Is this define_method use case too complex? - ruby

I've been bashing my head against this for about three days now. I've created a class that models html pages and tells cucumber step definitions where to populate form data:
class FlightSearchPage
def initialize(browser, page, brand)
#browser = browser
#start_url = page
#Get reference to config file
config_file = File.join(File.dirname(__FILE__), '..', 'config', 'site_config.yml')
#Store hash of config values in local variable
config = YAML.load_file config_file
#brand = brand #brand is specified by the customer in the features file
#Define instance variables from the hash keys
config.each do |k,v|
instance_variable_set("##{k}",v)
end
end
def method_missing(sym, *args, &block)
#browser.send sym, *args, &block
end
def page_title
#Returns contents of <title> tag in current page.
#browser.title
end
def visit
#browser.goto(#start_url)
end
def set_origin(origin)
self.text_field(#route[:attribute] => #route[:origin]).set origin
end
def set_destination(destination)
self.text_field(#route[:attribute] => #route[:destination]).set destination
end
def set_departure_date(outbound)
self.text_field(#route[:attribute] => #date[:outgoing_date]).set outbound
end
# [...snip]
end
As you can see, I've used instance_variable_set to create the variables that hold the references on the fly, and the variable names and values are supplied by the config file (which is designed to be editable by people who aren't necessarily familiar with Ruby).
Unfortunately, this is a big, hairy class and I'm going to have to edit the source code every time I want to add a new field, which is obviously bad design so I've been trying to go a stage further and create the methods that set the variable names dynamically with define_method and this is what's kept me awake until 4am for the last few nights.
This is what I've done:
require File.expand_path(File.dirname(__FILE__) + '/flight_search_page')
class SetFieldsByType < FlightSearchPage
def text_field(config_hash)
define_method(config_hash) do |data|
self.text_field(config_hash[:attribute] => config_hash[:origin]).set data
end
end
end
The idea is that all you need to do to add a new field is add a new entry to the YAML file and define_method will create the method to allow cucumber to populate it.
At the moment, I'm having problems with scope - Ruby thinks that define_method is a member of #browser. But what I want to know is: is this even feasible? Have I totally misunderstood define_method?

Do you mean that you'd expect to see the requires and file loads outside the class definition?
No, inside the class definition. Ruby class declarations are just code that execute in the order it's seen. Things like attr_accessor are just class methods that happen to do things to the class being defined, as it's being defined. This seems like what you want to do.
In your case you'd read the YAML file instead, and run your own logic to create accessors, build any backing data required, etc. I don't totally grok the usecase, but it doesn't sound unusual or difficult--yet.
That said, how much "convenience" do you get by putting these definitions in a YAML file? Consider something like I did once to create page instances I used to drive Watir:
class SomePage < HeavyWatir
has_text :fname # Assumed default CSS accessor pattern
has_text :whatever, accessor: 'some accessor mechanism', option: 'some other option'
end
The has_xxx were class methods that created instance variable accessors (just like attr_accessor does), built up some other data structures I used to make sure all the things that were supposed to be on the page actually were, and so on. For example, very roughly:
page = SomePage.new
page.visit
if page.missing_fields?
# Do something saying the page isn't complete
end
It sounds like you want something vaguely similar: you have a bunch of "things" you want to give to the class (or a sub-class, or you could mix it in to an arbitrary class, etc.)
Those "things" have additional functionality, that functionality works in multiple ways, like:
Things-that-happen-during-definition
E.g., has_text adds the name to a class instance hash ofthe page's metadata, like field names.
Things-that-happen-during-usage
E.g., when fname= is called set a flag in the instance's metadata saying the setter was called.

