Related
I recently went through an interview and was asked this question. Let me explain the question properly:
Given a number M (N-digit integer) and K number of swap operations(a swap
operation can swap 2 digits), devise an algorithm to get the maximum
possible integer?
Examples:
M = 132 K = 1 output = 312
M = 132 K = 2 output = 321
M = 7899 k = 2 output = 9987
My solution ( algorithm in pseudo-code). I used a max-heap to get the maximum digit out of N-digits in each of the K-operations and then suitably swapping it.
for(int i = 0; i<K; i++)
{
int max_digit_currently = GetMaxFromHeap();
// The above function GetMaxFromHeap() pops out the maximum currently and deletes it from heap
int index_to_swap_with = GetRightMostOccurenceOfTheDigitObtainedAbove();
// This returns me the index of the digit obtained in the previous function
// .e.g If I have 436659 and K=2 given,
// then after K=1 I'll have 936654 and after K=2, I should have 966354 and not 963654.
// Now, the swap part comes. Here the gotcha is, say with the same above example, I have K=3.
// If I do GetMaxFromHeap() I'll get 6 when K=3, but I should not swap it,
// rather I should continue for next iteration and
// get GetMaxFromHeap() to give me 5 and then get 966534 from 966354.
if (Value_at_index_to_swap == max_digit_currently)
continue;
else
DoSwap();
}
Time complexity: O(K*( N + log_2(N) ))
// K-times [log_2(N) for popping out number from heap & N to get the rightmost index to swap with]
The above strategy fails in this example:
M = 8799 and K = 2
Following my strategy, I'll get M = 9798 after K=1 and M = 9978 after K=2. However, the maximum I can get is M = 9987 after K=2.
What did I miss?
Also suggest other ways to solve the problem & ways to optimize my solution.
I think the missing part is that, after you've performed the K swaps as in the algorithm described by the OP, you're left with some numbers that you can swap between themselves. For example, for the number 87949, after the initial algorithm we would get 99748. However, after that we can swap 7 and 8 "for free", i.e. not consuming any of the K swaps. This would mean "I'd rather not swap the 7 with the second 9 but with the first".
So, to get the max number, one would perform the algorithm described by the OP and remember the numbers which were moved to the right, and the positions to which they were moved. Then, sort these numbers in decreasing order and put them in the positions from left to right.
This is something like a separation of the algorithm in two phases - in the first one, you choose which numbers should go in the front to maximize the first K positions. Then you determine the order in which you would have swapped them with the numbers whose positions they took, so that the rest of the number is maximized as well.
Not all the details are clear, and I'm not 100% sure it handles all cases correctly, so if anyone can break it - go ahead.
This is a recursive function, which sorts the possible swap values for each (current-max) digit:
function swap2max(string, K) {
// the recursion end:
if (string.length==0 || K==0)
return string
m = getMaxDigit(string)
// an array of indices of the maxdigits to swap in the string
indices = []
// a counter for the length of that array, to determine how many chars
// from the front will be swapped
len = 0
// an array of digits to be swapped
front = []
// and the index of the last of those:
right = 0
// get those indices, in a loop with 2 conditions:
// * just run backwards through the string, until we meet the swapped range
// * no more swaps than left (K)
for (i=string.length; i-->right && len<K;)
if (m == string[i])
// omit digits that are already in the right place
while (right<=i && string[right] == m)
right++
// and when they need to be swapped
if (i>=right)
front.push(string[right++])
indices.push(i)
len++
// sort the digits to swap with
front.sort()
// and swap them
for (i=0; i<len; i++)
string.setCharAt(indices[i], front[i])
// the first len digits are the max ones
// the rest the result of calling the function on the rest of the string
return m.repeat(right) + swap2max(string.substr(right), K-len)
}
This is all pseudocode, but converts fairly easy to other languages. This solution is nonrecursive and operates in linear worst case and average case time.
You are provided with the following functions:
function k_swap(n, k1, k2):
temp = n[k1]
n[k1] = n[k2]
n[k2] = temp
int : operator[k]
// gets or sets the kth digit of an integer
property int : magnitude
// the number of digits in an integer
You could do something like the following:
int input = [some integer] // input value
int digitcounts[10] = {0, ...} // all zeroes
int digitpositions[10] = {0, ...) // all zeroes
bool filled[input.magnitude] = {false, ...) // all falses
for d = input[i = 0 => input.magnitude]:
digitcounts[d]++ // count number of occurrences of each digit
digitpositions[0] = 0;
for i = 1 => input.magnitude:
digitpositions[i] = digitpositions[i - 1] + digitcounts[i - 1] // output positions
for i = 0 => input.magnitude:
digit = input[i]
if filled[i] == true:
continue
k_swap(input, i, digitpositions[digit])
filled[digitpositions[digit]] = true
digitpositions[digit]++
I'll walk through it with the number input = 724886771
computed digitcounts:
{0, 1, 1, 0, 1, 0, 1, 3, 2, 0}
computed digitpositions:
{0, 0, 1, 2, 2, 3, 3, 4, 7, 9}
swap steps:
swap 0 with 0: 724886771, mark 0 visited
swap 1 with 4: 724876781, mark 4 visited
swap 2 with 5: 724778881, mark 5 visited
swap 3 with 3: 724778881, mark 3 visited
skip 4 (already visited)
skip 5 (already visited)
swap 6 with 2: 728776481, mark 2 visited
swap 7 with 1: 788776421, mark 1 visited
swap 8 with 6: 887776421, mark 6 visited
output number: 887776421
Edit:
This doesn't address the question correctly. If I have time later, I'll fix it but I don't right now.
How I would do it (in pseudo-c -- nothing fancy), assuming a fantasy integer array is passed where each element represents one decimal digit:
int[] sortToMaxInt(int[] M, int K) {
for (int i = 0; K > 0 && i < M.size() - 1; i++) {
if (swapDec(M, i)) K--;
}
return M;
}
bool swapDec(int[]& M, int i) {
/* no need to try and swap the value 9 as it is the
* highest possible value anyway. */
if (M[i] == 9) return false;
int max_dec = 0;
int max_idx = 0;
for (int j = i+1; j < M.size(); j++) {
if (M[j] >= max_dec) {
max_idx = j;
max_dec = M[j];
}
}
if (max_dec > M[i]) {
M.swapElements(i, max_idx);
return true;
}
return false;
}
From the top of my head so if anyone spots some fatal flaw please let me know.
Edit: based on the other answers posted here, I probably grossly misunderstood the problem. Anyone care to elaborate?
