0,z=z0,cx=cy=cz=n,i=0;i<n;i++)
{
if ((y>=0)&&(y<ys))
{
pp[y].x=x;
pp[y].z=z;
}
cx-=dx; if (cx<=0){ cx+=n; x+=kx; }
cy-=dy; if (cy<=0){ cy+=n; y+=ky; }
cz-=dz; if (cz<=0){ cz+=n; z+=kz; }
}
}
//---------------------------------------------------------------------------
Just ignore/port the VCL stuff. I just added z coordinate to interpolation and rendering and also depth buffer. The rendering code looks like this:
//---------------------------------------------------------------------------
gfx_main gfx;
//---------------------------------------------------------------------------
float myFunc(float x,float y)
{
float z;
x-=gfx.xs/2;
y-=gfx.ys/2;
z=sqrt(((x*x)+(y*y))/((gfx.xs*gfx.xs)+(gfx.ys*gfx.ys))); // normalized distance from center
z=((0.25*cos(z*8.0*M_PI)*(1.0-z))+0.5)*gfx.ys;
return z;
}
//---------------------------------------------------------------------------
void view3d(int &x,int &y,int &z) // 3D -> 2D view (projection)
{
int zz=z;
z=y;
x=x +(y/2)-(gfx.xs>>2);
y=zz+(y/2)-(gfx.ys>>2);
}
//---------------------------------------------------------------------------
void draw()
{
int i,x,y,z,ds,x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3,col;
gfx.clear(-0x7FFFFFFF,0x00000000);
// render
ds=gfx.xs/50;
for (i=0;i<2;i++) // 2 passes
for (y=ds;y<gfx.ys;y+=ds)
for (x=ds;x<gfx.xs;x+=ds)
{
// 4 vertexes of a quad face
x0=x-ds; y0=y-ds; z0=myFunc(x0,y0);
x1=x; y1=y0; z1=myFunc(x1,y1);
x2=x; y2=y; z2=myFunc(x2,y2);
x3=x0; y3=y; z3=myFunc(x3,y3);
// camera transform
view3d(x0,y0,z0);
view3d(x1,y1,z1);
view3d(x2,y2,z2);
view3d(x3,y3,z3);
if (i==0) // first pass
{
// render (just to depth)
col=col_transparent;
gfx.triangle(x0,y0,z0,x1,y1,z1,x2,y2,z2,col);
gfx.triangle(x0,y0,z0,x2,y2,z2,x3,y3,z3,col);
}
if (i==1) // second pass
{
// render wireframe
col=0x00FF0000;
gfx.line(x0,y0,z0,x1,y1,z1,col);
gfx.line(x1,y1,z1,x2,y2,z2,col);
gfx.line(x2,y2,z2,x3,y3,z3,col);
gfx.line(x3,y3,z3,x0,y0,z0,col);
}
}
// here gfx.scr holds your rendered image
//---------------------------------------------------------------------------
Do not forget to call gfx.resize(xs,ys) with resolution of your view before rendering. As you can see I used different function (does not matter) here the output:
And here the same without depth condition in pixel(x,y,z,col)
The pbuf structure holds all the stuff that will be interpolated in the last rendering interpolation of the horizontal lines. So if you want gourard, textures or whatever you just add the variable to this structure and add the interpolation to the code (mimic the pbuf[].z interpolation code)
However this approach has one drawback. Your current approach interpolates one axis pixel by pixel and the other is stepping by grid size. This one is stepping both axises by grid size. So if you want to have the same behavior you might to do the first pass with 1 x 1 quads instead of ds x ds and then do the lines as you do now. In case 1 in your view is corresponding to pixel then you can do this on pixels alone without the face rendering however you risk holes in the output.
I got the idea of the solution: start drawing from the point nearest to the observer but for every combination of x2 and y2 coordinates draw the pixel only once and only when it is visible (never draw points behind others)... The only problem is that I don't draw EVERY point of the surface, I only draw a surface grid with 10 points step. As a result, part of the surface will be visible in 'between' the grid cells.
Another idea is to calculate distance from every drawing point of the surface to the observer and make sure to draw only that point that is visible of the surface that is CLOSEST to the observer... but how?
Given a number of curves,include line segments and circular arcs, how to compute the total OBB of all curves?
It seems that the union of each OBB of the individual curves does not right, it's not the minimal coverage.
