spring scope for transaction - spring

I'm a new Spring user.
I have a question about scope and transaction.
For example, there's a service:
<bean id="bankInDaoService" class="service.dao.impl.UserDaoServiceImpl">
Let's say there are 2 people who want to bank-in at the same time.
And I already put #Transactional above for Hibernate transaction the method for bank-in purpose.
My questions are:
Since default Spring scope is singleton. Will these 2 people share the same values. (person 1 bank-in 500, person 2 bank-in 500)?
Will the #Transactional be effective? I mean let the first person finishes bank-in, and then person 2.
I'll be really thankful for your help.

You have wrongly understood the useage of #Transactional annotation.
#Transactional annotation is used in case where you want to get all or none of your transactions to be successful. If any of the transaction fails then other successful transaction will be rolled back. It is not for synchronisation.
If you have registration page where you take input for 10 fields and 5 are for table user and 5 are for table company and you are inseting both records from a single service function. At that time you should use #Transactional annotation. If insertion is successful in user table and fails in company table then the user table record will be rolled back.
Hope this helps you. Cheers.

You are correct that by default Spring beans are singletons. But this won't be a problem unless your implementation modifies some internal state on each invocation (which would be rather odd - typically a service method will just work with the parameters it's been given).
As I just alluded to, each service method invocation will have its own parameters; i.e.:
deposit(person1_ID, 500)
deposit(person2_ID, 750)
As you've said "at the same time" we can safely assume we have a multi-threaded server that is handling both these people simultaneously, one per thread. Method parameters are placed on the stack for any given thread - so as far as your service is concerned, there is absolutely no connection/chance of corruption between the two people's deposits.
Now turning to the #Transactional annotation: Spring uses "aspects" to implement this behaviour, and again these will be applied separately to each thread of execution, and are independent.
If you're looking for #Transactional to enforce some kind of ordering (for example, you want person2 to withdraw the exact amount person1 deposited) then you need to write a new method that performs both operations in sequence within the one #Transactional scope.

Related

Is it possible to make some action in a new Spring trascation before a user stars work with it?

I have Spring Boot JPA application.
An application user asks a new transaction from time to time.
I'd like to execute some action on a db connection that is related with the transaction just BEFORE the use can work with that transaction.
"Just BEFORE" means the action has been completed before the first statement of a method annotated with #Transactional is executed.
The action is an execution of a stored procedure with params depend on the current application user.
Application uses work with DB under a technical account.
Thank you in advance
First solution:
Put all in #Transacional annotated method, where your pre-transaction, however this may sound weird, part goes first.
This first part may perform any action and maybe throw en exception if anything goes wrong, thus forcing the transaction to roll back. This may be a #Repository method, a #Query annotated one if needed (like Josh Pospisil suggests) or whatever.
Second solution (I would prefer):
Put 3 method calls in your #RestController's method: first - determining the user, second - performing your pre-transactional action using this user's data, third - the actual #Transacional method doing the job.

Perform JSR 303 validation in transactional service call

I am using the play framework to develop a web application which accesses a postgres db using JOOQ and spring transactions.
Currently I am implementing the user signup which is structured in the following way:
The user posts the signup form
The request is routed to a controller action which maps all parameters like e-mail, password etc. on a DTO. The different fields of the DTO are annotated with JSR 303 constraints.
The e-mail field is annotated with a constraint validator that makes sure that the same address is not added twice. This validator has an autowired reference to the UserRepository, so that it can invoke it's isExistingEmail method.
The signup method of the user service is called, which basically looks as follows:
#Transactional(isolation = Isolation.SERIALIZABLE)
public User signupUser(UserDto userDto) {
validator.validate(userDto);
userRepository.add(userDto);
return tutor;
}
In case of a validation error the validator.validate(userDto) call inside of the service will throw a RuntimeException.
Please note that the repository's add method is annotated with #Transactional(propagation = Propagation.MANDATORY) while the isExistingEmail method does not have any annotations.
My problem is that when I post the signup form twice in succession, I receive a unique constraint error from the database since both times the userRepository.isExistingEmail call returns false. However, what I would expect is that the second signup call is not allowed to add the user to the repository, as I set the isolation level of the transaction to serializable.
Is this the expected behavior or might there be a JOOQ/spring transactions configuration issue?
I added a TransactionSynchronizationManager.isActualTransactionActive() call in the service to make sure a transaction is actually active. So this part seems to work.
After some more research and reading the documentation on transaction isolation in the postgres manual I have come to realize that my understanding of spring managed transactions was just lacking.
When setting the isolation level to SERIALIZABLE postgres won't really block any concurrent transactions. Instead it will make use of predicate locks to monitor if a committed transaction would produce a result that is different than actually running concurrent transactions one after another.
An exception will only be thrown by the underlying database driver if the state of the data is not valid when the second transaction tries to commit. I was able to verify this behavior and to force a serialization failure by temporarily removing the unique constraint on my e-mail field.
My final solution was to reduce the isolation level to READ_COMMITTED and to handle the unique constraint violation exception when invoking userRepository.add(userDto), since a SERIALIZABLE isolation level is not really necessary to deal with this particular use case.
Please let me know of any better ways of dealing with this kind of standard situation.

