WINAPI USB DEVICE LIST C LIBUSB not any good - winapi

I hope someone can help me with this issue. I made an application to read some data from a smartphone and display in an application. It worked fine at my house, so I took it to my friend's house to show him and it didn't work. So after the panic, I realized that the address had changed slightly due to being connected to a new PC not a problem there must be a simple solution on winapi.
\\?\usb#vid_045e&pid_0040#6&ff454f2&0&3#{a5dcbf10-6530-11d2-901f-00c04fb951ed}\
I have only found code for C++ and my app is in C so it's no use. I also found libusb on google, however this doesn't return the full paths like in my example above.
Is there a simple fix like search by GUID? Hope you can help.
BR
This was the LIBUSB I used
#include <stdio.h>
#include <sys/types.h>
#include <windows.h>
#include <libusb.h>
static void print_devs(libusb_device **devs)
{
libusb_device *dev;
int i = 0;
while ((dev = devs[i++]) != NULL) {
struct libusb_device_descriptor desc;
int r = libusb_get_device_descriptor(dev, &desc);
if (r < 0) {
fprintf(stderr, "failed to get device descriptor");
return;
}
printf("%04x:%04x (bus %d, device %d)\n",
desc.idVendor, desc.idProduct,
libusb_get_bus_number(dev), libusb_get_device_address(dev));
}
}
int main(void)
{
libusb_device **devs;
int r;
ssize_t cnt;
r = libusb_init(NULL);
if (r < 0)
return r;
cnt = libusb_get_device_list(NULL, &devs);
if (cnt < 0)
return (int) cnt;
print_devs(devs);
libusb_free_device_list(devs, 1);
libusb_exit(NULL);
system("pause");
return 0;
}
This just returns for example
1033:0194 (bus 1, device 255)

Yes you can get a list of all the device identifiers on your computer, but it's not really all that simple, especially if you need to filter it for a particular kind of device.
You start with SetupDiGetClassDevs. After enumerating the matching devices, use SetupDiGetDeviceInstanceId to get the device path, like the one shown in your question.

Related

CUDA constant memory issue: invalid device symbol with cudaGetSymbolAddress

I am trying to set constant values on my GPU's constant memory before launching a kernel which needs these values.
My code (simplified):
__constant__ size_t con_N;
int main()
{
size_t N;
size_t* dev_N = NULL;
cudaError_t cudaStatus;
//[...]
cudaStatus = cudaGetSymbolAddress((void **)&dev_N, &con_N);
if (cudaStatus != cudaSuccess) {
cout<<"cudaGetSymbolAddress (dev_N) failed: "<<cudaGetErrorString(cudaStatus)<<endl;
}
I planned to cudaMemcpy my N to dev_N afterwards.
However, all I get at this point in the code is:
cudaGetSymbolAddress (dev_N) failed: invalid device symbol
I'm working with CUDA 6.5 so it's not a quoted symbol issue, as it is in most of the Q&A I've been checking so far.
I tried to replace con_N with con_N[1] (and remove the & before con_N in cudaGetSymbolAddress parameters): same result.
As the prototype of this function is cudaGetSymbolAddress(void **devPtr , const void* symbol ), I guessed it wanted to be given my symbol's address. However, I tried with cudaStatus = cudaGetSymbolAddress((void **)&dev_N, (const void*) con_N); and I got the same message.
I'm also getting the very same error message when I remove cudaGetSymbolAddress((void **)&dev_N, &con_N) and go directly with cudaMemcpyToSymbol(&con_N, &N, sizeof(size_t)) instead.
I'm afraid I missed something essential. Any help will be greatly appreciated.
The correct usage of cudaGetSymbolAddress is
cudaGetSymbolAddress((void **)&dev_N, con_N)
I'm showing this with the simple example below.
As the documentation explains, the symbol should physically reside on the device. Accordingly, using &con_N in the API call appears to be meaningless, since, being cudaGetSymbolAddress a host API, accessing the address of something residing on the device directly from host should not be possible. I'm not sure if the prototype appearing in the CUDA Runtime API document should better read as `
template<class T>
cudaError_t cudaGetSymbolAddress (void **devPtr, const T symbol)
with device symbol reference instead of device symbol address.
#include <stdio.h>
__constant__ int const_symbol;
/********************/
/* CUDA ERROR CHECK */
/********************/
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort=true)
{
if (code != cudaSuccess)
{
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}
/***************/
/* TEST KERNEL */
/***************/
__global__ void kernel() {
printf("Address of symbol from device = %p\n", &const_symbol);
}
/********/
/* MAIN */
/********/
int main()
{
const int N = 16;
int *pointer = NULL;
gpuErrchk(cudaGetSymbolAddress((void**)&pointer, const_symbol));
kernel<<<1,1>>>();
printf("Address of symbol from host = %p\n", pointer);
return 0;
}
In my opinion, A line of your code should be fixed like below.
cudaStatus = cudaGetSymbolAddress((void **)&dev_N, con_N);
Hope this helps you.

