C and C++ have many differences, and not all valid C code is valid C++ code.
(By "valid" I mean standard code with defined behavior, i.e. not implementation-specific/undefined/etc.)
Is there any scenario in which a piece of code valid in both C and C++ would produce different behavior when compiled with a standard compiler in each language?
To make it a reasonable/useful comparison (I'm trying to learn something practically useful, not to try to find obvious loopholes in the question), let's assume:
Nothing preprocessor-related (which means no hacks with #ifdef __cplusplus, pragmas, etc.)
Anything implementation-defined is the same in both languages (e.g. numeric limits, etc.)
We're comparing reasonably recent versions of each standard (e.g. say, C++98 and C90 or later)
If the versions matter, then please mention which versions of each produce different behavior.
Here is an example that takes advantage of the difference between function calls and object declarations in C and C++, as well as the fact that C90 allows the calling of undeclared functions:
#include <stdio.h>
struct f { int x; };
int main() {
f();
}
int f() {
return printf("hello");
}
In C++ this will print nothing because a temporary f is created and destroyed, but in C90 it will print hello because functions can be called without having been declared.
In case you were wondering about the name f being used twice, the C and C++ standards explicitly allow this, and to make an object you have to say struct f to disambiguate if you want the structure, or leave off struct if you want the function.
For C++ vs. C90, there's at least one way to get different behavior that's not implementation defined. C90 doesn't have single-line comments. With a little care, we can use that to create an expression with entirely different results in C90 and in C++.
int a = 10 //* comment */ 2
+ 3;
In C++, everything from the // to the end of the line is a comment, so this works out as:
int a = 10 + 3;
Since C90 doesn't have single-line comments, only the /* comment */ is a comment. The first / and the 2 are both parts of the initialization, so it comes out to:
int a = 10 / 2 + 3;
So, a correct C++ compiler will give 13, but a strictly correct C90 compiler 8. Of course, I just picked arbitrary numbers here -- you can use other numbers as you see fit.
The following, valid in C and C++, is going to (most likely) result in different values in i in C and C++:
int i = sizeof('a');
See Size of character ('a') in C/C++ for an explanation of the difference.
Another one from this article:
#include <stdio.h>
int sz = 80;
int main(void)
{
struct sz { char c; };
int val = sizeof(sz); // sizeof(int) in C,
// sizeof(struct sz) in C++
printf("%d\n", val);
return 0;
}
C90 vs. C++11 (int vs. double):
#include <stdio.h>
int main()
{
auto j = 1.5;
printf("%d", (int)sizeof(j));
return 0;
}
In C auto means local variable. In C90 it's ok to omit variable or function type. It defaults to int. In C++11 auto means something completely different, it tells the compiler to infer the type of the variable from the value used to initialize it.
Another example that I haven't seen mentioned yet, this one highlighting a preprocessor difference:
#include <stdio.h>
int main()
{
#if true
printf("true!\n");
#else
printf("false!\n");
#endif
return 0;
}
This prints "false" in C and "true" in C++ - In C, any undefined macro evaluates to 0. In C++, there's 1 exception: "true" evaluates to 1.
Per C++11 standard:
a. The comma operator performs lvalue-to-rvalue conversion in C but not C++:
char arr[100];
int s = sizeof(0, arr); // The comma operator is used.
In C++ the value of this expression will be 100 and in C this will be sizeof(char*).
b. In C++ the type of enumerator is its enum. In C the type of enumerator is int.
enum E { a, b, c };
sizeof(a) == sizeof(int); // In C
sizeof(a) == sizeof(E); // In C++
This means that sizeof(int) may not be equal to sizeof(E).
c. In C++ a function declared with empty params list takes no arguments. In C empty params list mean that the number and type of function params is unknown.
int f(); // int f(void) in C++
// int f(*unknown*) in C
This program prints 1 in C++ and 0 in C:
#include <stdio.h>
#include <stdlib.h>
int main(void)
{
int d = (int)(abs(0.6) + 0.5);
printf("%d", d);
return 0;
}
This happens because there is double abs(double) overload in C++, so abs(0.6) returns 0.6 while in C it returns 0 because of implicit double-to-int conversion before invoking int abs(int). In C, you have to use fabs to work with double.