This is an appropriate case for metaprogramming, but it looks like you're going about it the wrong way.
First of all, is there going to be a different config file for each instance of FlightSearchPage or just one config file that controls all pages? It looks like you're loading the same config file regardless of the arguments to initialize so I'm guessing your case is the former.
If that is so, you need to move all of your metaprogramming code into the class (outside method definitions). I.e. when the class is defined, you want it to load the config file and then each instance is created based on that config. Right now you have it reloading the config file every time you create an instance, which seems incorrect. For example, define_method belongs to Module so it should appear in class scope, rather than in an instance method.
On the other hand, if you do want a different config for each instance, you need to move all of your metaprogramming code into the singleton class e.g. define_singleton_method rather than define_method.

Related

Nesting modules in classes and directly calling module functions

For testing and administration purposes I am looking to build a class to communicate with an API. I've got the connection and authentication down but am struggling with the base structure and size of the class.
My main goal is to keep each application domain split, but still easy to access by one class/connection.
I've made an simpler example of what I'm looking for. In reality each domain has its own set of business rules to follow, which is why I want to keep them separate, whilst the API connection stays the same.
For instance, on CLI level I want to invoke:
$ client_one = Api.new("one")
$ client_two = Api.new("two")
$ client_one.Bikes.delete(1)
> deleted bike 1 from one
$ client_two.Phones.new(phone)
> posted phone iPhone to two
My thought proces was to nest modules inside an Api class but I can't get it to work or find the right syntax.
class Api
def initialize(client)
#client = client
#connection = Authentication.get_connection(#client)
end
#preferable put each submodule in a separate file
module Authentication
def get_connection(client)
#code to get Faraday connection
end
end
module Bikes
def new(object)
#code to post new bike
#connection.post(object)
puts "posted bike #{object.name} to #{#client}"
end
def delete(id)
#code to delete old bike
#connection.delete(id)
puts "deleted bike #{id} from #{#client}"
end
end
module Phones
def new(object)
#code to post new phone
#connection.post(object)
puts "posted phone #{object.name} to #{#client}"
end
end
end
This results in errors like:
NoMethodError: undefined method `Bikes' for #<Api:0x0000000003a543a0>
Is it possible to achieve my goal or are there better 'Ruby' ways to accomplish it?
Furthermore, is it possible to split the submodules to different files? eg:
api.rb
modules
+ -- authentication.rb
+ -- bikes.rb
+ -- phones.rb
There are some fundamental misconceptions of how Ruby OOP works in your example, and without a full code sample and the opportunity to interrogate you about what you're trying to accomplish it's hard to guide you to what might be the most appropriate answer. Any answer I give will be based partly on experience and partly on opinion, so you may see other answers as well.
At a high level, you should have classes in modules and not modules in classes. Although you can put modules in classes you better have a good understanding of why you're doing that before doing it.
Next, the modules and methods you've defined in them do not automatically become accessible to instances of the parent class, so client.Bikes will never work because Ruby expects to find an instance method named Bikes inside the Api class; it won't look for a module with that name.
The only way to access the modules and module methods that you have defined is to use them at the class/module level. So if you have this:
class Foo
module Bar
def baz
puts 'foobarbaz'
end
end
end
You can do this at the class/module level:
Foo::Bar.baz
foobarbaz
=> nil
But you can't do anything at the instance level:
Foo.new::Bar.baz
TypeError: #<Foo:0x00007fa037d39260> is not a class/module
Foo.new.Bar.baz
NoMethodError: undefined method `Bar' for #<Foo:0x00007fa037162e28>
So if you understand so far why the structure of your example doesn't work, then you can work on building something a little more sensible. Let's start with naming and the class/module structure.
First, Api is a poor name here because you'll typically use Api for something that provides an API, not connects to one, so I would recommend making the name a bit more descriptive and using a module to indicate that you are encapsulating one or more related classes:
module MonthyApiClient
end
Next, I'd recommend adding a Client class to encapsulate everything related to instantiating a client used to connect to the API:
module MonthyApiClient
class Client
def initialize
#client = nil # insert your logic here
#connection = nil # insert your logic here
end
end
end
The relationship between client and connection in your code example isn't clear, so for simplicity I am going to pretend that they can be combined into a single class (Client) and that we are dropping the module Authentication entirely.
Next, we need a reasonable way to integrate module Bikes and module Phones into this code. It doesn't make sense to convert these to classes because there's no need to instantiate them. These are purely helper functions that do something for an instance of Client, so they should be instance methods within that class:
module MonthyApiClient
class Client
def initialize
# insert your logic here
#client = nil
#connection = nil
end
def create_bike
# insert your logic here
# e.g., #connection.post(something)
end
def delete_bike
# insert your logic here
# e.g., #connection.delete(something)
end
def create_phone
# insert your logic here
# e.g., #connection.post(something)
end
end
end
Note that we've swapped new for create; you don't want to name a method new in Ruby, and in the context we're using this new would mean instantiate but do not save a new object whereas create would mean instantiate and save a new object.
And now that we're here, and now that we've eliminated all the nested modules by moving their logic elsewhere, we can see that the parent module we set up originally is unnecessarily redundant, and can eliminate it:
class MonthyApiClient
def initialize
# insert your logic here
#client = nil
#connection = nil
end
def create_bike
# insert your logic here
# e.g., #connection.post(something)
end
def delete_bike
# insert your logic here
# e.g., #connection.delete(something)
end
def create_phone
# insert your logic here
# e.g., #connection.post(something)
end
end
Then you can accomplish your original goal:
client_one = MonthyApiClient.new
client_one.create_bike
client_two = MonthyApiClient.new
client_two.create_phone
Having worked through this explanation, I think your original code is an example of spending a lot of time trying to over-optimize prematurely. It's better to plan out your business logic and make it as simple as possible first. There's some good information at https://softwareengineering.stackexchange.com/a/80094 that may help explain this concept.
I've even skipped trying to optimize the code I've shown here because I don't know exactly how much commonality there is between creating and deleting bikes and phones. With this functional class, and with a better understanding of other code within this app, I might try to DRY it up (and that might mean going back to having a module with a Client class and either module methods or other classes to encapsulate the DRY logic), but it would be premature to try.
Your last question was about how to structure files and directories for modules and classes, and I would refer you to Ideal ruby project structure (among many other questions on this site) for more information.