Getting process base address in Mac OSX

I'm trying to read the memory of a process using task_for_pid / vm_read.
uint32_t sz;
pointer_t buf;
task_t task;
pid_t pid = 9484;
kern_return_t error = task_for_pid(current_task(), pid, &task);
vm_read(task, 0x10e448000, 2048, &buf, &sz);
In this case I read the first 2048 bytes.
This works when I know the base address of the process (which I can find out using gdb "info shared" - in this case 0x10e448000), but how do I find out the base address at runtime (without looking at it with gdb)?
Answering my own question. I was able to get the base address using mach_vm_region_recurse like below. The offset lands in vmoffset. If there is another way that is more "right" - don't hesitate to comment!
#include <stdio.h>
#include <mach/mach_init.h>
#include <sys/sysctl.h>
#include <mach/mach_vm.h>
...
mach_port_name_t task;
vm_map_offset_t vmoffset;
vm_map_size_t vmsize;
uint32_t nesting_depth = 0;
struct vm_region_submap_info_64 vbr;
mach_msg_type_number_t vbrcount = 16;
kern_return_t kr;
if ((kr = mach_vm_region_recurse(task, &vmoffset, &vmsize,
&nesting_depth,
(vm_region_recurse_info_t)&vbr,
&vbrcount)) != KERN_SUCCESS)
{
printf("FAIL");
}
Since you're calling current_task(), I assume you're aiming at your own process at runtime. So the base address you mentioned should be the dynamic base address, i.e. static base address + image slide caused by ASLR, right? Based on this assumption, you can use "Section and Segment Accessors" to get the static base address of your process, and then use the dyld functions to get the image slide. Here's a snippet:
#import <Foundation/Foundation.h>
#include </usr/include/mach-o/getsect.h>
#include <stdio.h>
#include </usr/include/mach-o/dyld.h>
#include <string.h>
uint64_t StaticBaseAddress(void)
{
const struct segment_command_64* command = getsegbyname("__TEXT");
uint64_t addr = command->vmaddr;
return addr;
}
intptr_t ImageSlide(void)
{
char path[1024];
uint32_t size = sizeof(path);
if (_NSGetExecutablePath(path, &size) != 0) return -1;
for (uint32_t i = 0; i < _dyld_image_count(); i++)
{
if (strcmp(_dyld_get_image_name(i), path) == 0)
return _dyld_get_image_vmaddr_slide(i);
}
return 0;
}
uint64_t DynamicBaseAddress(void)
{
return StaticBaseAddress() + ImageSlide();
}
int main (int argc, const char *argv[])
{
printf("dynamic base address (%0llx) = static base address (%0llx) + image slide (%0lx)\n", DynamicBaseAddress(), StaticBaseAddress(), ImageSlide());
while (1) {}; // you can attach to this process via gdb/lldb to view the base address now :)
return 0;
}
Hope it helps!

netserverenum's return

Hello, I am using NetServerEnum to get a list of local networking computer (LAN)
I'd like to know its return (out) addresses
For example, should they be something like
\192.168.1.10\ComputerName1
\192.168.1.10\ComputerName2
\192.168.1.10\ComputerName3
? Or just the computer names existing on the networking router ?
I am not on a networking machine to test it, it'll be really kind of you to inform me this.
Thank you.
NetServerEnum is basically a leftover from the NetBIOS days, so it only deals in "flat" (NetBIOS) names. Here's a bit of code to show what names it can give you though:
#include <windows.h>
#include <lm.h>
#include <iostream>
int main() {
SERVER_INFO_100 *info;
DWORD count;
DWORD total_servers;
DWORD resume = 0;
NetServerEnum(NULL,
100,
(BYTE **)&info,
MAX_PREFERRED_LENGTH,
&count,
&total_servers,
SV_TYPE_NT, NULL,
&resume);
for (int i=0; i<count; i++)
std::wcout << info[i].sv100_name << "\n";
NetApiBufferFree(info);
return 0;
}
Name or IP-address of network router is not returned. Only computer name is returned in sv100_name or sv101_name field of SERVER_INFO_10x structure as:
ComputerName0
ComputerName1
ComputerName2
...
ComputerNameN

