Confusion regarding genetic algorithms - algorithm

My books(Artificial Intelligence A modern approach) says that Genetic algorithms begin with a set of k randomly generated states, called population. Each state is represented as a string over a finite alphabet- most commonly, a string of 0s and 1s. For eg, an 8-queens state must specify the positions of 8 queens, each in a column of 8 squares, and so requires 8 * log(2)8 = 24 bits. Alternatively the state could be represented as 8 digits, each in range from 1 to 8.
[ http://en.wikipedia.org/wiki/Eight_queens_puzzle ]
I don't understand the expression 8 * log(2)8 = 24 bits , why log2 ^ 8? And what are these 24 bits supposed to be for?

If we take first example on the wikipedia page, the solution can be encoded as [2,4,6,8,3,1,7,5] : the first digit gives the row number for the queen in column A, the second for the queen in column B and so on. Now instead of starting the row numbering at 1, we will start at 0. The solution is then encoded with [1,3,5,7,0,6,4]. Any position can be encoded such way.
We have only digits between 0 and 7, if we write them in binary 3 bit (=log2(8)) are enough :
000 -> 0
001 -> 1
...
110 -> 6
111 -> 7
A position can be encoded using 8 times 3 digits, e.g. from [1,3,5,7,2,0,6,4] we get [001,011,101,111,010,000,110,100] or more briefly 001011101111010000110100 : 24 bits.
In the other way, the bitstring 000010001011100101111110 decodes as 000.010.001.011.100.101.111.110 then [0,2,1,3,4,5,7,6] and gives [1,3,2,4,5,8,7] : queen in column A is on row 1, queen in column B is on row 3, etc.

The number of bits needed to store the possible squares (8 possibilities 0-7) is log(2)8. Note that 111 in binary is 7 in decimal. You have to specify the square for 8 columns, so you need 3 bits 8 times

Related

Converting to and from a number system that doesn't have a zero digit

Consider Microsoft Excel's column-numbering system. Columns are "numbered" A, B, C, ... , Y, Z, AA, AB, AC, ... where A is 1.
The column system is similar to the base-10 numbering system that we're familiar with in that when any digit has its maximum value and is incremented, its value is set to the lowest possible digit value and the digit to its left is incremented, or a new digit is added at the minimum value. The difference is that there isn't a digit that represents zero in the letter numbering system. So if the "digit alphabet" contained ABC or 123, we could count like this:
(base 3 with zeros added for comparison)
base 3 no 0 base 3 with 0 base 10 with 0
----------- ------------- --------------
- - 0 0
A 1 1 1
B 2 2 2
C 3 10 3
AA 11 11 4
AB 12 12 5
AC 13 20 6
BA 21 21 7
BB 22 22 8
BC 23 100 9
CA 31 101 10
CB 32 102 11
CC 33 110 12
AAA 111 111 13
Converting from the zeroless system to our base 10 system is fairly simple; it's still a matter of multiplying the power of that space by the value in that space and adding it to the total. So in the case of AAA with the alphabet ABC, it's equivalent to (1*3^2) + (1*3^1) + (1*3^0) = 9 + 3 + 1 = 13.
I'm having trouble converting inversely, though. With a zero-based system, you can use a greedy algorithm moving from largest to smallest digit and grabbing whatever fits. This will not work for a zeroless system, however. For example, converting the base-10 number 10 to the base-3 zeroless system: Though 9 (the third digit slot: 3^2) would fit into 10, this would leave no possible configuration of the final two digits since their minimum values are 1*3^1 = 3 and 1*3^0 = 1 respectively.
Realistically, my digit alphabet will contain A-Z, so I'm looking for a quick, generalized conversion method that can do this without trial and error or counting up from zero.
Edit
The accepted answer by n.m. is primarily a string-manipulation-based solution.
For a purely mathematical solution see kennytm's links:
What is the algorithm to convert an Excel Column Letter into its Number?
How to convert a column number (eg. 127) into an excel column (eg. AA)
Convert to base-3-with-zeroes first (digits 0AB), and from there, convert to base-3-without-zeroes (ABC), using these string substitutions:
A0 => 0C
B0 => AC
C0 => BC
Each substitution either removes a zero, or pushes one to the left. In the end, discard leading zeroes.
It is also possible, as an optimisation, to process longer strings of zeros at once:
A000...000 = 0BBB...BBC
B000...000 = ABBB...BBC
C000...000 = BBBB...BBC
Generalizable to any base.

