I recently pushed a number of new Web and Worker Roles to Azure which use the Cache infrastructure to share state during one of our business processes. In this case, Web Role A will set a DateTime field which Worker Role B will then use as the basis for various internal business processes. In most cases, Worker Role B is measuring the difference in that time from UtcNow which is obviously based on the Worker roles Host system clock.
Although its been hard to measure precisely there appears to be big differences (for our needs) between the Web Role's host clock and the Worker Role's host clock. Is there a mechanism to syncronize clocks within Azure or is there an alternative approach I should use?
You could use a startup task + scheduled tasks that run every 5min for example to synchronize the time of your instances with a common time server:
function Get-InternetTime {
$TcpClient = New-Object System.Net.Sockets.TcpClient
[byte[]]$buffer = ,0 * 64
$TcpClient.Connect('time.nist.gov', 13)
$TcpStream = $TcpClient.GetStream()
$length = $TcpStream.Read($buffer, 0, $buffer.Length);
[void]$TcpClient.Close()
$raw = [Text.Encoding]::ASCII.GetString($buffer)
[DateTime]::ParseExact($raw.SubString(7,17), 'yy-MM-dd HH:mm:ss', $null).toLocalTime()
}
Set-Date (Get-InternetTime)
Or you could get the time from a SQL Azure database and use that time as a reference for all your instances:
select getdate()
Related
I deployed an apache beam pipeline to GCP dataflow in a DEV environment and everything worked well. Then I deployed it to production in Europe environment (to be specific - job region:europe-west1, worker location:europe-west1-d) where we get high data velocity and things started to get complicated.
I am using a session window to group events into sessions. The session key is the tenantId/visitorId and its gap is 30 minutes. I am also using a trigger to emit events every 30 seconds to release events sooner than the end of session (writing them to BigQuery).
The problem appears to happen in the EventToSession/GroupPairsByKey. In this step there are thousands of events under the droppedDueToLateness counter and the dataFreshness keeps increasing (increasing since when I deployed it). All steps before this one operates good and all steps after are affected by it, but doesn't seem to have any other problems.
I looked into some metrics and see that the EventToSession/GroupPairsByKey step is processing between 100K keys to 200K keys per second (depends on time of day), which seems quite a lot to me. The cpu utilization doesn't go over the 70% and I am using streaming engine. Number of workers most of the time is 2. Max worker memory capacity is 32GB while the max worker memory usage currently stands on 23GB. I am using e2-standard-8 machine type.
I don't have any hot keys since each session contains at most a few dozen events.
My biggest suspicious is the huge amount of keys being processed in the EventToSession/GroupPairsByKey step. But on the other, session is usually related to a single customer so google should expect handle this amount of keys to handle per second, no?
Would like to get suggestions how to solve the dataFreshness and events droppedDueToLateness issues.
Adding the piece of code that generates the sessions:
input = input.apply("SetEventTimestamp", WithTimestamps.of(event -> Instant.parse(getEventTimestamp(event))
.withAllowedTimestampSkew(new Duration(Long.MAX_VALUE)))
.apply("SetKeyForRow", WithKeys.of(event -> getSessionKey(event))).setCoder(KvCoder.of(StringUtf8Coder.of(), input.getCoder()))
.apply("CreatingWindow", Window.<KV<String, TableRow>>into(Sessions.withGapDuration(Duration.standardMinutes(30)))
.triggering(Repeatedly.forever(AfterProcessingTime.pastFirstElementInPane().plusDelayOf(Duration.standardSeconds(30))))
.discardingFiredPanes()
.withAllowedLateness(Duration.standardDays(30)))
.apply("GroupPairsByKey", GroupByKey.create())
.apply("CreateCollectionOfValuesOnly", Values.create())
.apply("FlattenTheValues", Flatten.iterables());
After doing some research I found the following:
regarding constantly increasing data freshness: as long as allowing late data to arrive a session window, that specific window will persist in memory. This means that allowing 30 days late data will keep every session for at least 30 days in memory, which obviously can over load the system. Moreover, I found we had some ever-lasting sessions by bots visiting and taking actions in websites we are monitoring. These bots can hold sessions forever which also can over load the system. The solution was decreasing allowed lateness to 2 days and use bounded sessions (look for "bounded sessions").