how to use CryptoAPI in the linux kernel 2.6

I have been looking for some time but have not found anywhere near sufficient documentation / examples on how to use the CryptoAPI that comes with linux in the creation of syscalls / in kernel land.
If anyone knows of a good source please let me know, I would like to know how to do SHA1 / MD5 and Blowfish / AES within the kernel space only.
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/crypto.h>
#include <linux/err.h>
#include <linux/scatterlist.h>
#define SHA1_LENGTH 20
static int __init sha1_init(void)
{
struct scatterlist sg;
struct crypto_hash *tfm;
struct hash_desc desc;
unsigned char output[SHA1_LENGTH];
unsigned char buf[10];
int i;
printk(KERN_INFO "sha1: %s\n", __FUNCTION__);
memset(buf, 'A', 10);
memset(output, 0x00, SHA1_LENGTH);
tfm = crypto_alloc_hash("sha1", 0, CRYPTO_ALG_ASYNC);
desc.tfm = tfm;
desc.flags = 0;
sg_init_one(&sg, buf, 10);
crypto_hash_init(&desc);
crypto_hash_update(&desc, &sg, 10);
crypto_hash_final(&desc, output);
for (i = 0; i < 20; i++) {
printk(KERN_ERR "%d-%d\n", output[i], i);
}
crypto_free_hash(tfm);
return 0;
}
static void __exit sha1_exit(void)
{
printk(KERN_INFO "sha1: %s\n", __FUNCTION__);
}
module_init(sha1_init);
module_exit(sha1_exit);
MODULE_LICENSE("Dual MIT/GPL");
MODULE_AUTHOR("Me");
There are a couple of places in the kernel which use the crypto module: the eCryptfs file system (linux/fs/ecryptfs/) and the 802.11 wireless stack (linux/drivers/staging/rtl8187se/ieee80211/). Both of these use AES, but you may be able to extrapolate what you find there to MD5.
Another good example is from the 2.6.18 kernel source in security/seclvl.c
Note: You can change CRYPTO_TFM_REQ_MAY_SLEEP if needed
static int
plaintext_to_sha1(unsigned char *hash, const char *plaintext, unsigned int len)
{
struct crypto_tfm *tfm;
struct scatterlist sg;
if (len > PAGE_SIZE) {
seclvl_printk(0, KERN_ERR, "Plaintext password too large (%d "
"characters). Largest possible is %lu "
"bytes.\n", len, PAGE_SIZE);
return -EINVAL;
}
tfm = crypto_alloc_tfm("sha1", CRYPTO_TFM_REQ_MAY_SLEEP);
if (tfm == NULL) {
seclvl_printk(0, KERN_ERR,
"Failed to load transform for SHA1\n");
return -EINVAL;
}
sg_init_one(&sg, (u8 *)plaintext, len);
crypto_digest_init(tfm);
crypto_digest_update(tfm, &sg, 1);
crypto_digest_final(tfm, hash);
crypto_free_tfm(tfm);
return 0;
}
Cryptodev-linux
https://github.com/cryptodev-linux/cryptodev-linux
It is a kernel module that exposes the kernel crypto API to userspace through /dev/crypto .
SHA calculation example: https://github.com/cryptodev-linux/cryptodev-linux/blob/da730106c2558c8e0c8e1b1b1812d32ef9574ab7/examples/sha.c
As others have mentioned, the kernel does not seem to expose the crypto API to userspace itself, which is a shame since the kernel can already use native hardware accelerated crypto functions internally.
Crypto operations cryptodev supports: https://github.com/nmav/cryptodev-linux/blob/383922cabeea7dca354415e8c590f8e932f4d7a8/crypto/cryptodev.h
Crypto operations Linux x86 supports: https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/arch/x86/crypto?id=refs/tags/v4.0
The best place to start is Documentation/crytpo in the kernel sources. dm-crypt is one of the many components that probably uses the kernel crypto API and you can refer to it to get an idea about usage.
how to do SHA1 / MD5 and Blowfish / AES within the kernel space only.
Example of hashing data using a two-element scatterlist:
struct crypto_hash *tfm = crypto_alloc_hash("sha1", 0, CRYPTO_ALG_ASYNC);
if (tfm == NULL)
fail;
char *output_buf = kmalloc(crypto_hash_digestsize(tfm), GFP_KERNEL);
if (output_buf == NULL)
fail;
struct scatterlist sg[2];
struct hash_desc desc = {.tfm = tfm};
ret = crypto_hash_init(&desc);
if (ret != 0)
fail;
sg_init_table(sg, ARRAY_SIZE(sg));
sg_set_buf(&sg[0], "Hello", 5);
sg_set_buf(&sg[1], " World", 6);
ret = crypto_hash_digest(&desc, sg, 11, output_buf);
if (ret != 0)
fail;
One critical note:
Never compare the return value of crypto_alloc_hash function to NULL for detecting the failure.
Steps:
Always use IS_ERR function for this purpose. Comparing to NULL does not capture the error, hence you get segmentation faults later on.
If IS_ERR returns fail, you possibly have a missing crypto algorithm compiled into your kernel image (or as a module). Make sure you have selected the appropriate crypto algo. form make menuconfig.