You start with max-number(M, N, 1, K).
max-number(M, N, pos, k)
{
if k == 0
return M
max-digit = 0
for i = pos to N
if M[i] > max-digit
max-digit = M[i]
if M[pos] == max-digit
return max-number(M, N, pos + 1, k)
for i = (pos + 1) to N
maxs.add(M)
if M[i] == max-digit
M2 = new M
swap(M2, i, pos)
maxs.add(max-number(M2, N, pos + 1, k - 1))
return maxs.max()
}
Here's my approach (It's not fool-proof, but covers the basic cases). First we'll need a function that extracts each DIGIT of an INT into a container:
std::shared_ptr<std::deque<int>> getDigitsOfInt(const int N)
{
int number(N);
std::shared_ptr<std::deque<int>> digitsQueue(new std::deque<int>());
while (number != 0)
{
digitsQueue->push_front(number % 10);
number /= 10;
}
return digitsQueue;
}
You obviously want to create the inverse of this, so convert such a container back to an INT:
const int getIntOfDigits(const std::shared_ptr<std::deque<int>>& digitsQueue)
{
int number(0);
for (std::deque<int>::size_type i = 0, iMAX = digitsQueue->size(); i < iMAX; ++i)
{
number = number * 10 + digitsQueue->at(i);
}
return number;
}
You also will need to find the MAX_DIGIT. It would be great to use std::max_element as it returns an iterator to the maximum element of a container, but if there are more you want the last of them. So let's implement our own max algorithm:
int getLastMaxDigitOfN(const std::shared_ptr<std::deque<int>>& digitsQueue, int startPosition)
{
assert(!digitsQueue->empty() && digitsQueue->size() > startPosition);
int maxDigitPosition(0);
int maxDigit(digitsQueue->at(startPosition));
for (std::deque<int>::size_type i = startPosition, iMAX = digitsQueue->size(); i < iMAX; ++i)
{
const int currentDigit(digitsQueue->at(i));
if (maxDigit <= currentDigit)
{
maxDigit = currentDigit;
maxDigitPosition = i;
}
}
return maxDigitPosition;
}
From here on its pretty straight what you have to do, put the right-most (last) MAX DIGITS to their places until you can swap:
const int solution(const int N, const int K)
{
std::shared_ptr<std::deque<int>> digitsOfN = getDigitsOfInt(N);
int pos(0);
int RemainingSwaps(K);
while (RemainingSwaps)
{
int lastHDPosition = getLastMaxDigitOfN(digitsOfN, pos);
if (lastHDPosition != pos)
{
std::swap<int>(digitsOfN->at(lastHDPosition), digitsOfN->at(pos));
++pos;
--RemainingSwaps;
}
}
return getIntOfDigits(digitsOfN);
}
There are unhandled corner-cases but I'll leave that up to you.
I assumed K = 2, but you can change the value!
Java code
public class Solution {
public static void main (String args[]) {
Solution d = new Solution();
System.out.println(d.solve(1234));
System.out.println(d.solve(9812));
System.out.println(d.solve(9876));
}
public int solve(int number) {
int[] array = intToArray(number);
int[] result = solve(array, array.length-1, 2);
return arrayToInt(result);
}
private int arrayToInt(int[] array) {
String s = "";
for (int i = array.length-1 ;i >= 0; i--) {
s = s + array[i]+"";
}
return Integer.parseInt(s);
}
private int[] intToArray(int number){
String s = number+"";
int[] result = new int[s.length()];
for(int i = 0 ;i < s.length() ;i++) {
result[s.length()-1-i] = Integer.parseInt(s.charAt(i)+"");
}
return result;
}
private int[] solve(int[] array, int endIndex, int num) {
if (endIndex == 0)
return array;
int size = num ;
int firstIndex = endIndex - size;
if (firstIndex < 0)
firstIndex = 0;
int biggest = findBiggestIndex(array, endIndex, firstIndex);
if (biggest!= endIndex) {
if (endIndex-biggest==num) {
while(num!=0) {
int temp = array[biggest];
array[biggest] = array[biggest+1];
array[biggest+1] = temp;
biggest++;
num--;
}
return array;
}else{
int n = endIndex-biggest;
for (int i = 0 ;i < n;i++) {
int temp = array[biggest];
array[biggest] = array[biggest+1];
array[biggest+1] = temp;
biggest++;
}
return solve(array, --biggest, firstIndex);
}
}else{
return solve(array, --endIndex, num);
}
}
private int findBiggestIndex(int[] array, int endIndex, int firstIndex) {
int result = firstIndex;
int max = array[firstIndex];
for (int i = firstIndex; i <= endIndex; i++){
if (array[i] > max){
max = array[i];
result = i;
}
}
return result;
}
}
Given an integer x and a sorted array a of N distinct integers, design a linear-time algorithm to determine if there exists two distinct indices i and j such that a[i] + a[j] == x
This is type of Subset sum problem
Here is my solution. I don't know if it was known earlier or not. Imagine 3D plot of function of two variables i and j:
sum(i,j) = a[i]+a[j]
For every i there is such j that a[i]+a[j] is closest to x. All these (i,j) pairs form closest-to-x line. We just need to walk along this line and look for a[i]+a[j] == x:
int i = 0;
int j = lower_bound(a.begin(), a.end(), x) - a.begin();
while (j >= 0 && j < a.size() && i < a.size()) {
int sum = a[i]+a[j];
if (sum == x) {
cout << "found: " << i << " " << j << endl;
return;
}
if (sum > x) j--;
else i++;
if (i > j) break;
}
cout << " not found\n";
Complexity: O(n)
think in terms of complements.
iterate over the list, figure out for each item what the number needed to get to X for that number is. stick number and complement into hash. while iterating check to see if number or its complement is in hash. if so, found.
edit: and as I have some time, some pseudo'ish code.
boolean find(int[] array, int x) {
HashSet<Integer> s = new HashSet<Integer>();
for(int i = 0; i < array.length; i++) {
if (s.contains(array[i]) || s.contains(x-array[i])) {
return true;
}
s.add(array[i]);
s.add(x-array[i]);
}
return false;
}
Given that the array is sorted (WLOG in descending order), we can do the following:
Algorithm A_1:
We are given (a_1,...,a_n,m), a_1<...,<a_n.
Put a pointer at the top of the list and one at the bottom.
Compute the sum where both pointers are.
If the sum is greater than m, move the above pointer down.
If the sum is less than m, move the lower pointer up.
If a pointer is on the other (here we assume each number can be employed only once), report unsat.
Otherwise, (an equivalent sum will be found), report sat.
It is clear that this is O(n) since the maximum number of sums computed is exactly n. The proof of correctness is left as an exercise.
This is merely a subroutine of the Horowitz and Sahni (1974) algorithm for SUBSET-SUM. (However, note that almost all general purpose SS algorithms contain such a routine, Schroeppel, Shamir (1981), Howgrave-Graham_Joux (2010), Becker-Joux (2011).)
If we were given an unordered list, implementing this algorithm would be O(nlogn) since we could sort the list using Mergesort, then apply A_1.