Check this picture, how to compute the red box?
you should also add the input in vector form so we can test on your data ... I would approach like this:
find center of axis aligned bbox O(n)
compute max distance in each angle O(n)
just create table for enough m angles (like 5 deg step so m = 360/5) where for each angle section you remember max distant point distance only.
compute max perpendicular distance for each rotation O(m^2)
so for each angle section compute value that is:
value[actual_section] = max(distance[i]*cos(section_angle[i]-section_angle[actual_section]))
where i covers +/- 90 deg around actual section angle so now you got max perpendicular distances for each angle...
pick best solution O(m)
so look all rotations from 0 to 90 degrees and remember the one that has minimal OBB area. Just to be sure the OBB is aligned to section angle and size of axises is the value of that angle and all the 90 deg increments... around center
This will not result in optimal solution but very close to it. To improve precision you can use more angle sections or even recursively search around found solution with smaller and smaller angle step (no need to compute the other angle areas after first run.
[Edit1]
I tried to code this in C++ as proof of concept and use your image (handled as set of points) as input so here the result so you got something to compare to (for debugging purposes)
gray are detected points from your image, green rectangle is axis aligned BBox the red rectangle is found OBBox. The aqua points are found max distance per angle interval and green dots are max perpendicular distance for +/-90deg neighbor angle intervals. I used 400 angles and as you can see the result is pretty close ... 360/400 deg accuracy so this approach works well ...
Here C++ source:
//---------------------------------------------------------------------------
struct _pnt2D
{
double x,y;
// inline
_pnt2D() {}
_pnt2D(_pnt2D& a) { *this=a; }
~_pnt2D() {}
_pnt2D* operator = (const _pnt2D *a) { *this=*a; return this; }
//_pnt2D* operator = (const _pnt2D &a) { ...copy... return this; }
};
struct _ang
{
double ang; // center angle of section
double dis; // max distance of ang section
double pdis; // max perpendicular distance of +/-90deg section
// inline
_ang() {}
_ang(_ang& a) { *this=a; }
~_ang() {}
_ang* operator = (const _ang *a) { *this=*a; return this; }
//_ang* operator = (const _ang &a) { ...copy... return this; }
};
const int angs=400; // must be divisible by 4
const int angs4=angs>>2;
const double dang=2.0*M_PI/double(angs);
const double dang2=0.5*dang;
_ang ang[angs];
List<_pnt2D> pnt;
_pnt2D bbox[2],obb[4],center;
//---------------------------------------------------------------------------
void compute_OBB()
{
_pnt2D ppp[4];
int i,j; double a,b,dx,dy;
_ang *aa,*bb;
_pnt2D p,*pp; DWORD *q;
// convert bmp -> pnt[]
pnt.num=0;
Graphics::TBitmap *bmp=new Graphics::TBitmap;
bmp->LoadFromFile("in.bmp");
bmp->HandleType=bmDIB;
bmp->PixelFormat=pf32bit;
for (p.y=0;p.y<bmp->Height;p.y++)
for (q=(DWORD*)bmp->ScanLine[int(p.y)],p.x=0;p.x<bmp->Width;p.x++)
if ((q[int(p.x)]&255)<20)
pnt.add(p);
delete bmp;
// axis aligned bbox
bbox[0]=pnt[0];
bbox[1]=pnt[0];
for (pp=pnt.dat,i=0;i<pnt.num;i++,pp++)
{
if (bbox[0].x>pp->x) bbox[0].x=pp->x;
if (bbox[0].y>pp->y) bbox[0].y=pp->y;
if (bbox[1].x<pp->x) bbox[1].x=pp->x;
