Bad Pointer error when using File* object - visual-studio-2010

I just needed some advice regarding a bad pointer error I get using MS Visual Studio 2010.
FILE *rawDataFile = fopen("C:\\Data.txt", "rb");
While I am stepping through my code using both Release/Debug mode after the above lined is executed, I always end up getting a < Bad Ptr > declaration when I am watching the variable.
I really have no idea why this is happening, there seems to be no memory corruption happening prior, as far as I see memory is properly allocated.
I would really appreciate any pointers in helping me dig this further?

<Bad Ptr> doesn't necessarily indicate memory corruption, and it doesn't necessarily indicate an error. In this case, it just means that the pointer is null, so the debugger is unable to provide any information about the pointed-to object (since the pointer is null, there is no such object).
The values of the data members of the FILE structure are implementation-defined. In the Visual C++ implementation, these members are sometimes null. This is normal.

Related

How do I change memory bytes in Visual Studio 2017?

I am trying to change bytes in memory, in a memory window, when debugging a C++ project in my Visual Studio 2017. The memory window is pointing at memory holding code, as I am trying to patch a piece of code quickly (just need to change parameter value) without needing to stop and re-compile.
I also noticed that you cannot change values in the memory window even for data memory.
Is there some hidden configuration setting to let you do that. It was possible to do this in VS6.
I found a kind of work-around, that works even for modifying executable code memory.
Here are the steps:
Define a spare global pointer in your code (you can actually use any memory pointer in your code as long as you do not care that you will change its value):
char* memptr;
Set the pointer in a watch window.
Set the pointer value to the memory address that you want to modify.
Expend the content (BTW you can use "memptr,100" in your watch window to access more than one byte).
Type the updated value in the expended byte value cells.
This works even if you set the pointer to executable machine code memory, so you can use it to patch code.
It can be an int pointer or any other type, or you can use a cast in the watch window if you desire to edit any other kinds of objects.
Be careful this can be dangerous, modifying of memory has to be done with the greatest of care.
How do I change memory bytes in Visual Studio 2017?
As far as I know, Microsoft does not support changing the memory bytes directly in the latest Visual Studio including VS2017 and there is no such hidden option to realize it.
In general, during debugging, the Memory window shows the memory space your app is using. And the Memory window isn't limited to displaying data. It displays everything in the memory space, including data, code, and random bits of garbage in unassigned memory.
Besides, memory bytes changes with the values of variables in debugger windows such as Watch, Autos, Local Variables, and QuickWatch dialogs. Then analyze its changes in memory usage to improve the program. Because of it, we cannot change it directly.
In addition, more info about Memory Window, you can check this official document.

Delete dynamically allocated memory twice?

First I'd like to point out that I'm using a GNU GCC compiler. I'm using Code::Blocks as my IDE so I don't have to type in all the compiler junk into the Windows DOS command prompt. If I could be more specific about my compiler, what shows up as a line at the bottom of Cod::Blocks when I successfully compile is
mingw32-g++.exe -std=c++11 -g
Anyways, my question involves using the delete operator to release dynamically allocated memory. When I compile this code snippet:
int* x;
x = new int;
delete x;
delete x;
I don't get any warnings or errors or crashes. From the book I'm learning C++ from, releasing a pointer to a dynamically allocated memory chuck can only be done once, then the pointer is invalid. If you use delete on the same pointer again, then there will be problems. However, I don't get this problem.
Likewise, if I pass an object by value to a function, so that it is shallow copied, I get no error if I don't have a copy constructor to ensure deep copy (using raw pointers in the object). This means that when the function returns, the shallow copy goes out of scope, and invokes its destructor (where I'm using delete on a pointer). When int main returns, the original object goes out of scope, its destructor is invoked, and that same shallow copied pointer is deleted. But I have no problems.
I tried finding documentation online about the compiler I'm using and couldn't find any. Does this mean that the mingw32 compiler has some sort of default copy constructor it uses? Thus, I don't have to worry about creating copy constructors?
The compiler documentation is not likely to be helpful in this case: If it exists, it is likely to list exceptions to the C++ spec. It's the C++ spec that you need here.
When you delete the same pointer twice, the result--according to the C++ spec--is undefined. The compiler could do anything at all and have it meet spec. The compiler is allowed to recognize the fault and give an error message, or not recognize the fault and blow up immediately or sometime later. That your compiler appeared to work this time is no indication that the double delete is safe. It could be mucking up the heap in a way that results in a seg fault much later.
If you do not define a copy constructor, C++ defines one for you. The default copy constructor does a memberwise copy.
When you have the same object pointed to by multiple pointers, such as you do, consider using std::smart_ptr.