Creating a new variable automatically - Generating a variable - Ruby

Meta info: Found similar posts, zero were for Ruby.
Created title using multiple terms for search accessibility
Okay now onto the question...
I'm trying to generate new variables (moreso) automatically, I wanted to create a mechanism that did so.
class User
attr_accessor :name
def initialize(name)
#name = name
end
end
def CreateUser(name)
name = User.new(name)
end
CreateUser("Arnold")
p Arnold
I used a single argument in the name parameter of method "CreateUser" as both the name of the variable that I want to declare and the information sent into the code creating a member of my class.
I quickly remembered that in Ruby, variables inside of a method are local to only the method. If that weren't the case, and I could spit out the new variable from the method then I could generate my users easily - but this isn't the case. Is there a work around for this? Or is declaring a new variable manually just the name of the game?
Your question is a little confusing. At first glance, it seems like you're looking for some metaprogramming technique to dynamically create instance variables, such as:
class User
def new_variable name, value
instance_variable_set "##{name}", value
end
end
However, upon looking more closely at the problem you're actually trying to solve, it seems like the real issue is that you aren't making your methods part of your original object. This is probably what you really want:
class User
attr_accessor :name
def initialize name
#name = name
end
def create_user
# do whatever you need to do to "create" a user
pp name
end
end
u = User.new 'Arnold'
u.create_user
Enabling an object to call instance methods on data stored within the object is part of encapsulation. That is most likely what you're really after.

Why use extend/include instead of simply defining method in main object?

