Suppose I have this Mathematica code, whose output, a real number, depends on the input, say, x,y,z. How do I make a real-valued function in x,y,z based on the code?
If the code describes a simple relationship among x,y,z, I could define this function directly. The point here is that the given code is a very complicated block (or module).
For example, if the code simply sums x,y,z, I would simply define
f[x_,y_,z_]=x+y+z
What if I have a very complex example, like the one below:
s0[a_, b_, x_] :=
{1, 0, (a + b) x + (1 - a - b)}
s1[a_, b_, c_, d_, p_, q_, n_, x_] :=
Which[0 <= x <= c, {2, n - 1, x/c*q + p},
c <= x <= c + d, {2, n, (x - c)/d*p},
c + d <= x <= 1, {1, n + 1, (x - (c + d))/(1 - c - d)*(1 - a - b)}]
s2[s_, t_, c_, d_, p_, q_, n_, x_] :=
Which[0 <= x <= 1 - s - t, {2, n - 1,
x/(1 - s - t)*(1 - p - q) + p + q},
1 - s - t <= x <= 1 - s, {3,
n - 1, (x - (1 - s - t))/t*(1 - c - d) + c + d},
1 - s <= x <= 1, {3, n, (x - (1 - s))/s*d + c}]
s3[c_, a_, b_, s_, t_, n_, x_] :=
Which[0 <= x <= 1 - a - b, {4, n - 1, x/(1 - a - b)*t + 1 - s - t},
1 - a - b <= x <= 1 - a, {4, n, (x - (1 - a - b))/b*(1 - s - t)},
1 - a <= x <= 1, {3, n + 1, (x - (1 - a))/a*c}]
s4[p_, q_, s_, a_, b_, n_, x_] :=
Which[0 <= x <= p, {4, n - 1, x/p*s + 1 - s},
p <= x <= p + q, {5, n - 1, (x - p)/q*a/(a + b) + b/(a + b)},
p + q <= x <= 1, {5, n, (x - (p + q))/(1 - p - q)*b/(a + b)}]
F[{k_, n_, x_}] :=
Which[k == 0, s0[a, b, x],
k == 1, s1[a, b, c, d, p, q, n, x],
k == 2, s2[s, t, c, d, p, q, n, x],
k == 3, s3[c, a, b, s, t, n, x],
k == 4, s4[p, q, s, a, b, n, x]]
G[x_] := NestWhile[F, {0, 0, x}, Function[e, Extract[e, {1}] != 5]]
H[x_] := Extract[G[x], {2}] + Extract[G[x], {3}]
H[0]
For the above code to run, one needs to specify the list
{a,b,c,d,p,q,s,t}
And the output are real numbers. How does one define a function in a,b,c,d,p,q,s,t that spits out these real numbers?
Your essential problem is that you have a large number of parameters in your auxiliary functions, but your big-letter functions (F, G and H and by the way single-capital-letter function names in Mathematica are a bad idea) only take three parameters and your auxiliary functions (s0 etc) only return three values in the returned list.
You have two possible ways to fix this.
You can either redefine everything to require all the parameters required in the whole system - I'm assuming that common parameter names across the auxiliary functions really are common values - like this:
G[x_, a_, b_, c_, d_, p_, q_, s_, t_] :=
NestWhile[F, {0, 0, x, a, b, c, d, p, q, s, t},
Function[e, Extract[e, {1}] != 5]]
or
You can set some options that set these parameters globally for the whole system. Look up Options and OptionsPattern. You would do something like this:
First, define default options:
Options[mySystem] = {aa -> 0.2, bb -> 1., cc -> 2., dd -> 4.,
pp -> 0.2, qq -> 0.1, ss -> 10., tt -> 20.}
SetOptions[mySystem, {aa->0.2, bb->1., cc->2., dd->4., pp->0.2,
qq->0.1, ss->10., tt->20.}]
Then write your functions like this:
F[{k_, n_, x_}, OptionsPattern[mySystem]] :=
With[{a = OptionValue[aa], b = OptionValue[bb], c = OptionValue[cc],
d = OptionValue[dd], p = OptionValue[pp], q = OptionValue[qq],
s = OptionValue[ss], t = OptionValue[tt]},
Which[k == 0, s0[a, b, x], k == 1, s1[a, b, c, d, p, q, n, x],
k == 2, s2[s, t, c, d, p, q, n, x], k == 3,
s3[c, a, b, s, t, n, x], k == 4, s4[p, q, s, a, b, n, x]] ]
There is also something quite wrong with your use of Extract (you are assuming there are more parts in your list than are actually there in the first few iterations), but this answers your main issue.