if (bbox[1].y<pp->y) bbox[1].y=pp->y;
}
center.x=(bbox[0].x+bbox[1].x)*0.5;
center.y=(bbox[0].y+bbox[1].y)*0.5;
// ang[] table init
for (aa=ang,a=0.0,i=0;i<angs;i++,aa++,a+=dang)
{
aa->ang=a;
aa-> dis=0.0;
aa->pdis=0.0;
}
// ang[].dis
for (pp=pnt.dat,i=0;i<pnt.num;i++,pp++)
{
dx=pp->x-center.x;
dy=pp->y-center.y;
a=atan2(dy,dx);
j=floor((a/dang)+0.5); if (j<0) j+=angs; j%=angs;
a=(dx*dx)+(dy*dy);
if (ang[j].dis<a) ang[j].dis=a;
}
for (aa=ang,i=0;i<angs;i++,aa++) aa->dis=sqrt(aa->dis);
// ang[].adis
for (aa=ang,i=0;i<angs;i++,aa++)
for (bb=ang,j=0;j<angs;j++,bb++)
{
a=fabs(aa->ang-bb->ang);
if (a>M_PI) a=(2.0*M_PI)-a;
if (a<=0.5*M_PI)
{
a=bb->dis*cos(a);
if (aa->pdis<a) aa->pdis=a;
}
}
// find best oriented bbox (the best angle is ang[j].ang)
for (b=0,j=0,i=0;i<angs;i++)
{
dx =ang[i].pdis; i+=angs4; i%=angs;
dy =ang[i].pdis; i+=angs4; i%=angs;
dx+=ang[i].pdis; i+=angs4; i%=angs;
dy+=ang[i].pdis; i+=angs4; i%=angs;
a=dx*dy; if ((b>a)||(i==0)) { b=a; j=i; }
}
// compute endpoints for OBB
i=j;
ppp[0].x=ang[i].pdis*cos(ang[i].ang);
ppp[0].y=ang[i].pdis*sin(ang[i].ang); i+=angs4; i%=angs;
ppp[1].x=ang[i].pdis*cos(ang[i].ang);
ppp[1].y=ang[i].pdis*sin(ang[i].ang); i+=angs4; i%=angs;
ppp[2].x=ang[i].pdis*cos(ang[i].ang);
ppp[2].y=ang[i].pdis*sin(ang[i].ang); i+=angs4; i%=angs;
ppp[3].x=ang[i].pdis*cos(ang[i].ang);
ppp[3].y=ang[i].pdis*sin(ang[i].ang); i+=angs4; i%=angs;
obb[0].x=center.x+ppp[0].x+ppp[3].x;
obb[0].y=center.y+ppp[0].y+ppp[3].y;
obb[1].x=center.x+ppp[1].x+ppp[0].x;
obb[1].y=center.y+ppp[1].y+ppp[0].y;
obb[2].x=center.x+ppp[2].x+ppp[1].x;
obb[2].y=center.y+ppp[2].y+ppp[1].y;
obb[3].x=center.x+ppp[3].x+ppp[2].x;
obb[3].y=center.y+ppp[3].y+ppp[2].y;
}
//---------------------------------------------------------------------------
I used mine dynamic list template so:
List<double> xxx; is the same as double xxx[];
xxx.add(5); adds 5 to end of the list
xxx[7] access array element (safe)
xxx.dat[7] access array element (unsafe but fast direct access)
xxx.num is the actual used size of the array
xxx.reset() clears the array and set xxx.num=0
xxx.allocate(100) preallocate space for 100 items
You can ignore the // convert bmp -> pnt[] VCL part as you got your data already.
I recommend to also take a look at my:
3D OBB approximation
I am currently work some sort of map generation algorithm for my game. I have a basic understanding on what I want it to do and how it would generate the map.
I want to use the Polar Coordinate system. I want a circular graph so that each player would spawn on the edge of the circle, evenly spread out.
The algorithm should generate "cities" spread out from across the circle (but only inside the circle). Each city should be connected some form of way.
The size of the circle should depends on the number of players.
Everything should be random, meaning if I run
GenerateMap()
two times, it should not give the same results.
Here is a picture showing what I want: img
The red arrows are pointing to the cities and the lines are the connections between the cities.
How would I go about creating an algorithm based on the above?
Update: Sorry the link was broken. Fixed it.
I see the cities like this:
compute sizes and constants from N
as your cities should have constant average density then the radius can be computed from it directly. as it scales linearly with average or min city distance.