Inject Session object to DAO bean instead of Session Factory?

In our application we are using Spring and Hibernate.
In all the DAO classes we have SessionFactory auto wired and each of the DAO methods are calling getCurrentSession() method.
Question I have is why not we inject Session object instead of SessionFactory object in prototype scope? This will save us the call to getCurrentSession.
I think the first method is correct but looking for concrete scenarios where second method will throw errors or may be have bad performance?
When you define a bean as prototype scope a new instance is created for each place it needs to be injected into. So each DAO will get a different instance of Session, but all invocations of methods on the DAO will end up using the same session. Since session is not thread safe it should not be shared across multiple threads this will be an issue.
For most situations the session should be transaction scope, i.e., a new session is opened when the transaction starts and then is closed automatically once the transaction finishes. In a few cases it might have to be extended to request scope.
If you want to avoid using SessionFactory.currentSession - then you will need to define your own scope implementation to achieve that.
This is something that is already implemented for JPA using proxies. In case of JPA EntityManager is injected instead of EntityManagerFactory. Instead of #Autowired there is a new #PersistenceContext annotation. A proxy is created and injected during initialization. When any method is invoked the proxy will get hold of the actual EntityManager implementation (using something similar to SessionFactory.getCurrentSession) and delegate to it.
Similar thing can be implemented for Hibernate as well, but the additional complexity is not worth it. It is much simpler to define a getSession method in a BaseDAO which internally call SessionFactory.getCurrentSession(). With this the code using the session is identical to injecting session.
Injecting prototype sessions means that each one of your DAO objects will, by definition, get it's own Session... On the other hand SessionFactory gives you power to open and share sessions at will.
In fact getCurrentSession will not open a new Session on every call... Instead, it will reuse sessions binded to the current session context (e.g., Thread, JTA Transacion or Externally Managed context).
So let's think about it; assume that in your business layer there is a operation that needs to read and update several database tables (which means interacting, directly or indirectly, with several DAOs)... Pretty common scenario right? Customarily when this kind of operation fails you will want to rollback everything that happened in the current operation right? So, for this "particular" case, what kind of strategy seems appropriate?
Spanning several sessions, each one managing their own kind of objects and bound to different transactions.
Have a single session managing the objects related to this operation... Demarcate the transactions according to your business needs.
In brief, sharing sessions and demarcating transactions effectively will not only improve your application performance, it is part of the functionality of your application.
I would deeply recommend you to read Chapter 2 and Chapter 13 of the Hibernate Core Reference Manual to better understand the roles that SessionFactory, Session and Transaction plays within the framework. It will also teach will about Units of work as well as popular session patterns and anti-patterns.