First pass search for the first value that is > ceil(x/2). Lets call this value L.
From index of L, search backwards till you find the other operand that matches the sum.
It is 2*n ~ O(n)
This we can extend to binary search.
Search for an element using binary search such that we find L, such that L is min(elements in a > ceil(x/2)).
Do the same for R, but now with L as the max size of searchable elements in the array.
This approach is 2*log(n).
Here's a python version using Dictionary data structure and number complement. This has linear running time(Order of N: O(N)):
def twoSum(N, x):
dict = {}
for i in range(len(N)):
complement = x - N[i]
if complement in dict:
return True
dict[N[i]] = i
return False
# Test
print twoSum([2, 7, 11, 15], 9) # True
print twoSum([2, 7, 11, 15], 3) # False
Iterate over the array and save the qualified numbers and their indices into the map. The time complexity of this algorithm is O(n).
vector<int> twoSum(vector<int> &numbers, int target) {
map<int, int> summap;
vector<int> result;
for (int i = 0; i < numbers.size(); i++) {
summap[numbers[i]] = i;
}
for (int i = 0; i < numbers.size(); i++) {
int searched = target - numbers[i];
if (summap.find(searched) != summap.end()) {
result.push_back(i + 1);
result.push_back(summap[searched] + 1);
break;
}
}
return result;
}
I would just add the difference to a HashSet<T> like this:
public static bool Find(int[] array, int toReach)
{
HashSet<int> hashSet = new HashSet<int>();
foreach (int current in array)
{
if (hashSet.Contains(current))
{
return true;
}
hashSet.Add(toReach - current);
}
return false;
}
Note: The code is mine but the test file was not. Also, this idea for the hash function comes from various readings on the net.
An implementation in Scala. It uses a hashMap and a custom (yet simple) mapping for the values. I agree that it does not makes use of the sorted nature of the initial array.
The hash function
I fix the bucket size by dividing each value by 10000. That number could vary, depending on the size you want for the buckets, which can be made optimal depending on the input range.
So for example, key 1 is responsible for all the integers from 1 to 9.
Impact on search scope
What that means, is that for a current value n, for which you're looking to find a complement c such as n + c = x (x being the element you're trying ton find a 2-SUM of), there is only 3 possibles buckets in which the complement can be:
-key
-key + 1
-key - 1
Let's say that your numbers are in a file of the following form:
0
1
10
10
-10
10000
-10000
10001
9999
-10001
-9999
10000
5000
5000
-5000
-1
1000
2000
-1000
-2000
Here's the implementation in Scala
import scala.collection.mutable
import scala.io.Source
object TwoSumRed {
val usage = """
Usage: scala TwoSumRed.scala [filename]
"""
def main(args: Array[String]) {
val carte = createMap(args) match {
case None => return
case Some(m) => m
}
var t: Int = 1
carte.foreach {
case (bucket, values) => {
var toCheck: Array[Long] = Array[Long]()
if (carte.contains(-bucket)) {
toCheck = toCheck ++: carte(-bucket)
}
if (carte.contains(-bucket - 1)) {
toCheck = toCheck ++: carte(-bucket - 1)
}
if (carte.contains(-bucket + 1)) {
toCheck = toCheck ++: carte(-bucket + 1)
}
values.foreach { v =>
toCheck.foreach { c =>
if ((c + v) == t) {
println(s"$c and $v forms a 2-sum for $t")
return
}
}
}
}
}
}
def createMap(args: Array[String]): Option[mutable.HashMap[Int, Array[Long]]] = {
var carte: mutable.HashMap[Int,Array[Long]] = mutable.HashMap[Int,Array[Long]]()
if (args.length == 1) {
val filename = args.toList(0)
val lines: List[Long] = Source.fromFile(filename).getLines().map(_.toLong).toList
lines.foreach { l =>
val idx: Int = math.floor(l / 10000).toInt
if (carte.contains(idx)) {
carte(idx) = carte(idx) :+ l
} else {
carte += (idx -> Array[Long](l))
}
}
Some(carte)
} else {
println(usage)
None
}
}
}
int[] b = new int[N];
for (int i = 0; i < N; i++)
{
b[i] = x - a[N -1 - i];
}
for (int i = 0, j = 0; i < N && j < N;)
if(a[i] == b[j])
{
cout << "found";
return;
} else if(a[i] < b[j])
i++;
else
j++;
cout << "not found";
Here is a linear time complexity solution O(n) time O(1) space
public void twoSum(int[] arr){
if(arr.length < 2) return;
int max = arr[0] + arr[1];
int bigger = Math.max(arr[0], arr[1]);
int smaller = Math.min(arr[0], arr[1]);
int biggerIndex = 0;
int smallerIndex = 0;
for(int i = 2 ; i < arr.length ; i++){
if(arr[i] + bigger <= max){ continue;}
else{
if(arr[i] > bigger){
smaller = bigger;
bigger = arr[i];
biggerIndex = i;
}else if(arr[i] > smaller)
{
smaller = arr[i];
smallerIndex = i;
}
max = bigger + smaller;
}
}
System.out.println("Biggest sum is: " + max + "with indices ["+biggerIndex+","+smallerIndex+"]");
}
Solution
We need array to store the indices
Check if the array is empty or contains less than 2 elements
Define the start and the end point of the array
Iterate till condition is met
Check if the sum is equal to the target. If yes get the indices.
If condition is not met then traverse left or right based on the sum value
Traverse to the right
Traverse to the left
For more info :[http://www.prathapkudupublog.com/2017/05/two-sum-ii-input-array-is-sorted.html
Credit to leonid
His solution in java, if you want to give it a shot
I removed the return, so if the array is sorted, but DOES allow duplicates, it still gives pairs
static boolean cpp(int[] a, int x) {
int i = 0;
int j = a.length - 1;
while (j >= 0 && j < a.length && i < a.length) {
int sum = a[i] + a[j];
if (sum == x) {
System.out.printf("found %s, %s \n", i, j);
// return true;
}
if (sum > x) j--;
else i++;
if (i > j) break;
}
System.out.println("not found");
return false;
}
The classic linear time two-pointer solution does not require hashing so can solve related problems such as approximate sum (find closest pair sum to target).
First, a simple n log n solution: walk through array elements a[i], and use binary search to find the best a[j].
To get rid of the log factor, use the following observation: as the list is sorted, iterating through indices i gives a[i] is increasing, so any corresponding a[j] is decreasing in value and in index j. This gives the two-pointer solution: start with indices lo = 0, hi = N-1 (pointing to a[0] and a[N-1]). For a[0], find the best a[hi] by decreasing hi. Then increment lo and for each a[lo], decrease hi until a[lo] + a[hi] is the best. The algorithm can stop when it reaches lo == hi.
We need to find pair of numbers in an array whose sum is equal to a given value.