SysInternal's WinObj device listing mechanism

SysInternals's WinObj can list all device objects.
I wonder how it can list the devices.
Is there any open source we can read?(or a code snippet)
What is the most significant function I should know?
WinObj uses the NT system calls NtOpenDirectoryObject and NtQueryDirectoryObject. There is no driver or kernel code needed. You won't see the imports because these NT functions are loaded via LoadLibrary/GetProcAddress.
You don't have to enumerate the entire object namespace. If you're interested in the device objects call NtOpenDirectoryObject with "\Device", then call NtQueryDirectoryObject on the returned handle.
According to SysInternals' web page:
The native NT API provides routines
that allow user-mode programs to
browse the namespace and query the
status of objects located there, but
the interfaces are undocumented.
I've tried looking at WinObj's import table (dumpbin /imports winobj.exe) but there are no obvious suspects :-(
As per the answer from user1575778 you can use NtOpenDirectoryObject and NtQueryDirectoryObject (which from user mode are identical to ZwOpenDirectoryObject and ZwQueryDirectoryObject respectively) to list the objects inside the object manager namespace.
Have a look at objmgr.hpp of NT Objects aka ntobjx, in particular at the class NtObjMgr::Directory (or DirectoryT). It provides the same functionality nicely wrapped into a C++ class. The whole utility is open source under a liberal license (dual-licensed due to WTL-use: MIT and MS-PL), so bits and pieces can be reused however you please, provided you comply with the license terms.
But here's a simple C++ code example catering just your use case:
#include <Windows.h>
#include <tchar.h>
#include <cstdio>
#include <winternl.h>
NTSTATUS (NTAPI* NtOpenDirectoryObject)(PHANDLE, ACCESS_MASK, POBJECT_ATTRIBUTES);
NTSTATUS (NTAPI* NtQueryDirectoryObject)(HANDLE, PVOID, ULONG, BOOLEAN, BOOLEAN, PULONG, PULONG);
VOID (NTAPI* RtlInitUnicodeString_)(PUNICODE_STRING, PCWSTR);
NTSTATUS (NTAPI* NtClose_)(HANDLE);
#define DIRECTORY_QUERY (0x0001)
#define DIRECTORY_TRAVERSE (0x0002)
typedef struct _OBJECT_DIRECTORY_INFORMATION {
UNICODE_STRING Name;
UNICODE_STRING TypeName;
} OBJECT_DIRECTORY_INFORMATION, *POBJECT_DIRECTORY_INFORMATION;
#ifndef STATUS_SUCCESS
#define STATUS_SUCCESS ((NTSTATUS)0x00000000L) // ntsubauth
#endif // STATUS_SUCCESS
#ifndef STATUS_MORE_ENTRIES
#define STATUS_MORE_ENTRIES ((NTSTATUS)0x00000105L)
#endif // STATUS_MORE_ENTRIES
#ifndef STATUS_NO_MORE_ENTRIES
#define STATUS_NO_MORE_ENTRIES ((NTSTATUS)0x8000001AL)
#endif // STATUS_NO_MORE_ENTRIES
int PrintDevices()
{
NTSTATUS ntStatus;
OBJECT_ATTRIBUTES oa;
UNICODE_STRING objname;
HANDLE hDeviceDir = NULL;
RtlInitUnicodeString_(&objname, L"\\Device");
InitializeObjectAttributes(&oa, &objname, 0, NULL, NULL);
ntStatus = NtOpenDirectoryObject(&hDeviceDir, DIRECTORY_QUERY | DIRECTORY_TRAVERSE, &oa);