regarding events dropped due to lateness: these are events that on time of arrival they belong to an expired window, such window that the watermark has passed it's end (See documentation for the droppedDueToLateness here). These events are being dropped in the first GroupByKey after the session window function and can't be processed later. We didn't want to drop any late data so the solution was to check each event's timestamp before it is going to the sessions part and stream to the session part only events that won't be dropped - events that meet this condition: event_timestamp >= event_arrival_time - (gap_duration + allowed_lateness). The rest will be written to BigQuery without the session data (Apparently apache beam drops an event if the event's timestamp is before event_arrival_time - (gap_duration + allowed_lateness) even if there is a live session this event belongs to...)
p.s - in the bounded sessions part where he demonstrates how to implement a time bounded session I believe he has a bug allowing a session to grow beyond the provided max size. Once a session exceeded the max size, one can send late data that intersects this session and is prior to the session, to make the start time of the session earlier and by that expanding the session. Furthermore, once a session exceeded max size it can't be added events that belong to it but don't extend it.
In order to fix that I switched the order of the current window span and if-statement and edited the if-statement (the one checking for session max size) in the mergeWindows function in the window spanning part, so a session can't pass the max size and can only be added data that doesn't extend it beyond the max size. This is my implementation:
public void mergeWindows(MergeContext c) throws Exception {
List<IntervalWindow> sortedWindows = new ArrayList<>();
for (IntervalWindow window : c.windows()) {
sortedWindows.add(window);
}
Collections.sort(sortedWindows);
List<MergeCandidate> merges = new ArrayList<>();
MergeCandidate current = new MergeCandidate();
for (IntervalWindow window : sortedWindows) {
MergeCandidate next = new MergeCandidate(window);
if (current.intersects(window)) {
if ((current.union == null || new Duration(current.union.start(), window.end()).getMillis() <= maxSize.plus(gapDuration).getMillis())) {
current.add(window);
continue;
}
}
merges.add(current);
current = next;
}
merges.add(current);
for (MergeCandidate merge : merges) {
merge.apply(c);
}
}
I Am going to build a system for flash sale which will share the same Redis instance and will run on 15 servers at a time.
So the algorithm of Flash sale will be.
Set Max inventory for any product id in Redis
using redisTemplate.opsForValue().set(key, 400L);
for every request :
get current inventory using Long val = redisTemplate.opsForValue().get(key);
check if it is non zero
if (val == null || val == 0) {
System.out.println("not taking order....");
}
else{
put order in kafka
and decrement using redisTemplate.opsForValue().decrement(key)
}
But the problem here is concurrency :
If I set inventory 400 and test it with 500 request thread,
Inventory becomes negative,
If I make function synchronized I cannot manage it in distributed servers.
So what will be the best approach to it?
Note: I can not go for RDBMS and set isolation level because of high request count.
Redis is monothreaded, so running a Lua Script on it is always atomic.
You can define then a Lua script on your Redis instance and running it from your Spring instances.
Your Lua script would just be a sequence of operations to execute against your redis instance (the only one to have the correct value of your stock) and returns the new value for instance or an error if the value is negative.
Your Lua script is basically a Redis transaction, there are other methods to achieve Redis transaction but IMHO Lua is the simplest above all (maybe the least performant, but I have found that in most cases it is fast enough).
I have a worker role that runs a number of parallel background workers. These workers run tasks that last from one minute to 5 hours and use quite a lot of memory.
I would like to delay the start of a new worker by testing the current level of memory consumption. Something like this:
while (memoryAvailable < 50%) {
Thread.Sleep( 1000 * 60 * 10 ); // 10 minutes
}
Can I test for available memory within a worker role?
Also, can I automate a reboot of the instance if memory drops below a certain amount?
Since your worker role instances are Windows Server 2012, you can just set up an appropriate perf counter during role startup ( OnStart() ) with whichever pertinent Memory counters you're interested in, and set up a task to observe the perf counter periodically. When available memory drops below your threshold (or committed bytes exceeds your threshold), you can easily recycle the role instance:
RoleEnvironment.RequestRecycle();
We are running a Spring 3.0.x web application (.war) with a nightly #Scheduled job in a clustered WebLogic 10.3.4 environment. However, as the application is deployed to each node (using the deployment wizard in the AdminServer's web console), the job is started on each node every night thus running multiple times concurrently.