AND of all natural numbers lying between A and B both inclusive

We are required to compute the bit wise AND amongst all natural numbers lying between A and B, both inclusive.I came across this problem on a website and here is the approach they used but i couldn't understand the method.Can anyone explain this more clearly with an example ?
In order to solve this problem, we just need to focus on the occurrences of each power 2, which turn out to be cyclic. Now for each 2^i(the length of the cycle will be 2^(i+1) having 2^i zeros followed by same number of ones) we just need to compute if 1 remains constant in the given interval, which is done by simple arithmetic. If so, that power of 2 will be present in the answer, otherwise it won't.
Let's count (unsigned) with 3 bits to visualize some numbers first:
000 = 0
001 = 1
010 = 2
011 = 3
100 = 4
101 = 5
110 = 6
111 = 7
If you look at the columns, you can see that the lowest bit is alternating with a cycle of 1, the next with a cycle of 2, then 4, and the nth lowest bit is alternating with a cycle of 2^(n-1).
As soon as a bit was 0 once it is always 0 (because 0 and whatever is 0).
You could also say the nth bit is only 1 if the nth bit of A and B is 1 and d < 2^(n-1). In other words a bit will only be 1 if it is 1 at the beginning and the end and didn't had time to change to 0 in between because its cycle is too large.

Minimum bits required on a chess board

This is an interview question:
What is the minimum representation in bits of two positions on an 8x8 chessboard?
I found the answer http://www.careercup.com/question?id=4981467352399872
But I am unable to understand what the author is trying to convey when she says:
You can represent 2^n values with n bits. However, you can represent
2^n + 2^(n-1) + 2^(n-2) + ... 1 = 2^(n+1) - 1 values with atmost n
bits. So you can represent 2^11 - 1 = 2047 different values using just
10 bits.
I am not seeking an explanation of what the author is suggesting in his answer, but I am more interested in solving the problem itself. As far as I can think, since there are 64C2 = 2016 ways to represent two pieces on an 8x8 board, the minimum number of bits required should be 11. But someone suggested that one can use just 10 bits to represent the board. How?
The author is saying that you can represent the positions using 5, 6, 7, 8, 9 and 10 bit values.
In binary 2016 is 11111100000 (1024 + 512+ 256 + 128 + 64 + 32)
5 bits (00000 - 11111) represent 32 positions
6 bits (000000 - 111111) represent 64 positions
7 bits (0000000 - 1111111) represent 128 positions
8 bits (00000000 - 11111111) represent 256 positions
9 bits (000000000 - 111111111) represent 512 positions
10 bits (0000000000 - 1111111111) represent 1024 positions
A total of 2016 positions.
This could be implemented in languages with bit collections, e.g. C++ bitset, which has a size function to get the length.
Here's an example for a 2x2 board which will hopefully explain this better.
For a 2x2 board, there are 4C2 (6) positions
.x x. .. xx .x x.
.x x. xx .. x. .x
so you could use 3 bits 000, 001, 010, 011, 100, 101 and 110
But 6 is binary 110 (4+2) so you could use 1 bit (0-1) for 2 of the positions and 2 bits (00, 01, 10, 11) for the remaining 4. So the positions are:
0, 1, 00, 01, 10, 11.
To answer the question and receive an integer solution you must evaluation the following equation:
bits = ceil(log2(combination(64,2)));
bits = ceil(log2(64!/(62!*2!)));
bits = ceil(log2(64*63/2));
bits = ceil(log2(32*63));
bits = ceil(log2(32)+log2(63));
bits = ceil(5+log2(63));
bits = ceil(5+5.97728);
bits = 11;
Deriving the equation requires a working knowledge of combinatorics.
combination(64,2) represents the number of ways to choose 2 of 64 possible unique spaces.