A = {6,4,5,7,9,1,2}
Sum = 10
Then the pairs are - {6,4} , {9,1}
I have two solutions for this .
an O(nlogn) solution - sort + check sum with 2 iterators (beginning and end).
an O(n) solution - hashing the array. Then checking if sum-hash[i] exists in the hash table or not.
But , the problem is that although the second solution is O(n) time , but uses O(n) space as well.
So , I was wondering if we could do it in O(n) time and O(1) space. And this is NOT homework!
Use in-place radix sort and OP's first solution with 2 iterators, coming towards each other.
If numbers in the array are not some sort of multi-precision numbers and are, for example, 32-bit integers, you can sort them in 2*32 passes using practically no additional space (1 bit per pass). Or 2*8 passes and 16 integer counters (4 bits per pass).
Details for the 2 iterators solution:
First iterator initially points to first element of the sorted array and advances forward. Second iterator initially points to last element of the array and advances backward.
If sum of elements, referenced by iterators, is less than the required value, advance first iterator. If it is greater than the required value, advance second iterator. If it is equal to the required value, success.
Only one pass is needed, so time complexity is O(n). Space complexity is O(1). If radix sort is used, complexities of the whole algorithm are the same.
If you are interested in related problems (with sum of more than 2 numbers), see "Sum-subset with a fixed subset size" and "Finding three elements in an array whose sum is closest to an given number".
This is a classic interview question from Microsoft research Asia.
How to Find 2 numbers in an unsorted array equal to a given sum.
[1]brute force solution
This algorithm is very simple. The time complexity is O(N^2)
[2]Using binary search
Using bianry searching to find the Sum-arr[i] with every arr[i], The time complexity can be reduced to O(N*logN)
[3]Using Hash
Base on [2] algorithm and use hash, the time complexity can be reduced to O(N), but this solution will add the O(N) space of hash.
[4]Optimal algorithm:
Pseduo-code:
for(i=0;j=n-1;i<j)
if(arr[i]+arr[j]==sum) return (i,j);
else if(arr[i]+arr[j]<sum) i++;
else j--;
return(-1,-1);
or
If a[M] + a[m] > I then M--
If a[M] + a[m] < I then m++
If a[M] + a[m] == I you have found it
If m > M, no such numbers exist.
And, Is this quesiton completely solved? No. If the number is N. This problem will become very complex.
The quesiton then:
How can I find all the combination cases with a given number?
This is a classic NP-Complete problem which is called subset-sum.
To understand NP/NPC/NP-Hard you'd better to read some professional books.
References:
[1]http://www.quora.com/Mathematics/How-can-I-find-all-the-combination-cases-with-a-given-number
[2]http://en.wikipedia.org/wiki/Subset_sum_problem
for (int i=0; i < array.size(); i++){
int value = array[i];
int diff = sum - value;
if (! hashSet.contains(diffvalue)){
hashSet.put(value,value);
} else{
printf(sum = diffvalue + hashSet.get(diffvalue));
}
}
--------
Sum being sum of 2 numbers.
public void printPairsOfNumbers(int[] a, int sum){
//O(n2)
for (int i = 0; i < a.length; i++) {
for (int j = i+1; j < a.length; j++) {
if(sum - a[i] == a[j]){
//match..
System.out.println(a[i]+","+a[j]);
}
}
}
//O(n) time and O(n) space
Set<Integer> cache = new HashSet<Integer>();
cache.add(a[0]);
for (int i = 1; i < a.length; i++) {
if(cache.contains(sum - a[i])){
//match//
System.out.println(a[i]+","+(sum-a[i]));
}else{
cache.add(a[i]);
}
}
}
Create a dictionary with pairs Key (number from the list) and the Value is the number which is necessary to obtain a desired value. Next, check the presence of the pairs of numbers in the list.
def check_sum_in_list(p_list, p_check_sum):
l_dict = {i: (p_check_sum - i) for i in p_list}
for key, value in l_dict.items():
if key in p_list and value in p_list:
return True
return False
if __name__ == '__main__':
l1 = [1, 3, 7, 12, 72, 2, 8]
l2 = [1, 2, 2, 4, 7, 4, 13, 32]
print(check_sum_in_list(l1, 10))
print(check_sum_in_list(l2, 99))
Output:
True
Flase
version 2
import random
def check_sum_in_list(p_list, p_searched_sum):
print(list(p_list))
l_dict = {i: p_searched_sum - i for i in set(p_list)}
for key, value in l_dict.items():
if key in p_list and value in p_list:
if p_list.index(key) != p_list.index(value):
print(key, value)
return True
return False
if __name__ == '__main__':
l1 = []
for i in range(1, 2000000):
l1.append(random.randrange(1, 1000))
j = 0
i = 9
while i < len(l1):
if check_sum_in_list(l1[j:i], 100):
print('Found')
break
else:
print('Continue searching')
j = i
i = i + 10
Output:
...
[154, 596, 758, 924, 797, 379, 731, 278, 992, 167]
Continue searching
[808, 730, 216, 15, 261, 149, 65, 386, 670, 770]
Continue searching
[961, 632, 39, 888, 61, 18, 166, 167, 474, 108]
39 61
Finded
[Finished in 3.9s]
If you assume that the value M to which the pairs are suppose to sum is constant and that the entries in the array are positive, then you can do this in one pass (O(n) time) using M/2 pointers (O(1) space) as follows. The pointers are labeled P1,P2,...,Pk where k=floor(M/2). Then do something like this
for (int i=0; i<N; ++i) {
int j = array[i];
if (j < M/2) {
if (Pj == 0)
Pj = -(i+1); // found smaller unpaired
else if (Pj > 0)
print(Pj-1,i); // found a pair
Pj = 0;
} else
if (Pj == 0)
Pj = (i+1); // found larger unpaired
else if (Pj < 0)
print(Pj-1,i); // found a pair
Pj = 0;
}
}
You can handle repeated entries (e.g. two 6's) by storing the indices as digits in base N, for example. For M/2, you can add the conditional
if (j == M/2) {
if (Pj == 0)
Pj = i+1; // found unpaired middle
else
print(Pj-1,i); // found a pair
Pj = 0;
}
But now you have the problem of putting the pairs together.
Does the obvious solution not work (iterating over every consecutive pair) or are the two numbers in any order?