loop N (cities) times
generate random (x,y) with uniform distribution
throw away iterations where (x,y) is outside circle
throw away iterations where (x,y) is too near to already generated city
The paths are similar just generate all possible paths (non random) and throw away:
paths much longer then average or min distance between cities (connects jutst neighbors)
paths that intersect already generated path
In C++ code it could look like this:
//---------------------------------------------------------------------------
// some globals first
const int _max=128; // just max limit for cities and paths
const int R0=10; // city radius
const int RR=R0*R0*9; // min distance^2 between cities
int N=20; // number of cities
int R1=100; // map radius
struct _city { int x,y; }; // all the data you need for city
_city city[_max]; // list of cities
struct _path { int i0,i1; };// index of cities to join with path
_path path[_max]; // list of paths
int M=0; // number of paths in the list
//---------------------------------------------------------------------------
bool LinesIntersect(float X1,float Y1,float X2,float Y2,float X3,float Y3,float X4,float Y4)
{
if (fabs(X2-X3)+fabs(Y2-Y3)<1e-3) return false;
if (fabs(X1-X4)+fabs(Y1-Y4)<1e-3) return false;
float dx1,dy1,dx2,dy2;
dx1 = X2 - X1;
dy1 = Y2 - Y1;
dx2 = X4 - X3;
dy2 = Y4 - Y3;
float s,t,ax,ay,b;
ax=X1-X3;
ay=Y1-Y3;
b=(-(dx2*dy1)+(dx1*dy2)); if (fabs(b)>1e-3) b=1.0/b; else b=0.0;
s = (-(dy1*ax)+(dx1*ay))*b;
t = ( (dx2*ay)-(dy2*ax))*b;
if ((s>=0)&&(s<=1)&&(t>=0)&&(t<=1)) return true;
return false; // No collision
}
//---------------------------------------------------------------------------
// here generate n cities into circle at x0,y0
// compute R1,N from R0,RR,n
void genere(int x0,int y0,int n)
{
_city c;
_path p,*q;
int i,j,cnt,x,y,rr;
Randomize(); // init pseudo random generator
// [generate cities]
R1=(sqrt(RR*n)*8)/10;
rr=R1-R0; rr*=rr;
for (cnt=50*n,i=0;i<n;) // loop until all cities are generated
{
// watchdog
cnt--; if (cnt<=0) break;
// pseudo random position
c.x=Random(R1+R1)-R1; // <-r,+r>
c.y=Random(R1+R1)-R1; // <-r,+r>
// ignore cities outside R1 radius
if ((c.x*c.x)+(c.y*c.y)>rr) continue;
c.x+=x0; // position to center
c.y+=y0;
// ignore city if closer to any other then RR
for (j=0;j<i;j++)
{
x=c.x-city[j].x;
y=c.y-city[j].y;
if ((x*x)+(y*y)<=RR) { j=-1; break; }
}
if (j<0) continue;
// add new city to list
city[i]=c; i++;
}
N=i; // just in case watch dog kiks in
// [generate paths]
for (M=0,p.i0=0;p.i0<N;p.i0++)
for (p.i1=p.i0+1;p.i1<N;p.i1++)
{
// ignore too long path
x=city[p.i1].x-city[p.i0].x;
y=city[p.i1].y-city[p.i0].y;
if ((x*x)+(y*y)>5*RR) continue; // this constant determine the path density per city
// ignore intersecting path
for (q=path,i=0;i<M;i++,q++)
if ((q->i0!=p.i0)&&(q->i0!=p.i1)&&(q->i1!=p.i0)&&(q->i1!=p.i1))
if (LinesIntersect(
city[p.i0].x,city[p.i0].y,city[p.i1].x,city[p.i1].y,
city[q->i0].x,city[q->i0].y,city[q->i1].x,city[q->i1].y
)) { i=-1; break; }
if (i<0) continue;
// add path to list
if (M>=_max) break;
path[M]=p; M++;
}
}
//---------------------------------------------------------------------------
Here overview of generated layout:
And Growth of N:
The blue circles are the cities, the gray area is the target circle and Lines are the paths. The cnt is just watch dog to avoid infinite loop if constants are wrong. Set the _max value properly so it is high enough for your N or use dynamic allocation instead. There is much more paths than cities so they could have separate _max value to preserve memory (was too lazy to add it).
You can use the RandSeed to have procedural generated maps ...
You can rescale output to better match circle layout after the generation simply by finding bounding box and rescale to radius R1.
Some constants are obtained empirically so play with them to achieve best output for your purpose.
In the context of a game program, I have a moving circle and a fixed line segment. The segment can have an arbitrary size and orientation.