Algorithm in hardware to find out if number is divisible by five

I am trying to think of an algorithm to implement this for a given n bit binary number. I tried out many examples, but am unable to find out any pattern. So how shall I proceed?
How about this:
Convert the number to base 4 (this is trivial by simply combining pairs of bits). 5 in base 4 is 11. The values base 4 that are divisible by 11 are somewhat familiar: 11, 22, 33, 110, 121, 132, 203, ...
The rule for divisibility by 11 is that you add all the odd digits and all the even digits and subtract one from the other. If the result is divisible by 11 (which remember is 5), then it's divisible by 11 (which remember is 5).
For example:
123456d = 1 1110 0010 0100 0000b = 132021000_4
The even digits are 1 2 2 0 0 : sum = 5d
The odd digits are 3 0 1 0 : sum = 4d
Difference is 1, which is not divisble by 5
Or another one:
123455d = 1 1110 0010 0011 1111b = 132020333_4
The even digits are 1 2 2 3 3 : sum = 11d
The odd digits are 3 0 0 3 : sum = 6d
Difference is 5, which is a 5 or a 0
This should have a fairly efficient HW implementation because it's mostly bit-slicing, followed by N/2 adders, where N is the number of bits in the number you're interested in.
Note that after adding the digits and subtracting, the maximum value is 3/4 * N, so if you have 16-bit numbers max, you can get at most 12 as a result, so you only need to check for 0, ±5 and ±10 explicitly. If you're using 32-bit numbers then you can get at most 24 as a result, so you need to also check if the result is ±15 or ±20.
Make a Deterministic Finite Automaton (DFA) to implement the divisibility check and implement the DFA in hardware.
Creating a DFA for divisibility by 5 is easy. You just need to notice the remainders and check what 2r (mod 5) and 2r + 1(mod 5) map to. There are many websites that discuss this. For example this one.
There are well-known examples to convert DFA to a hardware representation as well.
Well , I just figured out ...
number mod 5 = a0 * 2^0 mod 5 + a1 * 2^1 mod 5 +a2* 2^2 mod 5 + a3 * 2^3 mod 5 + a4 * 2^4 mod 5 + ....
= a0 (1) + a1(2) +a2 (-1) +a3 (-2) +a4 (1) repeats ...
Hence difference of odd digits + 2 times difference of even digits = divisible by 5
for example ... consider 110010
odd digits differnce = 0-0+1 = 1 or 01
even digits difference = 1-0+1 = 2 or 10
difference of odd digits + 2 times difference of even digits = 01 + 2*(10)=01 + 100 = 101 is divisible by 5 .
The contribution of each bit toward being divisible by five is a four bit pattern 3421.
You could shift through any binary number 4 bits at a time adding the corresponding value for positive bits.
Example:
100011
take 0011
apply the pattern 0021
sum 3
next four bits 0010
apply the pattern 0020
sum = 5
We can design a Deterministic Finite Automaton (DFA) for the same. The DFA, then can be implemented in Hardware. This is similar to this answer.
We will simulate a Deterministic Finite Automaton (DFA) that accepts Binary Representation of Integers which are divisible by 5
Now, by accept, we mean that when we are done with scanning string, we should be in one of the multiple possible Final States.
Approach to Design DFA : Essentially, we need to divide the Binary Representation of Integer by 5, and track the remainder. If after consuming/scanning [From Left to Right] the entire string, remainder is Zero, then we should end up in Final State, and if remainder isn't zero we should be in Non-Final States.
Now, DFA is defined by Quintuple/5-Tuple (Q,q₀,F,Σ,δ). We will obtain these five components step-by-step.
Q : Finite Set of States
We need to track remainder. On dividing any integer by 5, we can get remainder as 0,1, 2, 3 or 4. Hence, we will have Five States Z, O, T, Th and F for each possible remainder.
Q={Z, O, T, Th, F}
If after scanning certain part of Binary String, we are in state Z, this means that integer defined from Left to this part will give remainder Zero when divided by 5. Similarly, O for remainder One, and so on.
