What makes parallel code sections and sequential code sections different? - parallel-processing

We do have the parallel programs which in turn has the critical section which runs sequentially. Basically the size of the critical section is small but do you think this small piece of code behaves differently from the rest of the code? for example: more cache misses or branch mispredictions which makes them more critical?
Some questions:
1)What kind of study will reveal inner details or characteristics of this CS part of the code?
2)What are the real time benchmarks which are having very coarse grained locking or bigger CS?
3)The scientific benchmarks like PARSEC and SPLASH are optimized very well but there should be lot of applications which are parallelized for performance but not really optimized. Do you know any such applications?
I hope the purpose of discussion is clear. If not, please let me know for further clarification.

Related

Looking for a set of benchmark applications which do not work well with modern CPU prefetchers, caches, branch predictors, etc

Does anyone know where I can find a set of applications which are not amenable to modern micro-architecture sub-circuits which are present in CPUs, i.e. which do not benefit from modern micro-architecture designs. For example, a piece of code which has a lot of jumps may not work well with simplistic next in line instruction pre-fetchers. Basically I am looking for code examples for which the modern CPUs are not optimized for. I know the standard benchmarks such as matrix multiplication and all, but what I am looking for is small snippets of code which do not work well with a small subset of the micro-acrthitecture (small means one or two sub-circuits). Does anyone know where I can find such benchmarks?

Suggest an OpenMP program that has noticeble speedup and the most important concepts in it for a talk

I am going to have a lecture on OpenMP and I want to write an program using OpenMP lively . What program do you suggest that has the most important concept of OpenMP and has noticeable speedup? I want an awesome program example, please help me all of you that you are expert in OpenMP
you know I am looking for an technical and Interesting example with nice output.
I want to write two program lively , first one for better illustration of most important OpenMP concept and has impressive speedup and second-one as a hands-on that everyone must write that code at the same time
my audience may be very amateur
Personally I wouldn't say that the most impressive aspect of OpenMP is the scalability of the codes you can write with it. I'd say that a more impressive aspect is the ease with which one can take an existing serial program and, with only a few OpenMP directives, turn it into a parallel program with satisfactory scalability.
So I'd suggest that you take any program (or part of any program) of interest to your audience, better yet a program your audience is familiar with, and parallelise it right there and then in your lecture, lively as you put it. I'd be impressed if a lecturer could show me, say, a 4 times speedup on 8 cores with 5 minutes coding and a re-compilation. And that leads on to all sorts of interesting topics about why you don't (always, easily) get 8 times speedup on 8 cores.
Of course, like all stage illusionists, you'll have to choose your example carefully and rehearse to ensure that you do get an impressive-enough speedup to support your argument.
Personally I'd be embarrassed to use an embarrassingly parallel program for such a demo; the more perceptive members of the audience might be provoked into a response such as meh.
(1) Matrix multiply
Perhaps it's the most simple example (though matrix addition would be simpler).
(2) Mandelbrot
http://en.wikipedia.org/wiki/Mandelbrot_set
Mandelbrot is also embarrassingly parallel, and OpenMP can achieve decent speedups. You can even use graphics to visualize it. Mandelbrot is also an interesting example because it has workload imbalance. You may see different speedups based on scheduling policies (e.g., schedule(dynamic,1) vs. schedule(static)), and different threading libraries (e.g., Cilk Plus or TBB).
(3) A couple of mathematical kernels
For example, FFT (non-recursive version) is also embarrassingly parallelized.
Take a look at "OmpSCR" benchmarks: http://sourceforge.net/projects/ompscr/ This suite has simple OpenMP examples.

Where to learn about low-level, hard-core performance stuffs?