Some Windows API calls fail unless the string arguments are in the system memory rather than local stack

We have an older massive C++ application and we have been converting it to support Unicode as well as 64-bits. The following strange thing has been happening:
Calls to registry functions and windows creation functions, like the following, have been failing:
hWnd = CreateSysWindowExW( ExStyle, ClassNameW.StringW(), Label2.StringW(), Style,
Posn.X(), Posn.Y(),
Size.X(), Size.Y(),
hParentWnd, (HMENU)Id,
AppInstance(), NULL);
ClassNameW and Label2 are instances of our own Text class which essentially uses malloc to allocate the memory used to store the string.
Anyway, when the functions fail, and I call GetLastError it returns the error code for "invalid memory access" (though I can inspect and see the string arguments fine in the debugger). Yet if I change the code as follows then it works perfectly fine:
BSTR Label2S = SysAllocString(Label2.StringW());
BSTR ClassNameWS = SysAllocString(ClassNameW.StringW());
hWnd = CreateSysWindowExW( ExStyle, ClassNameWS, Label2S, Style,
Posn.X(), Posn.Y(),
Size.X(), Size.Y(),
hParentWnd, (HMENU)Id,
AppInstance(), NULL);
SysFreeString(ClassNameWS); ClassNameWS = 0;
SysFreeString(Label2S); Label2S = 0;
So what gives? Why would the original functions work fine with the arguments in local memory, but when used with Unicode, the registry function require SysAllocString, and when used in 64-bit, the Windows creation functions also require SysAllocString'd string arguments? Our Windows procedure functions have all been converted to be Unicode, always, and yes we use SetWindowLogW call the correct default Unicode DefWindowProcW etc. That all seems to work fine and handles and draws Unicode properly etc.
The documentation at http://msdn.microsoft.com/en-us/library/ms632679%28v=vs.85%29.aspx does not say anything about this. While our application is massive we do use debug heaps and tools like Purify to check for and clean up any memory corruption. Also at the time of this failure, there is still only one main system thread. So it is not a thread issue.
So what is going on? I have read that if string arguments are marshalled anywhere or passed across process boundaries, then you have to use SysAllocString/BSTR, yet we call lots of API functions and there is lots of code out there which calls these functions just using plain local strings?
What am I missing? I have tried Googling this, as someone else must have run into this, but with little luck.
Edit 1: Our StringW function does not create any temporary objects which might go out of scope before the actual API call. The function is as follows:
Class Text {
const wchar_t* StringW () const
{
return TextStartW;
}
wchar_t* TextStartW; // pointer to current start of text in DataArea
I have been running our application with the debug heap and memory checking and other diagnostic tools, and found no source of memory corruption, and looking at the assembly, there is no sign of temporary objects or invalid memory access.
BUT I finally figured it out:
We compile our code /Zp1, which means byte aligned memory allocations. SysAllocString (in 64-bits) always return a pointer that is aligned on a 8 byte boundary. Presumably a 32-bit ANSI C++ application goes through an API layer to the underlying Unicode windows DLLs, which would also align the pointer for you.
But if you use Unicode, you do not get that incidental pointer alignment that the conversion mapping layer gives you, and if you use 64-bits, of course the situation will get even worse.
I added a method to our Text class which shifts the string pointer so that it is aligned on an eight byte boundary, and viola, everything runs fine!!!
Of course the Microsoft people say it must be memory corruption and I am jumping the wrong conclusion, but there is evidence it is not the case.
Also, if you use /Zp1 and include windows.h in a 64-bit application, the debugger will tell you sizeof(BITMAP)==28, but calling GetObject on a bitmap will fail and tell you it needs a 32-byte structure. So I suspect that some of Microsoft's API is inherently dependent on aligned pointers, and I also know that some optimized assembly (I have seen some from Fortran compilers) takes advantage of that and crashes badly if you ever give it unaligned pointers.
So the moral of all of this is, dont use "funky" compiler arguments like /Zp1. In our case we have to for historical reasons, but the number of times this has bitten us...
Someone please give me a "this is useful" tick on my answer please?
Using a bit of psychic debugging, I'm going to guess that the strings in your application are pooled in a read-only section.
It's possible that the CreateSysWindowsEx is attempting to write to the memory passed in for the window class or title. That would explain why the calls work when allocated on the heap (SysAllocString) but not when used as constants.
The easiest way to investigate this is to use a low level debugger like windbg - it should break into the debugger at the point where the access violation occurs which should help figure out the problem. Don't use Visual Studio, it has a nasty habit of being helpful and hiding first chance exceptions.
Another thing to try is to enable appverifier on your application - it's possible that it may show something.
Calling a Windows API function does not cross the process boundary, since the various Windows DLLs are loaded into your process.
It sounds like whatever pointer that StringW() is returning isn't valid when Windows is trying to access it. I would look there - is it possible that the pointer returned it out of scope and deleted shortly after it is called?
If you share some more details about your string class, that could help diagnose the problem here.