#include <stdio.h>
int main(void)
{
printf("%d\n", (int)sizeof('a'));
return 0;
}
In C, this prints whatever the value of sizeof(int) is on the current system, which is typically 4 in most systems commonly in use today.
In C++, this must print 1.
Another sizeof trap: boolean expressions.
#include <stdio.h>
int main() {
printf("%d\n", (int)sizeof !0);
}
It equals to sizeof(int) in C, because the expression is of type int, but is typically 1 in C++ (though it's not required to be). In practice they are almost always different.
An old chestnut that depends on the C compiler, not recognizing C++ end-of-line comments...
...
int a = 4 //* */ 2
+2;
printf("%i\n",a);
...
The C++ Programming Language (3rd Edition) gives three examples:
sizeof('a'), as #Adam Rosenfield mentioned;
// comments being used to create hidden code:
int f(int a, int b)
{
return a //* blah */ b
;
}
Structures etc. hiding stuff in out scopes, as in your example.
Another one listed by the C++ Standard:
#include <stdio.h>
int x[1];
int main(void) {
struct x { int a[2]; };
/* size of the array in C */
/* size of the struct in C++ */
printf("%d\n", (int)sizeof(x));
}
Inline functions in C default to external scope where as those in C++ do not.
Compiling the following two files together would print the "I am inline" in case of GNU C but nothing for C++.
File 1
#include <stdio.h>
struct fun{};
int main()
{
fun(); // In C, this calls the inline function from file 2 where as in C++
// this would create a variable of struct fun
return 0;
}
File 2
#include <stdio.h>
inline void fun(void)
{
printf("I am inline\n");
}
Also, C++ implicitly treats any const global as static unless it is explicitly declared extern, unlike C in which extern is the default.
#include <stdio.h>
struct A {
double a[32];
};
int main() {
struct B {
struct A {
short a, b;
} a;
};
printf("%d\n", sizeof(struct A));
return 0;
}
This program prints 128 (32 * sizeof(double)) when compiled using a C++ compiler and 4 when compiled using a C compiler.
This is because C does not have the notion of scope resolution. In C structures contained in other structures get put into the scope of the outer structure.
struct abort
{
int x;
};
int main()
{
abort();
return 0;
}
Returns with exit code of 0 in C++, or 3 in C.
This trick could probably be used to do something more interesting, but I couldn't think of a good way of creating a constructor that would be palatable to C. I tried making a similarly boring example with the copy constructor, that would let an argument be passed, albeit in a rather non-portable fashion:
struct exit
{
int x;
};
int main()
{
struct exit code;
code.x=1;
exit(code);
return 0;
}
VC++ 2005 refused to compile that in C++ mode, though, complaining about how "exit code" was redefined. (I think this is a compiler bug, unless I've suddenly forgotten how to program.) It exited with a process exit code of 1 when compiled as C though.
Don't forget the distinction between the C and C++ global namespaces. Suppose you have a foo.cpp
#include <cstdio>
void foo(int r)
{
printf("I am C++\n");
}
and a foo2.c
#include <stdio.h>
void foo(int r)
{
printf("I am C\n");
}
Now suppose you have a main.c and main.cpp which both look like this:
extern void foo(int);
int main(void)
{
foo(1);
return 0;
}
When compiled as C++, it will use the symbol in the C++ global namespace; in C it will use the C one:
$ diff main.cpp main.c
$ gcc -o test main.cpp foo.cpp foo2.c
$ ./test
I am C++
$ gcc -o test main.c foo.cpp foo2.c
$ ./test
I am C
int main(void) {
const int dim = 5;
int array[dim];
}
This is rather peculiar in that it is valid in C++ and in C99, C11, and C17 (though optional in C11, C17); but not valid in C89.
In C99+ it creates a variable-length array, which has its own peculiarities over normal arrays, as it has a runtime type instead of compile-time type, and sizeof array is not an integer constant expression in C. In C++ the type is wholly static.
If you try to add an initializer here:
int main(void) {
const int dim = 5;
int array[dim] = {0};
}
is valid C++ but not C, because variable-length arrays cannot have an initializer.