I know the radius of the circle: r
I know the coordinates of the circle before the move: (xC1, yC1)
I know the coordinates of the circle after the move: (xC2, yC2)
I know the coordinates of the extremities of the line segment: (xL1, yL1) - (xL2, yL2)
I am having difficulties trying to compute:
A boolean: If any part of the circle hits the line segment while moving from (xC1, yC1) to (xC2, yC2)
If the boolean is true, the coordinates (x, y) of the center of the circle when it hits the line segment (I mean when circle is tangent to segment for the first time)
I'm going to answer with pseudo-algorithm - without any code. The way I see it there are two cases in which we might return true, as per the image below:
Here in blue are your circles, the dashed line is the trajectory line and the red line is your given line.
We build a helper trajectory line, from and to the center of both circles. If this trajectory line intersects the given line - return true. See this question on how to compute that intersection.
In the second case the first test has failed us, but it might just so happen that the circles nudged the line as they passed on the trajectory anyway. We will need the following constuction:
From the trajectory we build normal lines to each point A and B. Then these lines are chopped or extended into helper lines (Ha and Hb), so that their length from A and B is exactly the radius of the circle. Then we check if each of these helper lines intersects with the trajectory line. If they do return true.
Otherwise return false.
Look here:
Line segment / Circle intersection
If the value you get under the square root of either the computation of x or y is negative, then the segment does not intersect. Aside from that, you can stop your computation after you have x and y (note: you may get two answers)
Update I've revised my answer to very specifically address your problem. I give credit to Doswa for this solution, as I pretty much followed along and wrote it for C#. The basic strategy is that we are going to locate the closest point of your line segment to the center of the circle. Based on that, we'll look at the distance of that closest point, and if it is within the radius, locate the point along the direction to the closest point that lies right at the radius of the circle.
// I'll bet you already have one of these.
public class Vec : Tuple<double, double>
{
public Vec(double item1, double item2) : base(item1, item2) { }
public double Dot(Vec other)
{ return Item1*other.Item1 + Item2*other.Item2; }
public static Vec operator-(Vec first, Vec second)
{ return new Vec(first.Item1 - second.Item1, first.Item2 - second.Item2);}
public static Vec operator+(Vec first, Vec second)
{ return new Vec(first.Item1 + second.Item1, first.Item2 + second.Item2);}
public static Vec operator*(double first, Vec second)
{ return new Vec(first * second.Item1, first * second.Item2);}
public double Length() { return Math.Sqrt(Dot(this)); }
public Vec Normalize() { return (1 / Length()) * this; }
}
public bool IntersectCircle(Vec origin, Vec lineStart,
Vec lineEnd, Vec circle, double radius, out Vec circleWhenHit)
{
circleWhenHit = null;
// find the closest point on the line segment to the center of the circle
var line = lineEnd - lineStart;
var lineLength = line.Length();
var lineNorm = (1/lineLength)*line;
var segmentToCircle = circle - lineStart;
var closestPointOnSegment = segmentToCircle.Dot(line) / lineLength;
// Special cases where the closest point happens to be the end points
Vec closest;
if (closestPointOnSegment < 0) closest = lineStart;
else if (closestPointOnSegment > lineLength) closest = lineEnd;
else closest = lineStart + closestPointOnSegment*lineNorm;
// Find that distance. If it is less than the radius, then we
// are within the circle
var distanceFromClosest = circle - closest;
var distanceFromClosestLength = distanceFromClosest.Length();
if (distanceFromClosestLength > radius) return false;
// So find the distance that places the intersection point right at
// the radius. This is the center of the circle at the time of collision
// and is different than the result from Doswa
var offset = (radius - distanceFromClosestLength) *
((1/distanceFromClosestLength)*distanceFromClosest);
circleWhenHit = circle - offset;
return true;
}
Here is some Java that calculates the distance from a point to a line (this is not complete, but will give you the basic picture). The code comes from a class called
'Vector'. The assumption is that the vector object is initialized to the line vector. The method 'distance' accepts the point that the line vector starts at (called 'at' of course), and the point of interest. It calculates and returns the distance from that point to the line.