This is actually a 2 part question:
For people who want to squeeze every clock cycle, people talk about pipelines, cache locality, etc.
I have seen these low level performance techniques mentioned here and there but I have not seen a good introduction to the subject, from start to finish. Any resource recommendations? (Google gave me definitions and papers, where I'd really appreciate some kind of worked examples/tutorials real-life hands-on kind of materials)
How does one actually measure this kind of things? Like, as in a profiler of some sort? I know we can always change the code, see the improvement and theorize in retrospect, I am just wondering if there are established tools for the job.
(I know algorithm optimization is where the orders of magnitudes are. I am interested in the metal here)
The chorus of replies is, "Don't optimize prematurely." As you mention, you will get a lot more performance out of a better design than a better loop, and your maintainers will appreciate it, as well.
That said, to answer your question:
Learn assembly. Lots and lots of assembly. Don't MUL by a power of two when you can shift. Learn the weird uses of xor to copy and clear registers. For specific references,
http://www.mark.masmcode.com/ and http://www.agner.org/optimize/
Yes, you need to time your code. On *nix, it can be as easy as time { commands ; } but you'll probably want to use a full-features profiler. GNU gprof is open source http://www.cs.utah.edu/dept/old/texinfo/as/gprof.html
If this really is your thing, go for it, have fun, and remember, lots and lots of bit-level math. And your maintainers will hate you ;)
EDIT/REWRITE:
If it is books you need Michael Abrash did a good job in this area, Zen of Assembly language, a number of magazine articles, big black book of graphics programming, etc. Much of what he was tuning for is no longer a problem, the problems have changed. What you will get out of this is the ideas of the kinds of things that can cause bottle necks and the kinds of ways to solve. Most important is to time everything, and understand how your timing measurements work so that you are not fooling yourself by measuring incorrectly. Time the different solutions and try crazy, weird solutions, you may find an optimization that you were not aware of and didnt realize until you exposed it.
I have only just started reading but See MIPS Run (early/first edition) looks good so far (note that ARM took over MIPS as the leader in the processor market, so the MIPS and RISC hype is a bit dated). There are a number of text books old and new to be had about MIPS. Mips being designed for performance (At the cost of the software engineer in some ways).
The bottlenecks today fall into the categories of the processor itself and the I/O around it and what is connected to that I/O. The insides of the processor chips themselves (for higher end systems) run much faster than the I/O can handle, so you can only tune so far before you have to go off chip and wait forever. Getting off the train, from the train to your destination half a minute faster when the train ride was 3 hours is not necessarily a worthwhile optimization.
It is all about learning the hardware, you can probably stay within the ones and zeros world and not have to get into the actual electronics. But without really knowing the interfaces and internals you really cannot do much performance tuning. You might re-arrange or change a few instructions and get a little boost, but to make something several hundred times faster you need more than that. Learning a lot of different instruction sets (assembly languages) helps get into the processors. I would recommend simulating HDL, for example processors at opencores, to get a feel for how some folks do their designs and getting a solid handle on how to really squeeze clocks out of a task. Processor knowledge is big, memory interfaces are a huge deal and need to be learned, media (flash, hard disks, etc) and displays and graphics, networking, and all the types of interfaces between all of those things. And understanding at the clock level or as close to it as you can get, is what it takes.
Intel and AMD provide optimization manuals for x86 and x86-64.
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html/
http://developer.amd.com/documentation/guides/pages/default.aspx
Another excellent resource is agner.
http://www.agner.org/optimize/
Some of the key points (in no particular order):
Alignment; memory, loop/function labels/addresses
Cache; non-temporal hints, page and cache misses
Branches; branch prediction and avoiding branching with compare&move op-codes
Vectorization; using SSE and AVX instructions
Op-codes; avoiding slow running op-codes, taking advantage of op-code fusion
Throughput / pipeline; re-ordering or interleaving op-codes to perform separate tasks avoiding partial stales and saturating the processor's ALUs and FPUs
Loop unrolling; performing multiple iterations for a single "loop comparison, branch"
Synchronization; using atomic op-code (or LOCK prefix) to avoid high level synchronization constructs
Yes, measure, and yes, know all those techniques.
Experienced people will tell you "don't optimize prematurely", which I relate as simply "don't guess".
They will also say "use a profiler to find the bottleneck", but I have a problem with that. I hear lots of stories of people using profilers and either liking them a lot or being confused with their output.
SO is full of them.
What I don't hear a lot of is success stories, with speedup factors achieved.
The method I use is very simple, and I've tried to give lots of examples, including this case.
I'd suggest Optimizing subroutines in assembly
language
An optimization guide for x86 platforms.
It's quite heavy stuff though ;)

Does more human-logical source code tend to produce more optimized compiled code?