In that case, you could sort the list of numbers and use random sampling to partition the sorted list until you have a sublist that is small enough to be iterated over.
public static ArrayList<Integer> find(int[] A , int target){
HashSet<Integer> set = new HashSet<Integer>();
ArrayList<Integer> list = new ArrayList<Integer>();
int diffrence = 0;
for(Integer i : A){
set.add(i);
}
for(int i = 0; i <A.length; i++){
diffrence = target- A[i];
if(set.contains(diffrence)&&A[i]!=diffrence){
list.add(A[i]);
list.add(diffrence);
return list;
}
}
return null;
}
`package algorithmsDesignAnalysis;
public class USELESStemp {
public static void main(String[] args){
int A[] = {6, 8, 7, 5, 3, 11, 10};
int sum = 12;
int[] B = new int[A.length];
int Max =A.length;
for(int i=0; i<A.length; i++){
B[i] = sum - A[i];
if(B[i] > Max)
Max = B[i];
if(A[i] > Max)
Max = A[i];
System.out.print(" " + B[i] + "");
} // O(n) here;
System.out.println("\n Max = " + Max);
int[] Array = new int[Max+1];
for(int i=0; i<B.length; i++){
Array[B[i]] = B[i];
} // O(n) here;
for(int i=0; i<A.length; i++){
if (Array[A[i]] >= 0)
System.out.println("We got one: " + A[i] +" and " + (sum-A[i]));
} // O(n) here;
} // end main();
/******
Running time: 3*O(n)
*******/
}
Below code takes the array and the number N as the target sum.
First the array is sorted, then a new array containing the
remaining elements are taken and then scanned not by binary search
but simple scanning of the remainder and the array simultaneously.
public static int solution(int[] a, int N) {
quickSort(a, 0, a.length-1); // nlog(n)
int[] remainders = new int[a.length];
for (int i=0; i<a.length; i++) {
remainders[a.length-1-i] = N - a[i]; // n
}
int previous = 0;
for (int j=0; j<a.length; j++) { // ~~ n
int k = previous;
while(k < remainders.length && remainders[k] < a[j]) {
k++;
}
if(k < remainders.length && remainders[k] == a[j]) {
return 1;
}
previous = k;
}
return 0;
}
Shouldn't iterating from both ends just solve the problem?
Sort the array. And start comparing from both ends.
if((arr[start] + arr[end]) < sum) start++;
if((arr[start] + arr[end]) > sum) end--;
if((arr[start] + arr[end]) = sum) {print arr[start] "," arr[end] ; start++}
if(start > end) break;
Time Complexity O(nlogn)
if its a sorted array and we need only pair of numbers and not all the pairs we can do it like this:
public void sums(int a[] , int x){ // A = 1,2,3,9,11,20 x=11
int i=0 , j=a.length-1;
while(i < j){
if(a[i] + a[j] == x) system.out.println("the numbers : "a[x] + " " + a[y]);
else if(a[i] + a[j] < x) i++;
else j--;
}
}
1 2 3 9 11 20 || i=0 , j=5 sum=21 x=11
1 2 3 9 11 20 || i=0 , j=4 sum=13 x=11
1 2 3 9 11 20 || i=0 , j=4 sum=11 x=11
END
The following code returns true if two integers in an array match a compared integer.
function compareArraySums(array, compare){
var candidates = [];
function compareAdditions(element, index, array){
if(element <= y){
candidates.push(element);
}
}
array.forEach(compareAdditions);
for(var i = 0; i < candidates.length; i++){
for(var j = 0; j < candidates.length; j++){
if (i + j === y){
return true;
}
}
}
}
Python 2.7 Implementation:
import itertools
list = [1, 1, 2, 3, 4, 5,]
uniquelist = set(list)
targetsum = 5
for n in itertools.combinations(uniquelist, 2):
if n[0] + n[1] == targetsum:
print str(n[0]) + " + " + str(n[1])
Output:
1 + 4
2 + 3
https://github.com/clockzhong/findSumPairNumber
#! /usr/bin/env python
import sys
import os
import re
#get the number list
numberListStr=raw_input("Please input your number list (seperated by spaces)...\n")
numberList=[int(i) for i in numberListStr.split()]
print 'you have input the following number list:'
print numberList
#get the sum target value
sumTargetStr=raw_input("Please input your target number:\n")
sumTarget=int(sumTargetStr)
print 'your target is: '
print sumTarget
def generatePairsWith2IndexLists(list1, list2):
result=[]
for item1 in list1:
for item2 in list2:
#result.append([item1, item2])
result.append([item1+1, item2+1])
#print result
return result
def generatePairsWithOneIndexLists(list1):
result=[]
index = 0
while index< (len(list1)-1):
index2=index+1
while index2 < len(list1):
#result.append([list1[index],list1[index2]])
result.append([list1[index]+1,list1[index2]+1])
index2+=1
index+=1
return result
def getPairs(numList, target):
pairList=[]
candidateSlots=[] ##we have (target-1) slots
#init the candidateSlots list
index=0
while index < target+1:
candidateSlots.append(None)
index+=1
#generate the candidateSlots, contribute O(n) complexity
index=0
while index<len(numList):
if numList[index]<=target and numList[index]>=0:
#print 'index:',index
#print 'numList[index]:',numList[index]
#print 'len(candidateSlots):',len(candidateSlots)
if candidateSlots[numList[index]]==None:
candidateSlots[numList[index]]=[index]
else:
candidateSlots[numList[index]].append(index)
index+=1
#print candidateSlots
#generate the pairs list based on the candidateSlots[] we just created
#contribute O(target) complexity
index=0
while index<=(target/2):
if candidateSlots[index]!=None and candidateSlots[target-index]!=None:
if index!=(target-index):
newPairList=generatePairsWith2IndexLists(candidateSlots[index], candidateSlots[target-index])
else:
newPairList=generatePairsWithOneIndexLists(candidateSlots[index])
pairList+=newPairList
index+=1
return pairList
print getPairs(numberList, sumTarget)
I've successfully implemented one solution with Python under O(n+m) time and space cost.
The "m" means the target value which those two numbers' sum need equal to.
I believe this is the lowest cost could get. Erict2k used itertools.combinations, it'll also cost similar or higher time&space cost comparing my algorithm.
If numbers aren't very big, you can use fast fourier transform to multiply two polynomials and then in O(1) check if coefficient before x^(needed sum) sum is more than zero. O(n log n) total!
// Java implementation using Hashing
import java.io.*;
class PairSum
{
private static final int MAX = 100000; // Max size of Hashmap
static void printpairs(int arr[],int sum)
{
// Declares and initializes the whole array as false
boolean[] binmap = new boolean[MAX];
for (int i=0; i<arr.length; ++i)
{
int temp = sum-arr[i];
// checking for condition
if (temp>=0 && binmap[temp])
{
System.out.println("Pair with given sum " +
sum + " is (" + arr[i] +
", "+temp+")");
}
binmap[arr[i]] = true;
}
}
// Main to test the above function
public static void main (String[] args)
{
int A[] = {1, 4, 45, 6, 10, 8};
int n = 16;
printpairs(A, n);
}
}
public static void Main(string[] args)
{
int[] myArray = {1,2,3,4,5,6,1,4,2,2,7 };
int Sum = 9;
for (int j = 1; j < myArray.Length; j++)
{
if (myArray[j-1]+myArray[j]==Sum)
{
Console.WriteLine("{0}, {1}",myArray[j-1],myArray[j]);
}
}
Console.ReadLine();
}
This question already has answers here:
Maximum sum sublist?