public class Vector
{
double x_ = 0;
double y_ = 0;
double magnitude_ = 1;
public Vector()
{
}
public Vector(double x,double y)
{
x_ = x;
y_ = y;
}
public Vector(Vector other)
{
x_ = other.x_;
y_ = other.y_;
}
public void add(Vector other)
{
x_ += other.x_;
y_ += other.y_;
}
public void scale(double val)
{
x_ *= val;
y_ *= val;
}
public double dot(Vector other)
{
return x_*other.x_+y_*other.y_;
}
public void cross(Vector other)
{
x_ = x_*other.y_ - y_*other.x_;
}
public void unit()
{
magnitude_ = Math.sqrt(x_*x_+y_*y_);
x_/=magnitude_;
y_/=magnitude_;
}
public double distance(Vector at,Vector point)
{
//
// Create a perpendicular vector
//
Vector perp = new Vector();
perp.perpendicular(this);
perp.unit();
Vector offset = new Vector(point.x_ - at.x_,point.y_ - at.y_);
double d = Math.abs(offset.dot(perp));
double m = magnitude();
double t = dot(offset)/(m*m);
if(t < 0)
{
offset.x_ -= at.x_;
offset.y_ -= at.y_;
d = offset.magnitude();
}
if(t > 1)
{
offset.x_ -= at.x_+x_;
offset.y_ -= at.y_+y_;
d = offset.magnitude();
}
return d;
}
private void perpendicular(Vector other)
{
x_ = -other.y_;
y_ = other.x_;
}
public double magnitude()
{
magnitude_ = Math.sqrt(x_*x_+y_*y_);
return magnitude_;
}
}
I'm trying to find the most efficient way to check if 2 arbitrarily sized cubes collide with each other. The sides of the cubes are not necessarily all equal in length (a box is possible). Given these constraints, how could I efficiently check if they collide? (each box has 24 verticies) Thanks
They are axis alligned
Since both boxes are axis-aligned you can just compare their extents:
return (a.max_x() >= b.min_x() and a.min_x() <= b.max_x())
and (a.max_y() >= b.min_y() and a.min_y() <= b.max_y())
and (a.max_z() >= b.min_z() and a.min_z() <= b.max_z())
For a boolean query, use Laurence's answer. It can also be made to work with moving boxes, but then you have to use a binary search to find the intersection point, or the time interval.
Solving the parametric time for intersection on an axis
Another solution if you want movable boxes is to find the parametric time where the intersection happens on each axis separately, with respect to the traveling direction. Let's call the boxes A and B, their extreme points for Min and Max. You only need one direction, because you can subtract A's direction from B's direction and be left with one vector. So you can consider B to be moving and A to be stationary. Let's call the direction D. Solving for t gives:
(for the start of the intersection along D)
Bmax + tEnterD = Amin
tEnterD = Amin - Bmax
tEnter = (Amin - Bmax) / D
(for the end of the intersection along D; the back side of A)
Bmin + tLeaveD = Amax
tLeaveD = Amax - Bmin
tLeave = (Amax - Bmin) / D
Do this check on each axis, and if they all overlap, you have an intersection. If the denominator is zero, you have an infinite overlap or no overlap on that axis. If tEnter is greater than 1 or tLeave is less than zero, then the overlap is further away than the direction lengths, or in the wrong direction.
bool IntersectAxis(float min1, float max1, float min2, float max2,
float diraxis, float& tEnter, float& tLeave)
{
const float intrEps = 1e-9;
/* Carefully check for diraxis==0 using an epsilon. */
if( std::fabs(diraxis) < intrEps ){
if((min1 >= max2) || (max1 <= min2)){
/* No movement in the axis, and they don't overlap,
hence no intersection. */
return false;
} else {
/* Stationary in the axis, with overlap at t=0 to t=1 */
return true;
}
} else {
float start = (min1 - max2) / diraxis;
float leave = (max1 - min2) / diraxis;
/* Swap to make sure our intervals are correct */
if(start > leave)
std::swap(start,leave);
if(start > tEnter)
tEnter = start;
if(leave < tLeave)
tLeave = leave;
if(tEnter > tLeave)
return false;
}
return true;
}
bool Intersect(const AABB& b1, const AABB& b2, Vector3 dir, float& tEnter, float& tLeave)
{
tEnter = 0.0f;
tLeave = 1.0f;
if(IntersectAxis(b1.bmin.x, b1.bmax.x, b2.bmin.x, b2.bmax.x, dir.x, tEnter, tLeave) == false)
return false;
else if(IntersectAxis(b1.bmin.y, b1.bmax.y, b2.bmin.y, b2.bmax.y, dir.y, tEnter, tLeave) == false)
return false;
else if(IntersectAxis(b1.bmin.z, b1.bmax.z, b2.bmin.z, b2.bmax.z, dir.z, tEnter, tLeave) == false)
return false;
else
return true;
}