I have a requirement to do a nested select within a where clause in a Hive query. A sample code snippet would be as follows;
select *
from TableA
where TA_timestamp > (select timestmp from TableB where id="hourDim")
Is this possible or am I doing something wrong here, because I am getting an error while running the above script ?!
To further elaborate on what I am trying to do, there is a cassandra keyspace that I publish statistics with a timestamp. Periodically (hourly for example) this stats will be summarized using hive, once summarized that data will be stored separately with the corresponding hour. So when the query runs for the second time (and consecutive runs) the query should only run on the new data (i.e. - timestamp > previous_execution_timestamp). I am trying to do that by storing the latest executed timestamp in a separate hive table, and then use that value to filter out the raw stats.
Can this be achieved this using hive ?!
Subqueries inside a WHERE clause are not supported in Hive:
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+SubQueries
However, often you can use a JOIN statement instead to get to the same result:
https://karmasphere.com/hive-queries-on-table-data#join_syntax
For example, this query:
SELECT a.KEY, a.value
FROM a
WHERE a.KEY IN
(SELECT b.KEY FROM B);
can be rewritten to:
SELECT a.KEY, a.val
FROM a LEFT SEMI JOIN b ON (a.KEY = b.KEY)
Looking at the business requirements underlying your question, it occurs that you might get more efficient results by partitioning your Hive table using hour. If the data can be written to use this factor as the partition key, then your query to update the summary will be much faster and require fewer resources.
Partitions can get out of hand when they reach the scale of millions, but this seems like a case that will not tease that limitation.
It will work if you put in :
select *
from TableA
where TA_timestamp in (select timestmp from TableB where id="hourDim")
EXPLANATION : As > , < , = need one exact figure in the right side, while here we are getting multiple values which can be taken only with 'IN' clause.
Related
I am facing a big performance problem when trying to get a list of objects with pagination from an oracle11g database.
As far as I know and as much as I have checked online, the only way to achieve pagination in oracle11g is the following :
Example : [page=1, size=100]
SELECT * FROM
(
SELECT pagination.*, rownum r__ FROM
(
select * from "TABLE_NAME" t
inner join X on X.id = t.id
inner join .....
where ......
order
) pagination
WHERE rownum <= 200
)
WHERE r__ > 100
The problem in this query, is that the most inner query fetching data from the table "TABLE_NAME" is returning a huge amount of data and causing the overall query to take 8 seconds (there are around 2 Million records returned after applying the where clause, and it contains 9 or 10 join clause).
The reason of this is that the most inner query is fetching all the data that respects the where clause and then the second query is getting the 200 rows, and the third to exclude the first 100 to get the second pages' data we need.
Isn't there a way to do that in one query, in a way to fetch the second pages' data that we need without having to do all these steps and cause performance issues?
Thank you!!
It depends on your sorting options (order by ...): database needs to sort whole dataset before applying outer where rownum<200 because of your order by clause.
It will fetch only 200 rows if you remove your order by clause. In some cases oracle can avoid sort operations (for example, if oracle can use some indexes to get requested data in the required order). Btw, Oracle uses optimized sorting operations in case of rownum<N predicates: it doesn't sort full dataset, it just gets top N records instead.
You can investigate sort operations deeper using sort trace event: alter session set events '10032 trace name context forever, level 10';
Furthermore, sometimes it's better to use analytic functions like
select *
from (
select
t1.*
,t2.*
,row_number()over([partition by ...] order by ...) rn
from t1
,t2
where ...
)
where rn <=200
and rn>=100
because in some specific cases Oracle can transform your query to push sorting and sort filter predicates to the earliest possible steps.
While Running hive query on map reduce my job is stuck at a particular stage.I don't have any idea why it's running very slow.
I can't put the whole query but will post just part of it.I have already table called TICKET_V and TICKET_R. Now my query is following...
INSERT OVERWRITE TABLE TICKET_V
SELECT * FROM CUSTOMER AS A
LEFT OUTER JOIN TICKET_R AS B ON A.TICKET_NO= B.TICKET_NO
LEFT OUTER JOIN TICKET_X AS C ON A.COMPANY_ID = C.COMPANY_ID
WHERE SOME CONDITION
Here TICKET_R, CUSTOMER, TICKET_X Table have respectively 55M,20M,2M Rows.Everything runs smoothly and got a TICKET_V table with 0.8M rows.
Now I run another query following which depends on TICKET_V which is following...
INSERT OVERWRITE TABLE TICKET_R
SELECT * FROM CUSTOMER_R AS C
LEFT OUTER JOIN TICKET_R AS D ON C.TICKET_NO = D.TICKET_NO
WHERE SOME CONDITION
CUSTOMER_R has around 2M rows.
After running this query on hive console Firstly I got a warning as follows:
Warning: Map Join MAPJOIN[57][bigTable=?] in task 'stage-14: MAPRED' is a cross product
Warning: Shuffle Join JOIN[31][table=[table alias names]] in stage 'Stage-2: MAPRED' is a cross product
I don't understand why hive is doing a cross product on the second query while I had given a condition while everything runs well on the first query even data size is more.
If somebody gives me more light on the query then it would be helpful.I am very new to map reduce and Yes this problem is from my work.
Edits are welcome...!!