Empty structures have size 0 in C and 1 in C++:
#include <stdio.h>
typedef struct {} Foo;
int main()
{
printf("%zd\n", sizeof(Foo));
return 0;
}
This concerns lvalues and rvalues in C and C++.
In the C programming language, both the pre-increment and the post-increment operators return rvalues, not lvalues. This means that they cannot be on the left side of the = assignment operator. Both these statements will give a compiler error in C:
int a = 5;
a++ = 2; /* error: lvalue required as left operand of assignment */
++a = 2; /* error: lvalue required as left operand of assignment */
In C++ however, the pre-increment operator returns an lvalue, while the post-increment operator returns an rvalue. It means that an expression with the pre-increment operator can be placed on the left side of the = assignment operator!
int a = 5;
a++ = 2; // error: lvalue required as left operand of assignment
++a = 2; // No error: a gets assigned to 2!
Now why is this so? The post-increment increments the variable, and it returns the variable as it was before the increment happened. This is actually just an rvalue. The former value of the variable a is copied into a register as a temporary, and then a is incremented. But the former value of a is returned by the expression, it is an rvalue. It no longer represents the current content of the variable.
The pre-increment first increments the variable, and then it returns the variable as it became after the increment happened. In this case, we do not need to store the old value of the variable into a temporary register. We just retrieve the new value of the variable after it has been incremented. So the pre-increment returns an lvalue, it returns the variable a itself. We can use assign this lvalue to something else, it is like the following statement. This is an implicit conversion of lvalue into rvalue.
int x = a;
int x = ++a;
Since the pre-increment returns an lvalue, we can also assign something to it. The following two statements are identical. In the second assignment, first a is incremented, then its new value is overwritten with 2.
int a;
a = 2;
++a = 2; // Valid in C++.
I wrote a short program in C with OpenMP pragma, and I need to know to which libGOMP function a pragma is translated by GCC.
Here is my marvelous code:
#include <stdio.h>
#include "omp.h"
int main(int argc, char** argv)
{
int k = 0;
#pragma omp parallel private(k) num_threads(4)
{
k = omp_get_thread_num();
printf("Hello World from %d !\n", k);
}
return 0;
}
In order to generate intermediate language from GCC v8.2.0, I compiled this program with the following command:
gcc -fopenmp -o hello.exe hello.c -fdump-tree-ompexp
And the result is given by:
;; Function main (main, funcdef_no=0, decl_uid=2694, cgraph_uid=0, symbol_order=0)
OMP region tree
bb 2: gimple_omp_parallel
bb 3: GIMPLE_OMP_RETURN
Added new low gimple function main._omp_fn.0 to callgraph
Introduced new external node (omp_get_thread_num/2).
Introduced new external node (printf/3).
;; Function main._omp_fn.0 (main._omp_fn.0, funcdef_no=1, decl_uid=2700, cgraph_uid=1, symbol_order=1)
main._omp_fn.0 (void * .omp_data_i)
{
int k;
<bb 6> :
<bb 3> :
k = omp_get_thread_num ();
printf ("Hello World from %d !\n", k);
return;
}
;; Function main (main, funcdef_no=0, decl_uid=2694, cgraph_uid=0, symbol_order=0)
Merging blocks 2 and 7
Merging blocks 2 and 4
main (int argc, char * * argv)
{
int k;
int D.2698;
<bb 2> :
k = 0;
__builtin_GOMP_parallel (main._omp_fn.0, 0B, 4, 0);
D.2698 = 0;
<bb 3> :
<L0>:
return D.2698;
}
The function call to "__builtin_GOMP_parallel" is what it interest me. So, I looked at the source code of the libGOMP from GCC.
However, the only function calls I found was (from parallel.c file):
GOMP_parallel_start (void (*fn) (void *), void *data, unsigned num_threads)
GOMP_parallel_end (void)
So, I can imiagine that, in a certain manner, the call to "__builtin_GOMP_parallel" is transformed to GOMP_parallel_start and GOMP_parallel_end.
How can I be sure of this assumption ? How can I found the translation from the builtin function to the two other ones I found in the source code ?
