I do not understand how I must go about this question the Scheme:
Use random to define a procedure fluctuate that takes a number x and returns one of the values x-2, x-1, x, x+1, or x+2, selected at random and with equal probability.
I tried using multiple randoms and adding x twice but I cannot find the answer can someone help?
Try this:
(define (fluctuate x)
(+ x (- (random 5) 2)))
This is how it works:
(random 5) generates random integers in the range [0, 4]
Subtracting 2 from the previous range produces random integers in the range [-2, 2]
Adding x to the previous result produces the values x-2, x-1, x+0, x+1, x+2 as requested
Notice that the random procedure selects a number at random and with equal probability by means of a pseudo-random number generator, the specific algorithm used depends on the implementation of your Scheme interpreter.
Related
I am new to Prolog programming so still learning. I'm tryingto create a program that accepts a value X and returns a list of all prime numbers between 6 and X. I'll also be later adding an error output if X is entered as 6 or lower.
I have come up with the below code so far to have the value of x entered, y as the first prime number and the counter as 1. Even this is not working, as I try to increment the values of Y. If i can get this working I plan to then add conditions to only show Y if it is a prime, by checking that it divides by itself and 1.
If anyone has any advice it would be greatly appreciated.
prime (X, Y, Counter) :-
X >= Y,
writeln(Y),
Next is Y + Counter,
prime (X, Next, Counter).
prime(X, Y, _) :-
Y > X.
Remove the spaces in prime ( here and here:
Then it works to call ?- prime(10, 3, 1). and have it count.
So, i'm trying to write the following function in scheme, and to be able to run it on DrRacket. The problem is as follows,
make5 - takes two integers, and returns a 5-digit integer constructed of the rightmost 3 digits of the first input, and the leftmost 2 digits of the second input. For example, (make5 561432 254) would return 43225.
Negative signs on either input number should be ignored - that is, (make5 561432 -254) would also return 43225.
If the first number has less than three digits or the last three digits start with zeros, and/or the second number has less two digits, your
function should return -2. Note: you may want to define some auxiliary functions.
So far this is the function I've been able to write.
(define (make5 x y)
(cond ((< (length x) 3) -2)
((< (length y) 2) -2)
(((modulo (abs(x)) 1000) 0) -2)
(((modulo (abs(y)) 1000) 0) -2)
(else (append (list-tail x 3) (cons (first(y)second(y)))))))
I'm getting the error...
application: not a procedure;
expected a procedure that can be applied to arguments
Any advice would be appreciated. I'm new to scheme and still trying to grasp everything.
Don't wrap your arguments in parentheses - (abs(x)) means "call the procedure x and pass the result to abs.
(cons (first(y)second(y)) means "cons these four things: the value of first; the result of calling the procedure y; the value of second; and the result of calling the procedure y".
(You've called procedures correctly in some places. Stick to the same pattern.)
You're also missing a comparison in a couple of conditions; (= (modulo (abs x) 1000) 0).
The inputs are not lists, they're integers, so you can't apply length, first, or any such things to them.
The result should be an integer, not a list, so you can't construct it using append and cons, you should only use arithmetic.
These facts about integers should get you started:
A number has fewer than five digits if it is smaller than 10000.
The last four digits of a non-negative number n is (modulo n 10000).
If x is 12 and y is 34, x * 100 + y is 1234.
To get the three leftmost digit in an integer, you can divide by 10 repeatedly until you have a number less than 1000.
Also note that the second number only has one condition on its digits while the first has two, and that the note about defining auxiliary functions was not left there as a challenge for you to do without them.
For instance, if you had the auxiliary functions
(left-digits n x), which produces the leftmost n digits of x, and
(right-digits n x), which produces the rightmost n digits of x
you could write (it's also probably not a coincidence that the description uses the words "if" and "or"):
(define (make5 x y)
(if (or ( ... ))
-2
(+ (* 100 (right-digits 3 x)) (left-digits 2 y))))
Since you want to ignore the sign of the numbers, it's convenient to take care of abs once at the start, using let:
(define (make5 signed-x signed-y)
(let ((x (abs signed-x))
(y (abs signed-y)))
(if (or ( ... ))
-2
(+ (* 100 (right-digits 3 x)) (left-digits 2 y)))))
"All" that's left now is filling in the conditions and writing the two digit-extracting functions.
Learned to code C, long ago; wanted to try something new and different with Scheme. I am trying to make a procedure that accepts two arguments and returns the greater of the two, e.g.
(define (larger x y)
(if (> x y)
x
(y)))
(larger 1 2)
or,
(define larger
(lambda (x y)
(if (> x y)
x (y))))
(larger 1 2)
I believe both of these are equivalent i.e. if x > y, return x; else, return y.
When I try either of these, I get errors e.g. 2 is not a function or error: cannot call: 2
I've spent a few hours reading over SICP and TSPL, but nothing is jumping out (perhaps I need to use a "list" and reference the two elements via car and cdr?)
Any help appreciated. If I am mis-posting, missed a previous answer to the same question, or am otherwise inappropriate, my apologies.
The reason is that, differently from C and many other languages, in Scheme and all Lisp languages parentheses are an important part of the syntax.