RSpec adds a "describe" method do the top-level namespace. However, instead of simply defining the method outside of any classes/modules, they do this:
# code from rspec-core/lib/rspec/core/dsl.rb
module RSpec
module Core
# Adds the `describe` method to the top-level namespace.
module DSL
def describe(*args, &example_group_block)
RSpec::Core::ExampleGroup.describe(*args, &example_group_block).register
end
end
end
end
extend RSpec::Core::DSL
Module.send(:include, RSpec::Core::DSL)
What is the benefit of using this technique as opposed to simply defining describe outside any modules and classes? (From what I can tell, the DSL module isn't used anywhere else in rspec-core.)
I made this change a few months ago so that describe is no longer added to every object in the system. If you defined it at the top level:
def describe(*args)
end
...then every object in the system would have a private describe method. RSpec does not own every object in the system and should not be adding describe willy-nilly to every object. We only want the describe method available in two scopes:
describe MyClass do
end
(at the top-level, off of the main object)
module MyModule
describe MyClass do
end
end
(off of any module, so you nest your describes in a module scope)
Putting it in a module makes it easy to extend onto the main object (to add it to only that object, and not every object) and include it in Module (to add it to all modules).
Actually, if that's all there is in the code, I don't really believe it to be much better — if at all. A common argument is that you can easily check that RSpec is responsible for addinng this method in the global namespace by checking the method owner. Somehow it never felt this was needed, as the location of the method already stores that information.
Defining the method outside of any scope would have be equivalent to defining a private instance method in Object:
class Object
private
def double(arg)
arg * 2
end
end
double(3) # OK
3.double(3) # Error: double is private
self.double(3) # Error: double is private
I think privateness is a useful aspect, because it prevents from making certain method calls that have no meaning, that the code shown in the question lacks.
There's an advantge to defining the method in a module, though, but the RSpec code doesn't seem to make use of it: using module_function, not only do you preserve privateness of the instance method, but you also get a public class method. This means that if you have an instance method of the same name, you will still be able to refer to the one defined by the module, by using the class method version.
A common example of module_function is the Kernel module, which contains most function-like core methods like puts (another one is Math). If you're in a class that redefines puts, you can still use Kernel#puts explicitly if you need:
class LikeAnIO
def puts(string)
#output << string
end
def do_work
puts "foo" # inserts "foo" in #output
Kernel.puts "foo" # inserts "foo" in $stdout
end
end

Avoiding globals with dynamically loaded ruby files

I am in a position at the moment where I have a plugins folder where there there could be 1 or 100 plugins to be loaded.
Now the problem is, each plugin requires an instance of a class defined within the startup ruby file.
A really simplified example would be:
#startup.rb
def load_plugins
#... get each plugin file
require each_plugin
end
class MuchUsedClass
def do_something
#...
end
end
muchUsedInstance = MuchUsedClass.new
load_plugins
#some_plugin.rb
class SomePluginClass
def initialize(muchUsedInstance)
#muchUsedInstance = muchUsedInstance
end
def do_something_with_instance
#muchUsedInstance.do_something
end
end
somePluginInstance = SomePluginClass.new(muchUsedInstance)
somePluginInstance.do_something_with_instance
The main problem is that when you call require, it doesn't have any clue about what has happened before it is being required. So I find it nasty making a global variable within the startup file just to satisfy all other required files, but it seems like one of the only ways to be able to pass some data down to an included file, I could also make a singleton class to expose some of this, but that also seems a bit nasty.
As I am still new to ruby and am still looking through the statically typed glasses, I will probably be missing a decent pattern to solve this, in C# I would opt for dependency injection and just hook everything up that way...
Your example code does not have a global variable. Global variables have names that start with $. The code as you wrote it won't work, because muchUsedInstance is just a local variable and will not be shared between different Ruby files.
If you are not going to change the instance ever, you could easily store it as a constant:
MuchUsedInstance = MuchUsedClass.new
You could store it as a nested constant inside the class:
MuchUsedClass::Instance = MuchUsedClass.new
You could store it as an instance variable inside the class object, with a getter method that automatically creates it if it isn't there already:
def MuchUsedClass.instance
#instance ||= MuchUsedClass.new
end