I'm working on a large performance-critical project that is very branch heavy. In the process of designing algorithms for this product, my employer often reminds me to write code that is more "human logical", or written in a manner that more closely aligns with the way we logically think.
While this makes sense to me from a few different perspectives (e.g. ease of understanding/remembering, code maintenance, etc.), I'm also wondering whether this approach could also ever be expected to lead to a more optimized compiled output.
Could this be the case due to the fact that compilers are written by humans, and optimizers are often designed to recognize familiar code blocks?
I would love to hear some thoughts on why this could/not be the case.
Consider two different kinds of code, library code and application code.
Library code (like a string class library) is likely to own the program counter a lot of the time, like this:
while(some test){
massage some data, while seldom calling sub-functions
}
That kind of code will benefit from compiler optimization.
(So to answer your question, people write benchmark functions like this, and the compiler-writers use those as test cases.)
On the other hand, application code tends to look like this:
if (some test){
do a bunch of things, including many function calls
} else if (some other test){
do a bunch of things, including many function calls
} else {
do a bunch of things, including many function calls
}
In this case, the time you save by branch prediction or cycle-shaving might be 1 time unit, say, while the do a bunch of things... might spend from 10^2 to 10^8 time units, with or without I/O.
So the benefit of compiler optimization of this code tends to be completely lost in the noise.
That's not to say it can't be optimized.
It's just that the compiler can't do it - it's your job.
If you want to make the latter kind of code run fast, the best way is to find out which lines of code are on the call stack a high percent of time, and if possible, finding a way to avoid doing them.
(Here's an example of a 43x speedup.)
What is "human logical" probably varies from human to human.
For instance, if I am a newbie performing tasks according to written instructions I will (usually), over time, learn some tasks by heart whereas for others I will return to the instructions simply because the tasks are not performed often enough/are too boring or both. Others in the same situation may or may not function similiarly and it is not certain that the tasks they'll learn will be the ones I learn.
For programming it works similarly. Some may construct a loop in one manner and perform a test inside it for the sake of readability while I might do the test outside for performance reasons. What is more wrong and what is more right?
There is a widespread belief that compilers will optimize anything. This is true but as I've written (drastically) in another post, GIGO (Garbage In = Garbage Out) applies. Compilers don't operate in a vacuum: given a set of rules they'll perform safe optimizations on source code to the extent of their (the compilers') constructors' imagination and competence in code optimizations. Bloat source code will become optimized bloat machine code. In the same manner lean and mean source code will become optimized lean and mean machine code. In critical places it is possible to feed the compiler source code that it "feels" (YES! they do have personalities) absolutely comfortable in optimizing and the resulting machine code will fly.
We've all experienced poorly performing software. If we're lucky we've experienced software that performs incredibly well. One developer can learn to write a piece of code that performs well in the same amount of time that another writes code that performs poorly.

Optimization! - What is it? How is it done?

