Superimpose labeling onto RGB image - image

I have two matrices where one is RxCx3 (RGB image) and the other is RxC (labelings). Most of the labels are zero and I would like to paint the non-zero labels on the RGB image. More specifically, I would like to superimpose the figure:
imagesc(labels)
onto the figure:
imshow(rgb)
except the zero values in labels. What is the quickest way to achieve it?

Well here's my interpretation of your problem: You want to superimpose non-zero elements of a matrix onto an image (an example of this might be a heat map).
This page here will give you everything you need regarding the non-zero aspect, but generally you will do something like
find(Labels)
inside a processing section that will then only process those elements of "Labels" > 0. (You can make the expression inside "find" way more complex if your needs change)
Find - Matlab
To actually superimpose the image though (you require labels), you need to make a decision. Physically alter the image to be displayed to show the labels or overlay the labels transparently. The following page has great information on achieving this result:
Overlaying Image in MATLAB
I suspect for your requirements, you'd want to take the transparency route (I would recommend it as well)

Related

anyway to remove algorithmically discolorations from aerial imagery

I don't know much about image processing so please bear with me if this is not possible to implement.
I have several sets of aerial images of the same area originating from different sources. The pictures have been taken during different seasons, under different lighting conditions etc. Unfortunately some images look patchy and suffer from discolorations or are partially obstructed by clouds or pix-elated, as par example picture1 and picture2
I would like to take as an input several images of the same area and (by some kind of averaging them) produce 1 picture of improved quality. I know some C/C++ so I could use some image processing library.
Can anybody propose any image processing algorithm to achieve it or knows any research done in this field?
I would try with a "color twist" transform, i.e. a 3x3 matrix applied to the RGB components. To implement it, you need to pick color samples in areas that are split by a border, on both sides. You should fing three significantly different reference colors (hence six samples). This will allow you to write the nine linear equations to determine the matrix coefficients.
Then you will correct the altered areas by means of this color twist. As the geometry of these areas is intertwined with the field patches, I don't see a better way than contouring the regions by hand.
In the case of the second picture, the limits of the regions are blurred so that you will need to blur the region mask as well and perform blending.
In any case, don't expect a perfect repair of those problems as the transform might be nonlinear, and completely erasing the edges will be difficult. I also think that colors are so washed out at places that restoring them might create ugly artifacts.
For the sake of illustration, a quick attempt with PhotoShop using manual HLS adjustment (less powerful than color twist).
The first thing I thought of was a kernel matrix of sorts.
Do a first pass of the photo and use an edge detection algorithm to determine the borders between the photos - this should be fairly trivial, however you will need to eliminate any overlap/fading (looks like there's a bit in picture 2), you'll see why in a minute.
Do a second pass right along each border you've detected, and assume that the pixel on either side of the border should be the same color. Determine the difference between the red, green and blue values and average them along the entire length of the line, then divide it by two. The image with the lower red, green or blue value gets this new value added. The one with the higher red, green or blue value gets this value subtracted.
On either side of this line, every pixel should now be the exact same. You can remove one of these rows if you'd like, but if the lines don't run the length of the image this could cause size issues, and the line will likely not be very noticeable.
This could be made far more complicated by generating a filter by passing along this line - I'll leave that to you.
The issue with this could be where there was development/ fall colors etc, this might mess with your algorithm, but there's only one way to find out!