Related
I am trying to calculate the inversion Laplace transform of,
F(s) = Erfc[s]
at t = 100
I have tried the following way using Stehfest method(76 Mathematical Journal, 1994),
csteh[n_, i_] = (-1)^(i + n/2) Sum[k^(n/2)(2k) !/((n/2 - k) ! k ! ( k -1 ) !(i - k) !(2k - i) !), {k, Floor[(i + 1)/2], Min[i, n/2]}];
NLInvSteh[F_, s_, t_, n_] := log[2]/t Sum[ csteh[n,i] F /.s -> i log[2]/t, {i, 1, n}] //N
My function:
F[s_] = Erfc[s]
%NLInvSteh[F[s], s, t, N]
NLInvSteh[F[s], s, 100, 6]
The output is-
(Erfc[log[2.]]-49. Erfc[2. log[2.]]+366. Erfc[3. log[2.]]-858. Erfc[4. log[2.]]+810. Erfc[5. log[2.]]-270. Erfc[6. log[2.]]) log[2.]
Can we get the simplify value of the output.
Use upper case Log.
NLInvSteh[F_, s_, t_, n_] :=
Log[2]/t Sum[csteh[n, i] F /. s -> i Log[2]/t, {i, 1, n}] // N
NLInvSteh[F[s], s, 100, 6]
0.000052055
So I have the below code
perturb1 =
x'[t] == mu1*x[t] + x[t]*(a*x[t] + b*y[t] + c*z[t]) +
x[t]*eps1 * (UnitStep[t - 1.5] - UnitStep[t - 2.5]);
perturb2 =
y'[t] == mu2*y[t] + y[t]*(d*x[t] + e*y[t] + f*z[t]) +
y[t]*eps2 * (UnitStep[t - 1.5] - UnitStep[t - 2.5]);
perturb3 =
z'[t] == mu3*z[t] + z[t]*(g*x[t] + h*y[t] + i*z[t]) +
z[t]*eps3 * (UnitStep[t - 1.5] - UnitStep[t - 2.5]);
perturbSol = ParametricNDSolve[
{perturb1, perturb2, perturb3, x[0] == 0.25, y[0] == 0.4,
z[0] == 0.35},
{x[t], y[t], z[t]},
{t, 0, 500},
{mu1, mu2, mu3, a, b, c, d, e, f, g, h, i, eps1, eps2, eps3}
];
Evaluate[x[t][#] /. perturbSol] & /# parameterSets
parameterSets is a list of 5000+ elements of the form {mu1, mu2, mu3, a, b, c, d, e, f, g, h, i, eps1, eps2, eps3} (but with numerical values). What I'm trying to do is to evaluate the parametric function using each parameter set. When I do as above, I get the error
ParametricNDSolve: Too many parameters in {mu1,mu2,mu3,a,b,c,d,e,f,g,h,i,eps1,eps2,eps3} to be filled from {{0.9,0.9,0.9,-2,-1,-1,-1,-2,-1,-1,-1,-2,-2,-2,-2}}.
So it seems that it's because, with a single value, you would evaluate the function as follows:
Evaluate[x[t][0.9,0.9,0.9,-2,-1,-1,-1,-2,-1,-1,-1,-2,-2,-2,-2]/.perturbSol]
Whereas when using Map on parameterSets, it does this:
Evaluate[x[t][{0.9,0.9,0.9,-2,-1,-1,-1,-2,-1,-1,-1,-2,-2,-2,-2}]/.perturbSol]
i.e. it's applying the function to a list of 15 parameters, rather than to the 15 parameters separated by commas.
Is there any elegant solution to this? I tried flatten around the #, which didn't do anything (as I sort of expected). I guess one way is to write #1,#2,#3 etc in the square brackets but that's pretty messy.
Any better way to do this?