Thank you
You almost got it. __builtin_GOMP_parallel is just a compiler alias to GOMP_parallel (defined in omp-builtins.def) which is translated very late in compilation, you can see the actual call in the assembly with gcc -S.
GOMP_parallel is similar to
GOMP_parallel_start(...);
fn(...);
GOMP_parallel_end();
The following code in C++11 compiles correctly with g++ 6.3.0 and result in the behavior that I consider correct (namely, the first function is picked). However with Intel's C++ compiler (icc 17.0.4) it fails to compile; the compiler indicates that multiple possible function overloads exist.
#include <iostream>
template<typename R, typename ... Args>
static void f(R(func)(const int&, Args...)) {
std::cout << "In first version of f" << std::endl;
}
template<typename R, typename ... Args, typename X = typename std::is_void<R>::type>
static void f(R(func)(Args...), X x = X()) {
std::cout << "In second version of f" << std::endl;
}
double h(const int& x, double y) {
return 0;
}
int main(int argc, char** argv) {
f(h);
return 0;
}
Here is the error reported by icc:
test.cpp(18): error: more than one instance of overloaded function "f" matches the argument list:
function template "void f(R (*)(const int &, Args...))"
function template "void f(R (*)(Args...), X)"
argument types are: (double (const int &, double))
f(h);
^
So my two questions are: which compiler is correct with respect to the standard? and how would you modify this code so that it compiles? (note that f is a user-facing API and I would like to avoid modifying its prototype).
Note that if I remove typename X = typename std::is_void<R>::type and the X x = X() argument in the second version of f, icc compiles it fine.
This is a bug in Intel Compiler 17.0 Update 4. The behavior of GCC is right in this case. This issue is resolved in Intel Compiler 18.0 Update 4 and above.
I am trying to use lapack functions from C.
Here is some test code, copied from this question
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include "clapack.h"
#include "cblas.h"
void invertMatrix(float *a, unsigned int height){
int info, ipiv[height];
info = clapack_sgetrf(CblasColMajor, height, height, a, height, ipiv);
info = clapack_sgetri(CblasColMajor, height, a, height, ipiv);
}
void displayMatrix(float *a, unsigned int height, unsigned int width)
{
int i, j;
for(i = 0; i < height; i++){
for(j = 0; j < width; j++)
{
printf("%1.3f ", a[height*j + i]);
}
printf("\n");
}
printf("\n");
}
int main(int argc, char *argv[])
{
int i;
float a[9], b[9], c[9];
srand(time(NULL));
for(i = 0; i < 9; i++)
{
a[i] = 1.0f*rand()/RAND_MAX;
b[i] = a[i];
}
displayMatrix(a, 3, 3);
return 0;
}
I compile this with gcc:
gcc -o test test.c \
-lblas -llapack -lf2c
n.b.: I've tried those libraries in various orders, I've also tried others libs like latlas, lcblas, lgfortran, etc.
The error message is:
/tmp//cc8JMnRT.o: In function `invertMatrix':
test.c:(.text+0x94): undefined reference to `clapack_sgetrf'
test.c:(.text+0xb4): undefined reference to `clapack_sgetri'
collect2: error: ld returned 1 exit status
clapack.h is found and included (installed as part of atlas). clapack.h includes the offending functions --- so how can they not be found?
The symbols are actually in the library libalapack (found using strings). However, adding -lalapack to the gcc command seems to require adding -lcblas (lots of undefined cblas_* references). Installing cblas automatically uninstalls atlas, which removes clapack.h.
So, this feels like some kind of dependency hell.
I am on FreeBSD 10 amd64, all the relevant libraries seem to be installed and on the right paths.
Any help much appreciated.
Thanks
Ivan
I uninstalled everything remotely relevant --- blas, cblas, lapack, atlas, etc. --- then reinstalled atlas (from ports) alone, and then the lapack and blas packages.
This time around, /usr/local/lib contained a new lib file: libcblas.so --- previous random installations must have deleted it.
The gcc line that compiles is now:
gcc -o test test.c \
-llapack -lblas -lalapack -lcblas
Changing the order of the -l arguments doesn't seem to make any difference.