Thanks.
well this problem is general in sql server ce
i have indexes on all the the fields.
also the same query but with ID IN ( list of int ids) is pretty fast.
i tried to change the query to OUTER Join but this just make it worse.
so any hints on why this happen and how to fix this problem?
That's because the index is not really helpful for that kind of query, so the database has to do a full table scan. If the query is (for some reason) slower than a simple "SELECT * FROM TABLE", do that instead and filter the unwanted IDs in the program.
EDIT: by your comment, I recognize you use a subquery instead of a list. Because of that, there are three possible ways to do the same (hopefully one of them is faster):
Original statement:
select * from mytable where id not in (select id from othertable);
Alternative 1:
select * from mytable where not exists
(select 1 from othertable where mytable.id=othertable.id);
Alternative 2:
select * from mytable
minus
select mytable.* from mytable in join othertable on mytable.id=othertable.id;
Alternative 3: (ugly and hard to understand, but if everything else fails...)
select * from mytable
left outer join othertable on (mytable.id=othertable.id)
where othertable.id is null;
This is not a problem in SQL Server CE, but overall database.
The OPERATION IN is sargable and NOT IN is nonsargable.
What this mean ?
Search ARGument Able, thies mean that DBMS engine can take advantage of using index, for Non Search ARGument Ablee the index can't be used.
The solution might be using filter statement to remove those IDs
More in SQL Performance Tuning by Peter Gulutzan.
ammoQ is right, index does not help much with your query. Depending on distribution of values in your ID column you could optimise the query by specifying which IDs to select rather than not to select. If you end up requesting say more than ~25% of the table index will not be used anyway though because for nonclustered indexed (which is the only type of indexes which SQL CE supports if memory serves) it would be cheaper to scan the table. Otherwise (if the query is actually selective) you could re-write query with ID ranges to select ('union all' may work better than 'or' to combine ranges if SQL CE supports 'union all', not sure)
I want to first get some result set (that includes two joins and selection), and then get the maximum value for one of the columns in the result set.
I need both the data in the original results set, and the max.
Is this possible with JDBC, and how?
I think it is. Should look like this:
SELECT MAX(derivedTable.myRow) FROM
(SELECT * FROM table1 JOIN table2 ON table1.id = table2.some_id) derivedTable
The key is to assign your inner select an alias ("derivedTable" above) and perform another selection on that.
--- Edit based on comment:
No, I don't think that's possible. Even without the JDBC layer - say, in a direct SQL console - I don't think there is a way to query data in a result set in any RDBMS I know.
Depending on the speed of your query and the size of the result, either performing a second query or just iterating through the results to find the maximum are your best options.
You can do it with standard SQL although it's a bit awkward:
SELECT a, b, c, (SELECT MAX(c) FROM table1 JOIN table2 ON table1.id = table2.table_id) max_c
FROM table1
JOIN table2 ON table1.id = table2.table_id
When joining across tables (as in the examples below), is there an efficiency difference between joining on the tables or joining subqueries containing only the needed columns?
In other words, is there a difference in efficiency between these two tables?
SELECT result
FROM result_tbl
JOIN test_tbl USING (test_id)
JOIN sample_tbl USING (sample_id)
JOIN (SELECT request_id
FROM request_tbl
WHERE request_status='A') USING(request_id)
vs
SELECT result
FROM (SELECT result, test_id FROM result_tbl)
JOIN (SELECT test_id, sample_id FROM test_tbl) USING(test_id)
JOIN (SELECT sample_id FROM sample_tbl) USING(sample_id)
JOIN (SELECT request_id
FROM request_tbl
WHERE request_status='A') USING(request_id)
The only way to find out for sure is to run both with tracing turned on and then look at the trace file. But in all probability they will be treated the same: the optimizer will merge all the inline views into the main statement and come up with the same query plan.
It doesn't matter. It may actually be WORSE since you are taking control away from the optimizer which generally knows best.
However, remember if you are doing a JOIN and only including a column from one of the tables that it is QUITE OFTEN better to re-write it as a series of EXISTS statements -- because that's what you really mean. JOINs (with some exceptions) will join matching rows which is a lot more work for the optimizer to do.
e.g.
SELECT t1.id1
FROM table1 t1
INNER JOIN table2 ON something = something
should almost always be
SELECT id1
FROM table1 t1
WHERE EXISTS( SELECT *
FROM table2
WHERE something = something )
For simple queries the optimizer may reduce the query plans into identical ones. Check it out on your DBMS.
Also this is a code smell and probably should be changed:
JOIN (SELECT request_id
FROM request_tbl
WHERE request_status='A')
to
SELECT result
FROM request
WHERE EXISTS(...)
AND request_status = 'A'
No difference.
You can tell by running EXPLAIN PLAN on both those statements - Oracle knows that all you want is the "result" column, so it only does the minimum necessary to get the data it needs - you should find that the plans will be identical.
The Oracle optimiser does, sometimes, "materialize" a subquery (i.e. run the subquery and keep the results in memory for later reuse), but this is rare and only occurs when the optimiser believes this will result in a performance improvement; in any case, Oracle will do this "materialization" whether you specified the columns in the subqueries or not.
Obviously if the only place the "results" column is stored is in the blocks (along with the rest of the data), Oracle has to visit those blocks - but it will only keep the relevant info (the "result" column and other relevant columns, e.g. "test_id") in memory when processing the query.