Its common to hear about "highly optimized code" or some developer needing to optimize theirs and whatnot. However, as a self-taught, new programmer I've never really understood what exactly do people mean when talking about such things.
Care to explain the general idea of it? Also, recommend some reading materials and really whatever you feel like saying on the matter. Feel free to rant and preach.
Optimize is a term we use lazily to mean "make something better in a certain way". We rarely "optimize" something - more, we just improve it until it meets our expectations.
Optimizations are changes we make in the hopes to optimize some part of the program. A fully optimized program usually means that the developer threw readability out the window and has recoded the algorithm in non-obvious ways to minimize "wall time". (It's not a requirement that "optimized code" be hard to read, it's just a trend.)
One can optimize for:
Memory consumption - Make a program or algorithm's runtime size smaller.
CPU consumption - Make the algorithm computationally less intensive.
Wall time - Do whatever it takes to make something faster
Readability - Instead of making your app better for the computer, you can make it easier for humans to read it.
Some common (and overly generalized) techniques to optimize code include:
Change the algorithm to improve performance characteristics. If you have an algorithm that takes O(n^2) time or space, try to replace that algorithm with one that takes O(n * log n).
To relieve memory consumption, go through the code and look for wasted memory. For example, if you have a string intensive app you can switch to using Substring References (where a reference contains a pointer to the string, plus indices to define its bounds) instead of allocating and copying memory from the original string.
To relieve CPU consumption, cache as many intermediate results if you can. For example, if you need to calculate the standard deviation of a set of data, save that single numerical result instead looping through the set each time you need to know the std dev.
I'll mostly rant with no practical advice.
Measure First. Optimization should be done to places where it matters. Highly optimized code is often difficult to maintain and a source of problems. In places where the code does not slow down execution anyway, I alwasy prefer maintainability to optimizations. Familiarize yourself with Profiling, both intrusive (instrumented) and non-intrusive (low overhead statistical). Learn to read a profiled stack, understand where the time inclusive/time exclusive is spent, why certain patterns show up and how to identify the trouble spots.
You can't fix what you cannot measure. Have your program report through some performance infrastructure the thing it does and the times it takes. I come from a Win32 background so I'm used to the Performance Counters and I'm extremely generous at sprinkling them all over my code. I even automatized the code to generate them.
And finally some words about optimizations. Most discussion about optimization I see focus on stuff any compiler will optimize for you for free. In my experience the greatest source of gains for 'highly optimized code' lies completely elsewhere: memory access. On modern architectures the CPU is idling most of the times, waiting for memory to be served into its pipelines. Between L1 and L2 cache misses, TLB misses, NUMA cross-node access and even GPF that must fetch the page from disk, the memory access pattern of a modern application is the single most important optimization one can make. I'm exaggerating slightly, of course there will be counter example work-loads that will not benefit memory access locality this techniques. But most application will. To be specific, what these techniques mean is simple: cluster your data in memory so that a single CPU can work an a tight memory range containing all it needs, no expensive referencing of memory outside your cache lines or your current page. In practice this can mean something as simple as accessing an array by rows rather than by columns.
I would recommend you read up the Alpha-Sort paper presented at the VLDB conference in 1995. This paper presented how cache sensitive algorithms designed specifically for modern CPU architectures can blow out of the water the old previous benchmarks:
We argue that modern architectures
require algorithm designers to
re-examine their use of the memory
hierarchy. AlphaSort uses clustered
data structures to get good cache
locality...
The general idea is that when you create your source tree in the compilation phase, before generating the code by parsing it, you do an additional step (optimization) where, based on certain heuristics, you collapse branches together, delete branches that aren't used or add extra nodes for temporary variables that are used multiple times.
Think of stuff like this piece of code:
a=(b+c)*3-(b+c)
which gets translated into
-
* +
+ 3 b c
b c
To a parser it would be obvious that the + node with its 2 descendants are identical, so they would be merged into a temp variable, t, and the tree would be rewritten:
-
* t
t 3
Now an even better parser would see that since t is an integer, the tree could be further simplified to:
*
t 2
and the intermediary code that you'd run your code generation step on would finally be
int t=b+c;
a=t*2;
with t marked as a register variable, which is exactly what would be written for assembly.
One final note: you can optimize for more than just run time speed. You can also optimize for memory consumption, which is the opposite. Where unrolling loops and creating temporary copies would help speed up your code, they would also use more memory, so it's a trade off on what your goal is.
Here is an example of some optimization (fixing a poorly made decision) that I did recently. Its very basic, but I hope it illustrates that good gains can be made even from simple changes, and that 'optimization' isn't magic, its just about making the best decisions to accomplish the task at hand.
In an application I was working on there were several LinkedList data structures that were being used to hold various instances of foo.
When the application was in use it was very frequently checking to see if the LinkedListed contained object X. As the ammount of X's started to grow, I noticed that the application was performing more slowly than it should have been.