Many thanks,
H
Probably, you want something along the lines of
u = ParametricNDSolveValue[{perturb1, perturb2, perturb3,
x[0] == 0.25, y[0] == 0.4, z[0] == 0.35}, {x, y, z}, {t, 0,
500}, {mu1, mu2, mu3, a, b, c, d, e, f, g, h, i, eps1, eps2,
eps3}];
parameterSets = RandomReal[{-1, 1}, {3, 15}];
(u[##])[[1]][t] & ### parameterSets
I'm trying to find the coefficients of a function by minimizing an equation who I know is zero with Mathematica. My code is:
Clear[f];
Clear[g];
Clear[GetGood];
Clear[int];
Clear[xlist];
Xmax = 10;
n = 10;
dx = Xmax/n;
xlist = Table[i*dx, {i, n}];
A = 3.5;
slope = (A + 2)/3;
f[x_, a_, b_, c_, d_, e_] :=a/(1 + b*x + c*x^2 + d*x^3 + e*x^4)^(slope/4 + 2);
g[x_, a_, b_, c_, d_, e_] :=Derivative[1, 0, 0, 0, 0, 0][f][x, a, b, c, d, e];
int[a_?NumericQ, b_?NumericQ, c_?NumericQ, d_?NumericQ, e_?NumericQ] :=
Module[{ans, i},ans = 0;Do[ans =ans + Quiet[NIntegrate[
y^-slope*(f[Sqrt[xlist[[i]]^2 + y^2 + 2*xlist[[i]]*y*m], a, b,
c, d, e] - f[xlist[[i]], a, b, c, d, e]), {m, -1, 1}, {y,
10^-8, \[Infinity]}, MaxRecursion -> 30]], {i, 1,
Length[xlist]}];
ans
];
GetGood[a_?NumericQ, b_?NumericQ, c_?NumericQ, d_?NumericQ,e_?NumericQ] :=
Module[{ans},ans = Abs[Sum[3*f[x, a, b, c, d, e] + x*g[x, a, b, c, d,e],
{x,xlist}]+2*Pi*int[a, b, c, d, e]];
ans
];
NMinimize[{GetGood[a, b, c, d, e], a > 0, b > 0, c > 0, d > 0,
e > 0}, {a, b, c, d, e}]
The error I get after the last line is:
Part::pspec: Part specification i$3002170 is neither an integer nor a list of integers. >>
NIntegrate::inumr: "The integrand (-(1.84529/(1+<<3>>+0.595769 Part[<<2>>]^4)^2.45833)+1.84529/(1+<<18>> Sqrt[Plus[<<3>>]]+<<1>>+<<1>>+0.595769 Plus[<<3>>]^2)^2.45833)/y^1.83333 has evaluated to non-numerical values for all sampling points in the region with boundaries {{-1,1},{\[Infinity],1.*10^-8}}"
Any ideas why I am getting an error?
Thanks
Change your NMinimize to be
NMinimize[{GetGood[a,b,c,d,e],a>0&&b>0&&c>0&&d>0&&e>0}, {a,b,c,d,e}]
to get your constraints to work correctly. Their help page should really show an example of using more than a single constraint. This old page does show an example.
http://reference.wolfram.com/legacy/v5_2/functions/AdvancedDocumentationNMinimize
If you change your int[] to
int[a_?NumericQ, b_?NumericQ, c_?NumericQ, d_?NumericQ, e_?NumericQ] :=
Module[{ans, i}, ans = 0; Do[
Print["First i=", i];
ans = ans + Quiet[NIntegrate[
Print["Second i=", i];
y^-slope*(f[Sqrt[xlist[[i]]^2 + y^2 + 2*xlist[[i]]*y*m], a,b,c,d,e] -
f[xlist[[i]], a,b,c,d,e]), {m,-1,1}, {y,10^-8, \[Infinity]}, MaxRecursion -> 30]],
{i, 1, Length[xlist]}];
ans];
you will see
First i=1
Second i=1
....
First i=10
Second i=i$28850
where the first debug print never says i=i$nnnn but the second debug print does often show that i has been unassigned a value only inside your NIntegrate, not outside it, and only after i has reached a value of 10, the length of your xlist, and at that point you can't subscript by a symbol and you get the error messages you have seen.
Nothing inside your NIntegrate is changing the value of i.
I think you may have stumbled onto a bug where Mathematica is writing over the value of i.
See if you can simplify the code without driving the bug into hiding. If you can make it simpler and still show the problem you might have more likelihood of success in getting Wolfram to admit you have found a bug.
I am using NDSolve to solve a non-linear partial differential
equation.
I'd like one of the variables (Kvar) to be a function
of the time step currently being solved and hence and using
Piecewise.
Mathematica generates an error message saying:
SetDelayed::write: Tag Real in 0.05[t_] is Protected. >>
NDSolve::deqn: Equation or list of equations expected instead of
$Failed in the first argument ....
ReplaceAll::reps: ....
I haven't included the entire error message for ease of reading.