Now, we can write these three states by Euclidean Division Algorithm as
Z : 5m
O : 5m+1
T : 5m+2
Th : 5m+3
F : 5m+4
where m is Integer.
q₀ : an initial/start state from set Q
Now, start state can be thought in terms of empty string (ɛ). An ɛ directly gets into q₀.
What remainder does ɛ gives when divided by 5?
We can append as many 0s in left hand side of a Binary Number. In the similar fashion, we can append ɛ in left hand side of a Binary String. Thus, ɛ in left can be thought of as 0. And 0 when divided by 5 gives remainder 0. Hence, ɛ should end in State Z. But ɛ ends up in q₀.
Thus, q₀=Z
F : a set of accept states
Now we want all strings which are divisible by 5, or which gives remainder 0 when divided by 5, or which after complete scanning should end up in state Z, and gets accepted.
Hence,
F={Z}
Σ : Alphabet (a finite set of input symbols)
Since we are scanning/reading a Binary String. Hence,
Σ={0,1}
δ : Transition Function (δ : Q × Σ → Q)
Now this δ tells us that if we are in state x (in Q) and next input to be scanned is y (in Σ), then at which state z (in Q) should we go.
If the string upto this point gives remainder 3/Th when divided by 5, and if we append 1 to string, then what remainder will resultant string give.
Now, this can be analyzed by observing how magnitude of a binary string changes on appending 0 and 1.
a.
In Decimal (Base-10), if we add/append 0, then magnitude gets multiplied by 10 . 53, on appending 0 it becomes 530
Also, if we append 8 to decimal, then Magnitude gets multiplied by 10, and then we add 8 to multiplied magnitude.
b.
In Binary (Base-2), if we add/append 0, then magnitude gets multiplied by 2 (The Positional Weight of each Bit get multiplied by 2)
Example : (1010)2 [which is (10)10], on appending 0 it becomes (10100)2 [which is (20)10]
Similarly, In Binary, if we append 1, then Magnitude gets multiplied by 2, and then we add 1.
Example : (10)2 [which is (2)10], on appending 1 it becomes (101)2 [which is (5)10]
Thus, we can say that for Binary String x,
x0=2|x|
x1=2|x|+1
We will use these relation to analyze Five States
Any string in Z can be written as 5m
- On 0, it becomes 2(5m), which is 5(2m), nothing but state Z.
- On 1, it becomes 2(5m)+1, which is 5(2m)+1, that is O. [This can be read as if a Binary String is presently divisible by 5, and we append 1, then resultant string will give remainder as 1]
Any string in O can be written as 5m+1
- On 0, it becomes 2(5m+1) = 10m+2, which is 5(2m)+2, state T.
- On 1, it becomes 2(5m+1)+1 = 10m+3, which is 5(2m)+3, that is state Th.
Any string in T can be written as 5m+2
- On 0, it becomes 2(5m+2) = 10m+4, which is 5(2m)+4, state F.
- On 1, it becomes 2(5m+2)+1 = 10m+5, which is 5(2m+1), state Z. [If m is integer, so is (2m+1)]
Any string in Th can be written as 5m+3
- On 0, it becomes 2(5m+3) = 10m+6, which is 5(2m+1)+1, state V.
- On 1, it becomes 2(5m+3)+1 = 10m+7, which is 5(2m+1)+2, that is state T.
Any string in F can be written as 5m+4
- On 0, it becomes 2(5m+4) = 10m+8, which is 5(2m+1)+3, state Th.
- On 1, it becomes 2(5m+4)+1 = 10m+9, which is 5(2m+1)+4, that is state F.
Hence, the final DFA combining Everything (creating using Tool)
We can even write code [in High Level Language] for the same. But it would go beyond main aim of this question. If readers wish to see the same, they can check here.
As any assignment this would have been an answer for is bound to be way overdue a year later:
in the binary representation of a natural divisible by five the parities of bits 4n and 4n+2 equal, as well as those for bits 4n+1 and 4n+3.
(This is entirely equivalent to the answers of JoshG79, notsogeek, or james: 4≡-1(mod 5), 3≡-2(mod 5) (with reduced hand-waving about recursion in argumentation, and no dispensable handling of carries in circuitry))