Equalize contrast and brightness across multiple images

I have roughly 160 images for an experiment. Some of the images, however, have clearly different levels of brightness and contrast compared to others. For instance, I have something like the two pictures below:
I would like to equalize the two pictures in terms of brightness and contrast (probably find some level in the middle and not equate one image to another - though this could be okay if that makes things easier). Would anyone have any suggestions as to how to go about this? I'm not really familiar with image analysis in Matlab so please bear with my follow-up questions should they arise. There is a question for Equalizing luminance, brightness and contrast for a set of images already on here but the code doesn't make much sense to me (due to my lack of experience working with images in Matlab).
Currently, I use Gimp to manipulate images but it's time consuming with 160 images and also just going with subjective eye judgment isn't very reliable. Thank you!
You can use histeq to perform histogram specification where the algorithm will try its best to make the target image match the distribution of intensities / histogram of a source image. This is also called histogram matching and you can read up about it on my previous answer.
In effect, the distribution of intensities between the two images should hopefully be the same. If you want to take advantage of this using histeq, you can specify an additional parameter that specifies the target histogram. Therefore, the input image would try and match itself to the target histogram. Something like this would work assuming you have the images stored in im1 and im2:
out = histeq(im1, imhist(im2));
However, imhistmatch is the more better version to use. It's almost the same way you'd call histeq except you don't have to manually compute the histogram. You just specify the actual image to match itself:
out = imhistmatch(im1, im2);
Here's a running example using your two images. Note that I'll opt to use imhistmatch instead. I read in the two images directly from StackOverflow, I perform a histogram matching so that the first image matches in intensity distribution with the second image and we show this result all in one window.
im1 = imread('http://i.stack.imgur.com/oaopV.png');
im2 = imread('http://i.stack.imgur.com/4fQPq.png');
out = imhistmatch(im1, im2);
figure;
subplot(1,3,1);
imshow(im1);
subplot(1,3,2);
imshow(im2);
subplot(1,3,3);
imshow(out);
This is what I get:
Note that the first image now more or less matches in distribution with the second image.
We can also flip it around and make the first image the source and we can try and match the second image to the first image. Just flip the two parameters with imhistmatch:
out = imhistmatch(im2, im1);
Repeating the above code to display the figure, I get this:
That looks a little more interesting. We can definitely see the shape of the second image's eyes, and some of the facial features are more pronounced.
As such, what you can finally do in the end is choose a good representative image that has the best brightness and contrast, then loop over each of the other images and call imhistmatch each time using this source image as the reference so that the other images will try and match their distribution of intensities to this source image. I can't really write code for this because I don't know how you are storing these images in MATLAB. If you share some of that code, I'd love to write more.

Overlay images in MATLAB using predefined points

Basically what I'm trying to do is overlay two images using predefined points on each image.
The images will be of two different sizes probably or scaled differently, don't know this for sure yet. But the images are of the same thing. So what I want to do is say this spot on image one is the same as this spot on image 2. And do this for multiple spots and then have matlab resize or transform to get all those points lined up so that the two images can be overlayed. The thing thats confusing me is having matlab automatically adjust the images so that they can "fit" together.
I have no idea where to start on this, and was just hoping to get a general idea of what i may be able to do.
Just incase someone else knows how to do this I'll throw in what else I need to do. After the two images are on top of each other, one images will be a region map the other a real image. What I need matlab to do is count the amount of dots from the real image in each region of the map.
Thanks for any help.
What you are trying to do is called image registration which is a very common image processing task. You wont need to write much code because matlab has built in functions for this. You use the cp2tform to create a transform from the first to second image and can then apply the transform to the first image using imtransform function. The code will look something like this assuming x,y coordinates of the control points are in an m by 2 matrix called points1 for image1 and points2 for image2.
tform= cp2tform(points1, points2 , 'similarity');
imtransform(image1, tform);

Detecting Object/Person in an image

I am new to Matlab, I am working on a project which will take input an image like this
as we can see it has a plain background (blue), and system will generate it's passport size image with given ratios, first I am working to separate background and person, the approach I searched is like if there is a blue in combinations of rgb matrices of image, then it is background, and rest is a person, but I am little bit confused that if this approach is correct or not, if it is correct then how can I find that current pixel is blue or not, how can I do it with matlab function find. Any help would be appreciated.
If you want to crop your image based on person's face, then there is no need in separating the background from the foreground. Nowadays you will easily find ready implementations of face detection, so, unless you want to implement your own method because the ready one fails, this should be a non-issue. See:
Show[img,
Graphics[{EdgeForm[{Yellow, Thick}], Opacity[0],
Rectangle ###
FindFaces[img = Import["http://i.stack.imgur.com/cSwzj.jpg"]]}]]
Supposing the face is detected correctly, you can expand/retract its bounding box to match the size you are after.