My code is as follows:
Needs["VectorAnalysis`"]
Needs["DifferentialEquations`InterpolatingFunctionAnatomy`"];
Clear[Eq4, EvapThickFilm, h, S, G, E1, K1, D1, VR, M, R]
Eq4[h_, {S_, G_, E1_, K1_, D1_, VR_, M_, R_}] := \!\(
\*SubscriptBox[\(\[PartialD]\), \(t\)]h\) +
Div[-h^3 G Grad[h] +
h^3 S Grad[Laplacian[h]] + (VR E1^2 h^3)/(D1 (h + K1)^3)
Grad[h] + M (h/(1 + h))^2 Grad[h]] + E1/(
h + K1) + (R/6) D[D[(h^2/(1 + h)), x] h^3, x] == 0;
SetCoordinates[Cartesian[x, y, z]];
EvapThickFilm[S_, G_, E1_, K1_, D1_, VR_, M_, R_] :=
Eq4[h[x, y, t], {S, G, E1, K1, D1, VR, M, R}];
TraditionalForm[EvapThickFilm[S, G, E1, K1, D1, VR, M, R]];
And the second cell where I am trying to implement Piecewise in NDSolve:
L = 318; TMax = 7.0;
Off[NDSolve::mxsst];
(*Ktemp = Array[0.001+0.001#^2&,13]*)
hSol = h /. NDSolve[{
(*S,G,E,K,D,VR,M*)
Kvar[t_] := Piecewise[{{0.01, t <= 4}, {0.05, t > 4}}],
EvapThickFilm[1, 3, 0.1, Kvar[t], 0.01, 0.1, 0, 160],
h[0, y, t] == h[L, y, t],
h[x, 0, t] == h[x, L, t],
(*h[x,y,0] == 1.1+Cos[x] Sin[2y] *)
h[x, y, 0] ==
1 + (-0.25 Cos[2 \[Pi] x/L] - 0.25 Sin[2 \[Pi] x/L]) Cos[
2 \[Pi] y/L]
},
h,
{x, 0, L},
{y, 0, L},
{t, 0, TMax}
][[1]]
hGrid = InterpolatingFunctionGrid[hSol];
PS: I am sorry but the first cell block doesn't display so well here. And thanks to not having enough "reputation", I can't post images.
The error message occurs when using the NDSolve cell block.
Define the function Kvar outside of a set of equations in NDSolve, like
Off[NDSolve::mxsst];
(*Ktemp=Array[0.001+0.001#^2&,13]*)
Kvar[t_] := Piecewise[{{0.01, t <= 4}, {0.05, t > 4}}];
hSol = ...
and remove it from the list in NDSolve, so that it starts as NDSolve[{(*S,G,E,K,D,VR,M*)EvapThickFilm[..., and it will work. It gives warnings, but those are related to possible singularities in your equation.
Also, your original error indicates that your Kvar was assigned a value of 0.05. So, add Clear[Kvar] before anything else in the second cell.
I have here a complicated bit of code that is not pretty nor easy to follow, but it represents a simplification of a larger body of code I am working with. I am a Mathematica novice and have already received some help on this issue from stackoverflow but it is still not solving my problem. Here is the code for which I hope you can follow along and assume what I am trying to get it to do. Thanks to you programming whizzes for the help.
a[b_, c_] = -3*b + 2*c + d + e + f;
g[b_, c_] := If[a[b, c] < 0, -3*a[b, c], a[b, c]];
h[T_, b_, c_] = (T/g[b, c]);
i[h_, T_, b_, c_] := If[h[T, b, c] > 0, 4*h[T, b, c], -5*h[T, b, c]];
j[b_, c_] := If[a[b, c] < 0, 5*a[b, c], 20*a[b, c]];
XYZ[h_, T_, i_, g_, j_, b_, c_] = T*i[h, T, b, c]*g[b, c] + j[b, c]
rules = {a -> 1, b -> 2, c -> 3, d -> 4, e -> 5, f -> 6, T -> 10};
XYZ[h, T, i, g, j, b, c] //. rules
Preserving as much of your code as possible, it will work with just a few changes:
a[b_, c_] := -3*b + 2*c + d + e + f;
g[b_, c_] := If[# < 0, -3 #, #] & # a[b, c]
h[T_, b_, c_] := T / g[b, c]
i[h_, T_, b_, c_] := If[# > 0, 4 #, -5 #] & # h[T, b, c]
j[b_, c_] := If[# < 0, 5 #, 20 #] & # a[b, c]
XYZ[h_, T_, i_, g_, j_, b_, c_] := T*i[h, T, b, c]*g[b, c] + j[b, c]
rules = {a -> 1, b -> 2, c -> 3, d -> 4, e -> 5, f -> 6, T -> 10};
XYZ[h, T, i, g, j, b, c] /. rules
(* Out= 700 *)
If statements are again externalized, as in the last problem.
all definitions are made with SetDelayed (:=), as a matter of good practice.
The presumed error T - 10 in your rules is corrected to T -> 10
Notice that again ReplaceRepeated (//.) is not needed, and is changed to /.
We still have a nonsensical rule a -> 1 but it does not cause a failure.