Ascending Cardinal Numbers in APL

In the FinnAPL Idiom Library, the 19th item is described as “Ascending cardinal numbers (ranking, all different) ,” and the code is as follows:
⍋⍋X
I also found a book review of the same library by R. Peschi, in which he said, “'Ascending cardinal numbers (ranking, all different)' How many of us understand why grading the result of Grade Up has that effect?” That's my question too. I searched extensively on the internet and came up with zilch.
Ascending Cardinal Numbers
For the sake of shorthand, I'll call that little code snippet “rank.” It becomes evident what is happening with rank when you start applying it to binary numbers. For example:
X←0 0 1 0 1
⍋⍋X ⍝ output is 1 2 4 3 5
The output indicates the position of the values after sorting. You can see from the output that the two 1s will end up in the last two slots, 4 and 5, and the 0s will end up at positions 1, 2 and 3. Thus, it is assigning rank to each value of the vector. Compare that to grade up:
X←7 8 9 6
⍋X ⍝ output is 4 1 2 3
⍋⍋X ⍝ output is 2 3 4 1
You can think of grade up as this position gets that number and, you can think of rank as this number gets that position:
7 8 9 6 ⍝ values of X
4 1 2 3 ⍝ position 1 gets the number at 4 (6)
⍝ position 2 gets the number at 1 (7) etc.
2 3 4 1 ⍝ 1st number (7) gets the position 2
⍝ 2nd number (8) gets the position 3 etc.
It's interesting to note that grade up and rank are like two sides of the same coin in that you can alternate between the two. In other words, we have the following identities:
⍋X = ⍋⍋⍋X = ⍋⍋⍋⍋⍋X = ...
⍋⍋X = ⍋⍋⍋⍋X = ⍋⍋⍋⍋⍋⍋X = ...
Why?
So far that doesn't really answer Mr Peschi's question as to why it has this effect. If you think in terms of key-value pairs, the answer lies in the fact that the original keys are a set of ascending cardinal numbers: 1 2 3 4. After applying grade up, a new vector is created, whose values are the original keys rearranged as they would be after a sort: 4 1 2 3. Applying grade up a second time is about restoring the original keys to a sequence of ascending cardinal numbers again. However, the values of this third vector aren't the ascending cardinal numbers themselves. Rather they correspond to the keys of the second vector.
It's kind of hard to understand since it's a reference to a reference, but the values of the third vector are referencing the orginal set of numbers as they occurred in their original positions:
7 8 9 6
2 3 4 1
In the example, 2 is referencing 7 from 7's original position. Since the value 2 also corresponds to the key of the second vector, which in turn is the second position, the final message is that after the sort, 7 will be in position 2. 8 will be in position 3, 9 in 4 and 6 in the 1st position.
Ranking and Shareable
In the FinnAPL Idiom Library, the 2nd item is described as “Ascending cardinal numbers (ranking, shareable) ,” and the code is as follows:
⌊.5×(⍋⍋X)+⌽⍋⍋⌽X
The output of this code is the same as its brother, ascending cardinal numbers (ranking, all different) as long as all the values of the input vector are different. However, the shareable version doesn't assign new values for those that are equal:
X←0 0 1 0 1
⌊.5×(⍋⍋X)+⌽⍋⍋⌽X ⍝ output is 2 2 4 2 4
The values of the output should generally be interpreted as relative, i.e. The 2s have a relatively lower rank than the 4s, so they will appear first in the array.

Resources