How to know that my callstack is wrong?

How can I recognize that the callstack that is shown by the debugger when my program crashes may be wrong and misleading. For example when the callstack says the following frames may be missing or incorrect, what that actually means? Also what the + number after the function call in the callstack means :
kernel32!LoadLibrary + 0x100 bytes
Should this number be important to me, and is it true that if this number is big the callstack may be incorrect ?
Sorry if I am asking something trivial and obvious
Thank you all
Generally, you can trust your callstack to be correct.
However, if you re-throw exceptions explicitly instead of allowing them to bubble up the callstack naturally, the actual error can be hidden from the stack trace.
To start with the 2nd one: kernel32!LoadLibrary + 0x100 bytes means that the call was from the function LoadLibrary (offset: +100 bytes); appearantly there was no symbolic information exactly identifying the caller. This in itself is no reason for the callstack to be corrupted.
A call stack may be corrupted if functions overwrite values on the stack (i.e. by buffer overflow. This would likely show as '0x41445249' (if it were my name to overwrite it) as a call function. That is something outside your program memory ranges.
A way to diagnose the cause of your crash would be to set breakpoints on functions identified by the call stack. Or use your debugger to backtrace (depending on debugger & system). It is interesting to find out what arguments were included in the calls. Pointers are generally a good start (NULL pointers, uninitialized pointers). Good luck.

ACCESS_VIOLATION_BAD_IP

I am trying to figure out a crash in my application.
WinDbg tells me the following: (using dashes in place of underscores)
LAST-CONTROL-TRANSFER: from 005f5c7e to 6e697474
DEFAULT-BUCKET-ID: BAD_IP
BUGCHECK-STR: ACCESS-VIOLATION
It is obvious to me that 6e697474 is NOT a valid address.
I have three questions:
1) Does the "BAD_IP" bucket ID mean "Bad Instruction Pointer?"
2) This is a multi-threaded application so one consideration was that the object whose function I was attempting to call went out of scope. Does anyone know if that would lead to the same error message?
3) What else might cause an error like this? One of my co-workers suggested that it might be a stack overflow issue, but WinDBG in the past has proven rather reliable at detecting and pointing these out. (not that I'm sure about the voodoo it does in the background to diagnose that).
Bad-IP is Bad Instruction Pointer. From the description of your problem, I would assume it is a stack corruption instead of a stack overflow.
I can think of the following things that could cause a jump to invalid address, in decreasing order of likelyhood:
calling a member function on a deallocated object. (as you suspect)
calling a member function of a corrupted object.
calling a member function of an object with a corrupted vtable.
a rouge pointer overwriting code space.
I'd start debugging by finding the code at 005f5c7e and looking at what objects are being accessed around there.
It may be helpful to ask, what could have written the string 'ttie' to this location? Often when you have bytes in the 0x41-0x5A, 0x61-0x7A ([a-zA-Z]) range, it indicates a string buffer overflow.
As to what was actually overwritten, it could be the return address, some other function pointer you're using, or occasionally that a virtual function table pointer (vfptr) in an object got overwritten to point to the middle of a string.

Resources