How do I locate black rectangles in a grid and extract the binary code from that

i'm working in a project to recognize a bit code from an image like this, where black rectangle represents 0 bit, and white (white space, not visible) 1 bit.
Somebody have any idea to process the image in order to extract this informations? My project is written in java, but any solution is accepted.
thanks all for support.
I'm not an expert in image processing, I try to apply Edge Detection using Canny Edge Detector Implementation, free java implementation find here. I used this complete image [http://img257.imageshack.us/img257/5323/colorimg.png], reduce it (scale factor = 0.4) to have fast processing and this is the result [http://img222.imageshack.us/img222/8255/colorimgout.png]. Now, how i can decode white rectangle with 0 bit value, and no rectangle with 1?
The image have 10 line X 16 columns. I don't use python, but i can try to convert it to Java.
Many thanks to support.
This is recognising good old OMR (optical mark recognition).
The solution varies depending on the quality and consistency of the data you get, so noise is important.
Using an image processing library will clearly help.
Simple case: No skew in the image and no stretch or shrinkage
Create a horizontal and vertical profile of the image. i.e. sum up values in all columns and all rows and store in arrays. for an image of MxN (width x height) you will have M cells in horizontal profile and N cells in vertical profile.
Use a thresholding to find out which cells are white (empty) and which are black. This assumes you will get at least a couple of entries in each row or column. So black cells will define a location of interest (where you will expect the marks).
Based on this, you can define in lozenges in the form and you get coordinates of lozenges (rectangles where you have marks) and then you just add up pixel values in each lozenge and based on the number, you can define if it has mark or not.
Case 2: Skew (slant in the image)
Use fourier (FFT) to find the slant value and then transform it.
Case 3: Stretch or shrink
Pretty much the same as 1 but noise is higher and reliability less.
Aliostad has made some good comments.
This is OMR and you will find it much easier to get good consistent results with a good image processing library. www.leptonica.com is a free open source 'C' library that would be a very good place to start. It could process the skew and thresholding tasks for you. Thresholding to B/W would be a good start.
Another option would be IEvolution - http://www.hi-components.com/nievolution.asp for .NET.
To be successful you will need some type of reference / registration marks to allow for skew and stretch especially if you are using document scanning or capturing from a camera image.
I am not familiar with Java, but in Python, you can use the imaging library to open the image. Then load the height and the widths, and segment the image into a grid accordingly, by Height/Rows and Width/Cols. Then, just look for black pixels in those regions, or whatever color PIL registers that black to be. This obviously relies on the grid like nature of the data.
Edit:
Doing Edge Detection may also be Fruitful. First apply an edge detection method like something from wikipedia. I have used the one found at archive.alwaysmovefast.com/basic-edge-detection-in-python.html. Then convert any grayscale value less than 180 (if you want the boxes darker just increase this value) into black and otherwise make it completely white. Then create bounding boxes, lines where the pixels are all white. If data isn't terribly skewed, then this should work pretty well, otherwise you may need to do more work. See here for the results: http://imm.io/2BLd
Edit2:
Denis, how large is your dataset and how large are the images? If you have thousands of these images, then it is not feasible to manually remove the borders (the red background and yellow bars). I think this is important to know before proceeding. Also, I think the prewitt edge detection may prove more useful in this case, since there appears to be less noise:
The previous method of segmenting may be applied, if you do preprocess to bin in the following manner, in which case you need only count the number of black or white pixels and threshold after some training samples.

Resources