Grails service transactional behaviour

In a Grails app, the default behaviour of service methods is that they are transactional and the transaction is automatically rolled-back if an unchecked exception is thrown. However, in Groovy one is not forced to handle (or rethrow) checked exceptions, so there's a risk that if a service method throws a checked exception, the transaction will not be rolled back. On account of this, it seems advisable to annotate every Grails service class
#Transactional(rollbackFor = Throwable.class)
class MyService {
void writeSomething() {
}
}
Assume I have other methods in MyService, one of which only reads the DB, and the other doesn't touch the DB, are the following annotations correct?
#Transactional(readOnly = true)
void readSomething() {}
// Maybe this should be propagation = Propagation.NOT_SUPPORTED instead?
#Transactional(propagation = Propagation.SUPPORTS)
void dontReadOrWrite() {}
In order to answer this question, I guess you'll need to know what my intention is:
If an exception is thrown from any method and there's a transaction in progress, it will be rolled back. For example, if writeSomething() calls dontReadOrWrite(), and an exception is thrown from the latter, the transaction started by the former will be rolled back. I'm assuming that the rollbackFor class-level attribute is inherited by individual methods unless they explicitly override it.
If there's no transaction in progress, one will not be started for methods like dontReadOrWrite
If no transaction is in progress when readSomething() is called, a read-only transaction will be started. If a read-write transaction is in progress, it will participate in this transaction.
Your code is right as far as it goes: you do want to use the Spring #Transactional annotation on individual methods in your service class to get the granularity you're looking for, you're right that you want SUPPORTS for dontReadOrWrite (NOT_SUPPORTED will suspend an existing transaction, which won't buy you anything based on what you've described and will require your software to spend cycles, so there's pain for no gain), and you're right that you want the default propagation behavior (REQUIRED) for readSomething.
But an important thing to keep in mind with Spring transactional behavior is that Spring implements transaction management by wrapping your class in a proxy that does the appropriate transaction setup, invokes your method, and then does the appropriate transaction tear-down when control returns. And (crucially), this transaction-management code is only invoked when you call the method on the proxy, which doesn't happen if writeSomething() directly calls dontReadOrWrite() as in your first bullet.
If you need different transactional behavior on a method that's called by another method, you've got two choices that I know of if you want to keep using Spring's #Transactional annotations for transaction management:
Move the method being called by the other into a different service class, which will be accessed from your original service class via the Spring proxy.
Leave the method where it is. Declare a member variable in your service class to be of the same type as your service class's interface and make it #Autowired, which will give you a reference to your service class's Spring proxy object. Then when you want to invoke your method with the different transactional behavior, do it on that member variable rather than directly, and the Spring transaction code will fire as you want it to.
Approach #1 is great if the two methods really aren't related anyway, because it solves your problem without confusing whoever ends up maintaining your code, and there's no way to accidentally forget to invoke the transaction-enabled method.
Approach #2 is usually the better option, assuming that your methods are all in the same service for a reason and that you wouldn't really want to split them out. But it's confusing to a maintainer who doesn't understand this wrinkle of Spring transactions, and you have to remember to invoke it that way in each place you call it, so there's a price to it. I'm usually willing to pay that price to not splinter my service classes unnaturally, but as always, it'll depend on your situation.
I think that what you're looking for is more granular transaction management, and using the #Transactional annotation is the right direction for that. That said, there is a Grails Transaction Handling Plugin that can give you the behavior that you're looking for. The caveat is that you will need to wrap your service method calls in a DomainClass.withTransaction closure and supply the non-standard behavior that you're looking for as a parameter map to the withTransaction() method.
As a note, on the backend this is doing exactly what you're talking about above by using the #Transactional annotation to change the behavior of the transaction at runtime. The plugin documentation is excellent, so I don't think you'll find yourself without sufficient guidance.
Hope this is what you're looking for.

EJB 3 Transaction attribute for read only method

I have a method that returns lot of data, should I use #TransactionAttribute(TransactionAttributeType.NOT_SUPPORTED) for this method. The method perform a JPA query an loads the full content of a table (about 1000 rows).
The client to this method - is that already in a transaction? When you use NotSupported the caller transaction will be suspended. If not I would say, just put Never as the transaction type. Never is better since callers know they are not supposed to call this method from inside a transaction. A more straight forward contract.
We always use Never for methods that do more processing so that developers are aware right off the bat not to call if they are involved in a transaction already. Hope it helps.
I would care to disagree as it seldom happens that user is not in a transaction in almost all the systems. The best approach is to use NOT SUPPORTED so that the transaction is suspended if the caller is in any transaction already. NEVER is troublesome unless you have a series of calls which are all in NO TRANSACTION scope. In short, NOT SUPPORTED is the type one should use.
As far as I know (at least this is the case with Hibernate), you cannot use JPA outside of a transaction as the entity manager's lifecycle is linked to the transaction's lifecycle. So the actual method that does the query must be transactional.
However, you can set it to TransactionAttributeType.REQUIRES_NEW; this would suspend any existing transaction, start a new one, and stop it when the method returns. That means all your entities would be detached by the time they reach the caller, which is what it sounds like you're trying to achieve.
In more complex systems, it pays to completely separate your data layer from your business layer and create a new set of object. Your method will then call the JPA query, then use the entities returned to populate objects from your business layer, and return those. That way the caller can never get their hands on the actual JPA entities and you are free to do in your data layer what you want, since now it's just an implementation detail. (Heck, you could change the database call to a remote API call and your caller wouldn't have to know.)

Resources