Saving Dynamic Ruby Classes

I have a curiosity question. If I have a ruby class and then I dynamically add class methods, class variables, etc. to it during execution is there anyway for me to save the altered class definition so that next time I start my application I can use it again?
There is no built-in way to do this. Marshal can't save methods. If these methods and variables are generated in some systematic way, you could save the data necessary for the class to recreate them. For example, if you have a make_special_method(purpose, value) method that defines these methods, create an array of the arguments you need to pass to these methods and read it in when you want to reconstitute the state of the class.
Depending on what exactly you mean, there are a couple of ways to go about this.
The simplest case is the one where you've added variables or methods to an already-existing class, as in this example:
class String
def rot13
return self.tr('a-z', 'n-za-m')
end
end
Here we've added the rot13 method to class String. As soon as this code is run, every String everywhere in your program will be able to #rot13. Thus, if you have some code that needs rot13-capable strings, you just ensure that the code above is run before the code in question, e.g. by putting the rot13 code in a file someplace and require()ing it. Very easy!
But maybe you've added a class variable to a class, and you want to preserve not just its existence but its value, as in:
class String
##number_of_tr_calls_made = 0
# Fix up #tr so that it increments ##number_of_tr_calls_made
end
Now if you want to save the value of ##number_of_tr_calls_made, you can do so in the same way you would with any other serializable Ruby value: via the Marshal library. Also easy!
But something in the way you phrased your question makes me suspect that you're doing something like this:
greeting = "Hello"
class <<greeting
def rot13
return self.tr('a-z', 'n-za-m')
end
end
encrypted_greeting = greeting.rot13
This is very different from what we did in the first example. That piece of code gave every String in your program the power to rot13 itself. This code grants that power to only the object referred to by the name 'greeting'. Internally, Ruby does this by creating an anonymous Singleton subclass of String, adding the rot13 method to it, and changing greeting's class to that anonymous subclass.
The problem here is that Singletons can't be Marshal'd (to see why, try to figure out how to maintain the Singleton invariant when any call to Marshal.load can generate copies of extant Singleton objects). Now greeting has a Singleton in its inheritance hierarchy, so if you want to save and load it you are hosed. Make a subclass instead:
class HighlySecurableString < String
def rot13
return self.tr('a-z', 'n-za-m')
end
end
greeting = HighlySecurableString.new("hello")
Simply marshalling the object (as others have said) wont work. Lets look at an example. Consider this class:
class Extras
attr_accessor :contents
def test
puts "This instance of Extras is OK. Contents is: " + #contents.to_s
end
def add_method( name )
self.class.send :define_method, name.to_sym do
puts "Called " + name.to_s
end
end
end
Now lets write a program which creates an instance, adds a method to it and saves it to disk:
require 'extras'
fresh = Extras.new
fresh.contents = 314
fresh.test # outputs "This instance of Extras is OK. Contents is: 314"
fresh.add_method( :foo )
fresh.foo # outputs "Called foo"
serial = Marshal.dump( fresh )
file = File.new "dumpedExample", 'w'
file.write serial
So we can call the normal method 'test' and the dynamic method 'foo'. Lets look at what happens if we write a program which loads the instance of Example which was saved to disk:
require 'extras'
file = File.new 'dumpedExample', 'r'
serial = file.read
reheated = Marshal.load( serial )
reheated.test # outputs "This instance of Extras is OK. Contents is 314"
reheated.foo # throws a NoMethodError exception
So we can see that while the instance (including the values of member variables) was saved the dynamic method was not.
From a design point of view it's probably better to put all your added code into a module and load that into the class again when you next run the program. We'd need a good example of how you might want to use it though to really know this.
If you need extra information to recreate the methods then have the module save these as member variables. Implement included in the module and have it look for these member variables when it is included into the class.
http://ruby-doc.org/core/classes/Marshal.html
You're editing the class on the fly, and you want to save that? You could try using the Marshal module, it'll allow you to save objects to a file, and read them back in memory dynamically.

Resources