(13 answers)
Closed 8 years ago.
In an interview one of my friends was asked to find the subarray of an array with maximum sum, this my solution to the problem , how can I improve the solution make it more optimal , should i rather consider doing in a recursive fashion ?
def get_max_sum_subset(x):
max_subset_sum = 0
max_subset_i = 0
max_subset_j = 0
for i in range(0,len(x)+1):
for j in range(i+1,len(x)+1):
current_sum = sum(x[i:j])
if current_sum > max_subset_sum:
max_subset_sum = current_sum
max_subset_i = i
max_subset_j = j
return max_subset_sum,max_subset_i,max_subset_j
Your solution is O(n^2). The optimal solution is linear. It works so that you scan the array from left to right, taking note of the best sum and the current sum:
def get_max_sum_subset(x):
bestSoFar = 0
bestNow = 0
bestStartIndexSoFar = -1
bestStopIndexSoFar = -1
bestStartIndexNow = -1
for i in xrange(len(x)):
value = bestNow + x[i]
if value > 0:
if bestNow == 0:
bestStartIndexNow = i
bestNow = value
else:
bestNow = 0
if bestNow > bestSoFar:
bestSoFar = bestNow
bestStopIndexSoFar = i
bestStartIndexSoFar = bestStartIndexNow
return bestSoFar, bestStartIndexSoFar, bestStopIndexSoFar
This problem was also discussed thourougly in Programming Pearls: Algorithm Design Techniques (highly recommended). There you can also find a recursive solution, which is not optimal (O(n log n)), but better than O(n^2).
This is a well-known problem that displays overlapping optimal substructure, which suggests a dynamic programming (DP) solution. Although DP solutions are usually quite tricky (I think so at least!), this one is a great example to get introduced to the whole concept.
The first thing to note is that the maximal subarray (which must be a contiguous portion of the given array A) ending at position j either consists of the maximimal subarray ending at position j-1 plus A[j], or is empty (this only occurs if A[j] < 0). In other words, we are asking whether the element A[j] is contributing positively to the current maximum sum ending at position j-1. If yes, include it in the maximal subarray so far; if not, don't. Thus, from solving smaller subproblems that overlap we can build up an optimal solution.
The sum of the maximal subarray ending at position j can then be given recursively by the following relation:
sum[0] = max(0, A[0])
sum[j] = max(0, sum[j-1] + A[j])
We can build up these answers in a bottom-up fashion by scanning A from left to right. We update sum[j] as we consider A[j]. We can keep track of the overall maximum value and the location of the maximal subarray through this process as well. Here is a quick solution I wrote up in Ruby:
def max_subarray(a)
sum = [0]
max, head, tail = sum[0], -1, -1
cur_head = 0
(0...a.size).each do |j|
# base case included below since sum[-1] = sum[0]
sum[j] = [0, sum[j-1] + a[j]].max
cur_head = j if sum[j-1] == 0
if sum[j] > max
max, head, tail = sum[j], cur_head, j
end
end
return max, head, tail
end
Take a look at my gist if you'd like to test this for yourself.
This is clearly a linear O(N) algorithm since only one pass through the list is required. Hope this helps!
let n - elements count, a(i) - your array f(i) - maximum sum of subarray that ends at position i (minimum length is 1). Then:
f(0) = a(i);
f(i) = max(f(i-1), 0) + a(i); //f(i-1) when we continue subarray, or 0 - when start at i position
max(0, f(1), f(2), ... , f(n-1)) - the answer
A much better solution approach can be derived by thinking about what conditions must hold for a maximum-sum sub-array: the first item on either end that is not included (if any) must be negative and the last item on either end that is included must be non-negative. You don't need to consider any other end points for the sub-array except where these changes occur in the original data.
There is a short video from MIT that helps you understand this dynamic programming problem.
http://people.csail.mit.edu/bdean/6.046/dp/
Click on the first link under the 'problems' section and you will see it.
Here is a simple O(N) algorithm from http://en.wikipedia.org/wiki/Maximum_subarray_problem
int maxsofar=0;
int maxendinghere=0;
for i=[0 n] {
maxendinghere=max(maxendinghere+x[i],0);
maxsofar=max(maxsofar,maxendinghere);
}
Unless I'm missing something important, if they are positive integers the subset would include the whole array, if they're integers, it would include only positive integers. Is there another constraint there?
Java solution:
Does not work for an array with all negatives.
public static int[] maxsubarray(int[] array) {
//empty array check
if (array.length == 0){
return new int[]{};
}
int max = 0;
int maxsofar = 0;
//indices
int maxsofarstart = 0;
int maxsofarend = 0;
int maxstartindex = 0;
for (int i = 0; i < array.length; i++) {
if (array[i] > 0) {
if (max == 0) {
maxstartindex = i;
}
max = max + array[i];
if (max > maxsofar) {
maxsofar = max;
maxsofarstart = maxstartindex;
maxsofarend = i;
}
} else {
max = 0;
}
}
return Arrays.copyOfRange(array, maxsofarstart, maxsofarend + 1);
}
here is one of most well-expained, tested, working solution - http://rerun.me/blog/2012/08/30/maximum-continuous-subarray-problem-kandanes-algorithm/
package me.rerun;
public class Kadane {
public static void main(String[] args) {
int[] intArr={3, -1, -1, -1, -1, -1, 2, 0, 0, 0 };
//int[] intArr = {-1, 3, -5, 4, 6, -1, 2, -7, 13, -3};
//int[] intArr={-6,-2,-3,-4,-1,-5,-5};
findMaxSubArray(intArr);
}
public static void findMaxSubArray(int[] inputArray){
int maxStartIndex=0;
int maxEndIndex=0;
int maxSum = Integer.MIN_VALUE;
int cumulativeSum= 0;
int maxStartIndexUntilNow=0;
for (int currentIndex = 0; currentIndex < inputArray.length; currentIndex++) {
int eachArrayItem = inputArray[currentIndex];
cumulativeSum+=eachArrayItem;
if(cumulativeSum>maxSum){
maxSum = cumulativeSum;
maxStartIndex=maxStartIndexUntilNow;
maxEndIndex = currentIndex;
}
else if (cumulativeSum<0){
maxStartIndexUntilNow=currentIndex+1;
cumulativeSum=0;
}
}
System.out.println("Max sum : "+maxSum);
System.out.println("Max start index : "+maxStartIndex);
System.out.println("Max end index : "+maxEndIndex);
}
}
This is the correct Java Code which will handle scenarios including all negative numbers.