if(NT_SUCCESS(ntStatus))
{
size_t const bufSize = 0x10000;
BYTE buf[bufSize] = {0};
ULONG start = 0, idx = 0, bytes;
BOOLEAN restart = TRUE;
for(;;)
{
ntStatus = NtQueryDirectoryObject(hDeviceDir, PBYTE(buf), bufSize, FALSE, restart, &idx, &bytes);
if(NT_SUCCESS(ntStatus))
{
POBJECT_DIRECTORY_INFORMATION const pdilist = reinterpret_cast<POBJECT_DIRECTORY_INFORMATION>(PBYTE(buf));
for(ULONG i = 0; i < idx - start; i++)
{
if(0 == wcsncmp(pdilist[i].TypeName.Buffer, L"Device", pdilist[i].TypeName.Length / sizeof(WCHAR)))
{
_tprintf(_T("%s\n"), pdilist[i].Name.Buffer);
}
}
}
if(STATUS_MORE_ENTRIES == ntStatus)
{
start = idx;
restart = FALSE;
continue;
}
if((STATUS_SUCCESS == ntStatus) || (STATUS_NO_MORE_ENTRIES == ntStatus))
{
break;
}
}
(void)NtClose_(hDeviceDir);
return 0;
}
_tprintf(_T("Failed NtOpenDirectoryObject with 0x%08X"), ntStatus);
return 1;
}
int _tmain(int /*argc*/, _TCHAR** /*argv*/)
{
HMODULE hNtDll = ::GetModuleHandle(_T("ntdll.dll"));
*(FARPROC*)&NtOpenDirectoryObject = ::GetProcAddress(hNtDll, "NtOpenDirectoryObject");
*(FARPROC*)&NtQueryDirectoryObject = ::GetProcAddress(hNtDll, "NtQueryDirectoryObject");
*(FARPROC*)&RtlInitUnicodeString_ = ::GetProcAddress(hNtDll, "RtlInitUnicodeString");
*(FARPROC*)&NtClose_ = ::GetProcAddress(hNtDll, "NtClose");
if (!NtOpenDirectoryObject || !NtQueryDirectoryObject || !RtlInitUnicodeString_ || !NtClose_)
{
_tprintf(_T("Failed to retrieve ntdll.dll function pointers\n"));
return 1;
}
return PrintDevices();
}
Some remarks: This will not delve into subdirectories, it will not list any types other than Device and it will not resolve symbolic links, if any. For any of those features, please look at the aforementioned utility's source code and adjust as needed. winternl.h should be available in any recent Windows SDK.
The functions RtlInitUnicodeString_ and NtClose_ have a trailing underscore to avoid clashes with these native API functions, which are declared in winternl.h, but use __declspec(dllimport).
Disclosure: I am the author of ntobjx.
You can use NtOpenDirectoryObject and NtQueryDirectoryObject to enumarate the objects list in a given directory.
To get the details of the object namespace, you must use the Windows NT Undocumented API. That is also used by the WinObj as it is described here that how WinOBj getting the all results..and for those who are saying that we need a driver to do this please, read these lines on given page.
"One obvious way is to use a driver – in kernel mode everything is accessible – so the client app can get the required information by communicating with its own driver. WinObj does not use a driver, however (this is one reason it’s able to execute without admin privileges, although with admin privileges it shows all objects as opposed to partial results)."
You can start with SetupDiCreateDeviceInfoList and use other related functions to enumerate all the devices. This stuff is painful to use.

Resources