I ran an profiler, and realized that each 'myList.Contains(x)' call had O(N) because the list has to iterate through each item it contains until it reaches the end or finds a match. This was definitely not efficent.
So what did I do to optimize this code? I switched most of the LinkedList datastructures to HashSets, which can do a '.Contains(X)' call in O(1)- much better.
This is a good question.
Usually the best practice is 1) just write the code to do what you need it to do, 2) then deal with performance, but only if it's an issue. If the program is "fast enough" it's not an issue.
If the program is not fast enough (like it makes you wait) then try some performance tuning. Performance tuning is not like programming. In programming, you think first and then do something. In performance tuning, thinking first is a mistake, because that is guessing.
Don't guess what to fix; diagnose what the program is doing.
Everybody knows that, but mostly they do it anyway.
It is natural to say "Could be the problem is X, Y, or Z" but only the novice acts on guesses. The pro says "but I'm probably wrong".
There are different ways to diagnose performance problems.
The simplest is just to single-step through the program at the assembly-language level, and don't take any shortcuts. That way, if the program is doing unnecessary things, then you are doing the same things, and it will become painfully obvious.
Another is to get a profiling tool, and as others say, measure, measure, measure.
Personally I don't care for measuring. I think it's a fuzzy microscope for the purpose of pinpointing performance problems. I prefer this method, and this is an example of its use.
Good luck.
ADDED: I think you will find, if you go through this exercise a few times, you will learn what coding practices tend to result in performance problems, and you will instinctively avoid them. (This is subtly different from "premature optimization", which is assuming at the beginning that you must be concerned about performance. In fact, you will probably learn, if you don't already know, that premature concern about performance can well cause the very problem it seeks to avoid.)
Optimizing a program means: make it run faster
The only way of making the program faster is making it do less:
find an algorithm that uses fewer operations (e.g. N log N instead of N^2)
avoid slow components of your machine (keep objects in cache instead of in main memory, or in main memory instead of on disk); reducing memory consumption nearly always helps!
Further rules:
In looking for optimization opportunities, adhere to the 80-20-rule: 20% of typical program code accounts for 80% of execution time.
Measure the time before and after every attempted optimization; often enough, optimizations don't.
Only optimize after the program runs correctly!
Also, there are ways to make a program appear to be faster:
separate GUI event processing from back-end tasks; priorize user-visible changes against back-end calculation to keep the front-end "snappy"
give the user something to read while performing long operations (every noticed the slideshows displayed by installers?)
However, as a self-taught, new programmer I've never really understood what exactly do people mean when talking about such things.
Let me share a secret with you: nobody does. There are certain areas where we know mathematically what is and isn't slow. But for the most part, performance is too complicated to be able to understand. If you speed up one part of your code, there's a good possibility you're slowing down another.
Therefore, anyone who tells you that one method is faster than another, there's a good possibility they're just guessing unless one of three things are true:
They have data
They're choosing an algorithm that they know is faster mathematically.
They're choosing a data structure that they know is faster mathematically.
Optimization means trying to improve computer programs for such things as speed. The question is very broad, because optimization can involve compilers improving programs for speed, or human beings doing the same.
I suggest you read a bit of theory first (from books, or Google for lecture slides):
Data structures and algorithms - what the O() notation is, how to calculate it,
what datastructures and algorithms can be used to lower the O-complexity
Book: Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest
Compilers and assembly - how code is translated to machine instructions
Computer architecture - how the CPU, RAM, Cache, Branch predictions, out of order execution ... work
Operating systems - kernel mode, user mode, scheduling processes/threads, mutexes, semaphores, message queues
After reading a bit of each, you should have a basic grasp of all the different aspects of optimization.
Note: I wiki-ed this so people can add book recommendations.
I am going with the idea that optimizing a code is to get the same results in less time. And fully optimized only means they ran out of ideas to make it faster. I throw large buckets of scorn on claims of "fully optimized" code! There's no such thing.
So you want to make your application/program/module run faster? First thing to do (as mentioned earlier) is measure also known as profiling. Do not guess where to optimize. You are not that smart and you will be wrong. My guesses are wrong all the time and large portions of my year are spent profiling and optimizing. So get the computer to do it for you. For PC VTune is a great profiler. I think VS2008 has a built in profiler, but I haven't looked into it. Otherwise measure functions and large pieces of code with performance counters. You'll find sample code for using performance counters on MSDN.
So where are your cycles going? You are probably waiting for data coming from main memory. Go read up on L1 & L2 caches. Understanding how the cache works is half the battle. Hint: Use tight, compact structures that will fit more into a cache-line.
Optimization is lots of fun. And it's never ending too :)
A great book on optimization is Write Great Code: Understanding the Machine by Randall Hyde.
Make sure your application produces correct results before you start optimizing it.

Resources