How can we prevent this from happening?
I know that libraries like Quartz allow coordinating jobs inside clustered environment by means of a database lock table or I could even implement something like this myself. But since this seems to be a fairly common scenario I wonder if Spring does not already come with an option how to easily circumvent this problem without having to add new libraries to my project or putting in manual workarounds.
We are not able to upgrade to Spring 3.1 with configuration profiles, as mentioned here
Please let me know if there are any open questions. I also asked this question on the Spring Community forums. Thanks a lot for your help.
We only have one task that send a daily summary email. To avoid extra dependencies, we simply check whether the hostname of each node corresponds with a configured system property.
private boolean isTriggerNode() {
String triggerHostmame = System.getProperty("trigger.hostname");;
String hostName = InetAddress.getLocalHost().getHostName();
return hostName.equals(triggerHostmame);
}
public void execute() {
if (isTriggerNode()) {
//send email
}
}
We are implementing our own synchronization logic using a shared lock table inside the application database. This allows all cluster nodes to check if a job is already running before actually starting it itself.
Be careful, since in the solution of implementing your own synchronization logic using a shared lock table, you always have the concurrency issue where the two cluster nodes are reading/writing from the table at the same time.
Best is to perform the following steps in one db transaction:
- read the value in the shared lock table
- if no other node is having the lock, take the lock
- update the table indicating you take the lock
I solved this problem by making one of the box as master.
basically set an environment variable on one of the box like master=true.
and read it in your java code through system.getenv("master").
if its present and its true then run your code.
basic snippet
#schedule()
void process(){
boolean master=Boolean.parseBoolean(system.getenv("master"));
if(master)
{
//your logic
}
}
you can try using TimerManager (Job Scheduler in a clustered environment) from WebLogic as TaskScheduler implementation (TimerManagerTaskScheduler). It should work in a clustered environment.
Andrea
I've recently implemented a simple annotation library, dlock, to execute a scheduled task only once over multiple nodes. You can simply do something like below.
#Scheduled(cron = "59 59 8 * * *" /* Every day at 8:59:59am */)
#TryLock(name = "emailLock", owner = NODE_NAME, lockFor = TEN_MINUTE)
public void sendEmails() {
List<Email> emails = emailDAO.getEmails();
emails.forEach(email -> sendEmail(email));
}
See my blog post about using it.
You don't neeed to synchronize your job start using a DB.
On a weblogic application you can get the instanze name where the application is running:
String serverName = System.getProperty("weblogic.Name");
Simply put a condition two execute the job:
if (serverName.equals(".....")) {
execute my job;
}
If you want to bounce your job from one machine to the other, you can get the current day in the year, and if it is odd you execute on a machine, if it is even you execute the job on the other one.
This way you load a different machine every day.
We can make other machines on cluster not run the batch job by using the following cron string. It will not run till 2099.
0 0 0 1 1 ? 2099
I'm writing an rails 3 application which requires performing small tasks on a custom schedule for each user. The scheduled tasks will be defined dynamically. Right now my plan is to use resque scheduler with redis.
Once I set the schedule for a specify task (for eg. run task A every 48 hours) I would like to run that task indefinitely. So I would like to store those schedules in a db or something so in case an app crashes when it restarts it would load queue those task again.
Is this something Resque supports by default by storing it in redis or do I need to write my own custom thing? I was also looking at ruby-taskr (http://code.google.com/p/ruby-taskr/). I am not sure if taskr supports storing it in a database and registering it on start?
Also it would be helpful if there are applications/demo that I can look at it.
Thanks
I have a similar setup for batch jobs. The user adds them on a web dashboard and they get run however often is specified.
I use active-record to store the scheduling definitions, use resque for execution and a single cron entry for enqueueing using a rake task.
so then in the rake task:
to_run = Report.daily
to_run += Report.weekly if Time.now.monday?
to_run += Report.monthly if Time.now.day == 1
to_run.each{|r| r.enqueue!}
where daily, weekly, monthly are named scopes on the model:
class Report < ActiveRecord::Base
scope :daily, where(:when_to_run => 'daily')
scope :weekly, where(:when_to_run => 'weekly')
scope :monthly, where(:when_to_run => 'monthly')
end
This is a little hacky, but it works well and I stay within the stack nicely. Hope that is useful