public static long[] leftToISumMaximize(int N, long[] D) {
long[] result = new long[N];
result[0] = D[0];
long currMax = D[0];
for (int i = 1; i < N; i++) {
currMax = Math.max(D[i], currMax + D[i]);
result[i] = Math.max(result[i - 1], currMax);
}
return result;
}
Not sure but Accepted Solution didn't for work me for all the scenarios (May be I misunderstood it)
So I did small modification, instead of
if(value > 0)
I changed it yo
if(value > bestNow)
.....(I wrote it in Scala)
And it is working for the all scenarios
def findMaxSubArray(list: List[Int]): (Int, Int, Int) = {
var (bestNow,bestSoFar) = (0, 0)
var ( startIndexNow, startIndexSoFar, endIndex) = (-1, -1, -1)
for (i <- 0 until list.length) {
var value = bestNow + list(i)
if (value > bestNow) {
if (bestNow == 0)
startIndexNow = i
bestNow = value
} else
bestNow = 0
if (bestNow > bestSoFar) {
bestSoFar = bestNow
startIndexSoFar = startIndexNow
endIndex = i
}
}
return (bestSoFar, startIndexSoFar, endIndex)
}
def main(args: Array[String]) {
println(findMaxSubArray(List(3, -1, 5, 3, -6, -9, 6, 1)).toString)
println(findMaxSubArray(List(3, -1, 5, 3, -6, -9, 6, 3)).toString)
println(findMaxSubArray(List(20, -1, 5, 3, -6, -9, 6)).toString)
}
Output.....
(max =8, start=2, end=3)
(max=9, start=6, end=7)
(max=20, start=0, end= 0)
I have made a function for a little more general problem:
Find maximum sum subarray (meaning its bounds and sum, not only the sum)
If two subarrays have equal sums then pick the shorter one
If two equally long subarrays have equal sums then pick the one that appears first.
Function is based on Kadane's algorithm and it runs in O(n) time. Basically, this is it:
function MaxSumSubarray(a, n, start out, len out)
-- a - Array
-- n - Length of the array
-- start - On output starting position of largest subarray
-- len - On output length of largest subarray
-- Returns sum of the largest subarray
begin
start = 0
len = 1
int sum = a[0]
curStart = 0
curLen = 1
curSum = a[0]
for i = 2 to n
begin
if a[i] >= curSum + a[i] then
begin
curStart = i
curLen = 1
curSum = a[i]
end
else
begin
curLen = curLen + 1
curSum = curSum + a[i]
end
if (curSum > sum) OR
(curSum = sum AND curLen < len) OR
(curSum = sum AND curLen = len AND curStart < start) then
begin
start = curStart
len = curLen
sum = curSum
end
end
return sum
end
I've uploaded the whole solution in C#, with analysis and examples, in this article: Maximum Sum Subarray
Design an algorithm to find all pairs of integers within an array which sum to a specified value.
I have tried this problem using a hash table to store entries for the sum of array elements, but it is not an efficient solution.
What algorithm can I use to solve this efficiently?
I don't see why the hash table approach is inefficient, at least in algorithm analysis terms - in memory locality terms admittedly, it can be quite bad. Anyway, scan the array twice...
First scan - put all the array elements in the hash table - O(n) total. Individual inserts are only amortized O(1), but a neat thing about how amortized analysis works means the O(n) is absolute - not amortized.
Second scan - check for (sum - current) in the hash table - O(n) total.
This beats the O(n log n) sort-and-search methods, at least in theory.
Then, note that you can combine the two scans into one. You can spot a pair as soon as you encounter the second of that pair during the first scan. In pseudocode...
for i in array.range
hashset.insert (array [i])
diff = sum - array [i]
if hashset.includes (diff)
output diff, array [i]
If you need positions of the items, use a hashmap and store item positions in it. If you need to cope with duplicates, you might need to store counts in a hashmap. For positions and duplicates, you might need a hashmap of start pointers for linked lists of positions.
This makes assumptions about the hash table implementation, but fairly safe ones given the usual implementations in most current languages and libraries.
BTW - combining the scans shouldn't be seen as an optimisation. The iteration overhead should be insignificant. Memory locality issues could make a single pass slightly more efficient for very large arrays, but the real memory locality issues will be in the hashtable lookups anyway.
IMO the only real reason to combine the scans is because you only want each pair reported once - handling that in a two-scan approach would be a bit more hassle.
If the array is sorted:
Let i = 0, j = end of array, sum = the value you are looking for,
then do:
If i+j = sum, then output (i,j).
If i+j < sum, then move i to the right one position.
If i+j > sum, then move j to the left one position.
Time complexity: O(n). Space complexity: O(1).
If the array is not sorted, there are a few ways to approach this problem:
Sort the array and then use the above approach.
HashMap:
Store all elements in a HashMap.
a+b=sum, so b=sum-a. For each element a of the array, look up b from the HashMap.
HashMap lookup takes amortized O(1).
Time complexity: O(n). Space complexity: O(n).
BitMap:
Iterate through the input to create a bitmap where each bit corresponds to an element value. Say the input is {2,5,8}, then we toggle the bitmap array's indices 2, 5 and 8 from binary 0 to 1. This takes O(1) per element, thus O(n) in total.
Go through the input again. We know b=sum-a, so for every element a in the input, look up its b, which can be done in O(1) since it's a bitmap index. This also takes O(n) in total.
Time complexity: O(n) + O(n) = O(n). Space complexity: bitmap space = O(n).
You don't even need to store all the elements in hashmap, and then scan. You can scan during the first iteration itself.
void foo(int[] A, int sum) {
HashSet<Integer> set = new HashSet<Integer>();
for (int e : A) {
if (set.contains(sum-e)) {
System.out.println(e + "," + (sum-e));
// deal with the duplicated case
set.remove(sum-e);
} else {
set.add(e);
}
}
}
How about sorting the array, then marching in from both ends?
Assume required sum = R
sort the array
for each number in the array A(n), do a binary search to find the number A(x) such that A(n) + A(x) = R
If you don't mind spending O(M) in space, where M is the sum you are seeking, you can do this in O(N + M) time. Set sums[i] = 1 when i <= M on a single pass over N, then check (sums[i] && sums[M-i]) on a single pass over M/2.