For instance they are used for function call: (f a b c) means apply (call) function f to arguments a, b, and c, while (f) means apply (call) function f (without arguments).
So in your code (y) means apply the number 2 (the current value of y), but 2 is not a function, but a number (as in the error message).
Simply change the code to:
(define (larger x y)
(if (> x y)
x
y))
(larger 1 2)
I need to check if first given term (for example s(s(nul)) (or 2)) is dividable by the second term, (for example s(nul) (or 1)).
What I want to do is multiply given term by two and then check if that term is smaller or equal to the other term (if it is equal - problem is solved).
So far I got this:
checkingIfDividable(X,X).
checkingIfDividable(X,Y) :-
X > Y,
multiplication(X,Y).
/* multiplication by two should occur here.
I can't figure it out. This solution does not work!*/
multiplication(Y):-
YY is Y * 2,
checkingIfDividable(X,YY).
I can't seem to figure out how to multiply a term by 2. Any ideas?
If a = n*b, n > 0, it is also a = n*b = (1+m)*b = b + m*b, m >= 0.
So if a is dividable by b, and a = b+x, then x is also dividable by b.
In Peano encoding, n = 1+m is written n = s(m).
Take it from here.
I am attempting to solve the following problem:
Lately, Finn has been very curious about buckets of ice water and their properties. He has been reviewing the density of water and ice. It turns out the density of water in both states depends on many factors, including the temperature, atmospheric pressure, and the purity of the water.
As an approximation, Finn has written the following function to determine the density of the water (or ice) in kg/m3 as a function of temperature t in Celsius (−273.15 ≤ t ≤ 100):
water-density(t) = ( 999.97 if t ≥ 0 ;
916.7 if t < 0 )
Write a function water-density that consumes an integer temperature t and produces either 999.97 or 916.7, depending on the value of t. However, you may only use the features of Racket given up to the end of Module 1.
You may use define and mathematical functions, but not cond, if, lists, recursion, Booleans, or other things we’ll get to later in the course. Specifically, you may use any of the functions in section 1.5 of this page: http://docs.racket-lang.org/htdp-langs/beginner.html except for the following functions, which are not allowed: sgn, floor, ceiling, round.
This is what I have so far:
(define (water-density t)
(+ (* (/ (min t 0) (min t -0.000001)) -83.27) 999.97))
This code does definitely work as long as the given temperature is not between -0.000001 and 0, but it will not work for temperatures between that range. What can I do to avoid this problem? Dividing by zero is the biggest problem I have here.
This is a somewhat.... interesting way of going about teaching programming, and I have a feeling this class is going to cause more StackOverflow questions to appear in the future, but you can do it by combining max and min to make a function that returns either 1 or 0 depending on whether its input is negative:
(define (negative->boolint n))
(- 0
(min 0
(max (inexact->exact (floor n))
-1))))
This function takes a number, rounds it down with (inexact->exact (floor n)), then the combination of max and min "bounds" the number to be between -1 and 0, then subtracts that result from 1. Since after conversion to an integer the number can never be between -1 and 0, the bounding just results in 0 for positives and zero and -1 negatives. The subtraction part means the function returns (- 0 0) for all positive numbers and zero and returns (- 1 -1) for all negative numbers. By combining the result of this function with some arithmetic, you can get the behavior you want:
(define (water-density t)
(- 999.97
(* 83.27
(negative->boolint t))))
If t is positive or zero, then the result of (* 83.27 (negative->boolint t)) will just be zero. Otherwise, the difference of the two densities will be subtracted, giving you the correct result.
This works because it's just taking advantage of max and min's built-in conditional functionality to do conditional arithmetic. You could probably achieve the same with some level of hackery for round or abs or other statements that have conditional logic.
EDIT
My apologies, I missed the part of your question about not being able to use the rounding functions. Want you want is still doable however, by using two base functions for simulating conditionals: abs and expt. Getting conditionals from abs is fairly straightforward, you can divide a number by its absolute value to get it's sign. The reason you need expt is because it lets you get around the division by zero issue with abs, because (expt 0 x) is 0 for all positive numbers, 1 for zero, and undefined for negative numbers. We can use this to make a zero->boolint function:
(define (zero->boolint x)
(expt 0 (abs x)))
With this, we can add its result to the numerator and denominator to get around division by zero in (/ x (abs x)). Since this causes the division by zero case to return 1, we now have a nonnegative->boolint function:
(define (nonnegative->boolint x)
(/ (+ 1
(/ (+ (zero->boolint x) x)
(+ (zero->boolint x) (abs x))))
2))
The inner division takes care of dividing a number by its absolute value to return -1 for negatives and 1 for positives and zero. The outer addition by 1 and then division by 2 turns this into 0 for negatives and 1 for positives and zero. In order to get a negative->boolint function, we just need some sort of not operation - which in the case of 1 for true and 0 for false is just subtracting the value from 1. So we can define negative->boolint based on only the conditional logic of abs and expt as:
(define (negative->boolint x)
(- 1 (nonnegative->boolint x))
This works as expected with the definition of water-density. Also, please don't ever do this in real world code. No matter how "clever" it may seem at the time.