#include <iostream>
using namespace std;
#define MAX 15
int main()
{
int array[MAX] = {-12,-6,-4,-2,0,1,2,4,6,7,8,12,13,20,24};
const int find_sum = 0;
int max_index = MAX - 1;
int min_index = 0;
while(min_index < max_index)
{
if(array[min_index] + array[max_index-min_index] == find_sum)
{
cout << array[min_index] << " & " << array[max_index-min_index] << " Matched" << endl;
return 0;
}
if(array[min_index]+array[max_index-min_index] < find_sum)
{
min_index++;
//max_index++;
}
if(array[min_index]+array[max_index-min_index] > find_sum)
{
max_index--;
}
}
cout << "NO MATCH" << endl;
return 0;
}
//-12 & 12 matched
Implemented in Python 2.7:
import itertools
list = [1, 1, 2, 3, 4, 5,]
uniquelist = set(list)
targetsum = 5
for n in itertools.combinations(uniquelist, 2):
if n[0] + n[1] == targetsum:
print str(n[0]) + " + " + str(n[1])
Output:
1 + 4
2 + 3
We can use C++ STL map to solve this
void subsetSum(int arr[], int n, int sum)
{
map<int, int>Map;
for(int i=0; i<n; i++)
{
Map[arr[i]]++;
if(Map.count(sum-arr[i]))
{
cout<<arr[i]<<" "<<sum-arr[i]<<"\n";
}
}
}
Here is a solution witch takes into account duplicate entries. It is written in javascript and assumes array is sorted. The solution runs in O(n) time and does not use any extra memory aside from variable.
var count_pairs = function(_arr,x) {
if(!x) x = 0;
var pairs = 0;
var i = 0;
var k = _arr.length-1;
if((k+1)<2) return pairs;
var halfX = x/2;
while(i<k) {
var curK = _arr[k];
var curI = _arr[i];
var pairsThisLoop = 0;
if(curK+curI==x) {
// if midpoint and equal find combinations
if(curK==curI) {
var comb = 1;
while(--k>=i) pairs+=(comb++);
break;
}
// count pair and k duplicates
pairsThisLoop++;
while(_arr[--k]==curK) pairsThisLoop++;
// add k side pairs to running total for every i side pair found
pairs+=pairsThisLoop;
while(_arr[++i]==curI) pairs+=pairsThisLoop;
} else {
// if we are at a mid point
if(curK==curI) break;
var distK = Math.abs(halfX-curK);
var distI = Math.abs(halfX-curI);
if(distI > distK) while(_arr[++i]==curI);
else while(_arr[--k]==curK);
}
}
return pairs;
}
So here it is for everyone.
Start at both side of the array and slowly work your way inwards making sure to count duplicates if they exist.
It only counts pairs but can be reworked to
find the pairs
find pairs < x
find pairs > x
Enjoy and don't forget to bump it if its the best answer!!
A solution that takes into account duplicates and uses every number only one time:
void printPairs(int[] numbers, int S) {
// toMap(numbers) converts the numbers array to a map, where
// Key is a number from the original array
// Value is a count of occurrences of this number in the array
Map<Integer, Integer> numbersMap = toMap(numbers);
for (Entry<Integer, Integer> entry : numbersMap.entrySet()) {
if (entry.getValue().equals(0)) {
continue;
}
int number = entry.getKey();
int complement = S - number;
if (numbersMap.containsKey(complement) && numbersMap.get(complement) > 0) {
for (int j = 0; j < min(numbersMap.get(number),
numbersMap.get(complement)); j++) {
if (number.equals(complement) && numbersMap.get(number) < 2) {
break;
}
System.out.println(number, complement);
numbersMap.put(number, numbersMap.get(number) - 1);
numbersMap.put(complement, numbersMap.get(complement) - 1);
}
}
}
}
Hashtable solution, in Ruby (quite straightforward to understand):
value = 100
pairs = [1,99,5,95]
hash_of_pairs = {}
pairs.map! do |pair|
# Adds to hashtable the pair
hash_of_pairs[pair] = pair
# Finds the value the pair needs
new_pair = hash_of_pairs[value - pair]
# Returns the pair whenever the pair exists, or nil
[new_pair, pair] if !new_pair.nil?
end.compact! # Cleans up the array, removing all nil values
print pairs # [[1,99], [5,95]]
#Test
public void hasPairWithSum() {
assertFalse(hasPairWithSum_Ordered_Logarithmic(new int[] { 1, 2, 3, 9 }, 8));
assertTrue(hasPairWithSum_Ordered_Logarithmic(new int[] { 1, 2, 4, 4 }, 8));
assertFalse(hasPairWithSum_Ordered_Linear(new int[] { 1, 2, 3, 9 }, 8));
assertTrue(hasPairWithSum_Ordered_Linear(new int[] { 1, 2, 4, 4 }, 8));
assertFalse(hasPairWithSum_Unsorted_Linear(new int[] { 9, 1, 3, 2 }, 8));
assertTrue(hasPairWithSum_Unsorted_Linear(new int[] { 4, 2, 1, 4 }, 8));
assertFalse(hasPairWithSum_Unsorted_Quadratic(new int[] { 9, 1, 3, 2 }, 8));
assertTrue(hasPairWithSum_Unsorted_Quadratic(new int[] { 4, 2, 1, 4 }, 8));
}
private boolean hasPairWithSum_Ordered_Logarithmic(int[] data, int sum) {
for (int i = 0; i < data.length; i++) {
int current = data[i];
int complement = sum - current;
int foundIndex = Arrays.binarySearch(data, complement);
if (foundIndex >= 0 && foundIndex != i) {
return true;
}
}
return false;
}
private boolean hasPairWithSum_Ordered_Linear(int[] data, int sum) {
int low = 0;
int high = data.length - 1;
while (low < high) {
int total = data[low] + data[high];
if (total == sum) {
return true;
} else if (total < sum) {
low++;
} else {
high--;
}
}
return false;
}
private boolean hasPairWithSum_Unsorted_Linear(int[] data, int sum) {
Set<Integer> complements = Sets.newHashSet();
for (int current : data) {
if (complements.contains(current)) {
return true;
}
complements.add(sum - current);
}
return false;
}
private boolean hasPairWithSum_Unsorted_Quadratic(int[] data, int sum) {
for (int i = 0; i < data.length; i++) {
int current = data[i];
int complement = sum - current;
for (int j = 0; j < data.length; j++) {
if (data[j] == complement && i != j) {
return true;
}
}
}
return false;
}
Creating a hash table and then looking for value in it.
function sum_exist(num : number, arr : any[]) {
var number_seen = {};
for(let item of arr){
if(num - item in number_seen){
return true
}
number_seen[item] = 0;
}
return false;
}
Test case (using Jest)
test('Given a list of numbers, return whether any two sums equal to the set number.', () => {
expect(sum_exist(17 , [10, 15, 3, 7])).toEqual(true);
});
test('Given a list of numbers, return whether any two sums equal to the set number.', () => {
expect(sum_exist(16 , [10, 15, 3, 7])).toEqual(false);
});
#python 3.x
def sum_pairs(list_data, number):
list_data.sort()
left = 0
right = len(list_data)-1
pairs = []
while left < right:
if list_data[left]+list_data[right] == number:
find_pairs = [list_data[left], list_data[right]]
pairs.append(find_pairs)
right = right-1
elif list_data[left]+list_data[right] < number:
left = left+1
else:
right = right-1
return pairs