searching through a vast collection of potential solutions - algorithm

I have a quite difficult problem (perhaps even a NP-hard problem ^^) with looking for a solution in a massive collection of results. Perhaps there is an algorithm for it.
Below exercise is artificial but is a perfect example to illustrate my issue.
There is a big array with integers. Lets say it has 100.000 elements.
int numbers[] = {-123,32,4,-234564,23,5,....}
I want to check in a relatively quick way if a sum on any 2 numbers from this array is equal to 0. In other words, if the array has "-123" I want to find is there also a "123" number.
The easiest solution would be brute force - check everything with everything. That gives 100.000 x 100.000 a big number ;-) Obviously brute force method can by optimised. Order numbers and check negatives against positive only. My question is - is there something better then optimised brute force to find a solution?

First, sort the array by magnitude of the value.
Then, if the data contains a pair which satisfies the conditions you're after, it contains such a pair adjacent in the array. So just sweep through looking for adjacent pairs whose sum is 0.
Overall time complexity is O(n log n) for the sort, could be O(n) if you use "cheating" sorts not based solely on comparisons. Clearly it can't be done in less than linear time, because in the worst case you can't do it without looking at all the elements. I think n log n is probably optimal in the decision tree model of computing, but only because it "feels a bit like" the element uniqueness problem.
Alternative approach:
Add the elements one at a time to a hash-based or tree-based container. Before adding each element, check whether its negative is present. If so, stop.
This is likely to be faster in the case where there are lots of suitable pairs, because you save the cost of sorting the whole data. That said, you could write a modified sort that exits early by checking for adjacent pairs as soon as any subset of the data is in its final order, but that's effort.

Brute force would be an O(n^2) solution. You can certainly do better.
Off the top of my head, first sort it. Heap sort will have a complexity of O(nlogn).
Now, for the first element, say a, you know you need to find an element b, such that a+b = 0. This can be found using binary search (since your array is now sorted). Binary search has a complexity of O(logn).
This gives you an overall solution of O(nlogn) complexity.

The example you provided can be brute-force solved in O(n^2) time.
You can start ordering the numbers (O(n·logn)) from smaller to bigger. If you place one pointer at the beginning (the "most negative number") and other at the end (the "most positive"), you can check if there is such pair of numbers in an additional O(n) steps by following the next procedure:
If the numbers at both pointers have the same module, you have the solution
If not, move the pointer of the number with bigger module towards "zero" (this is, increase if it is the pointer on the negative side, decrease if it is the positive-side one)
Repeat until finding a solution, or the pointers cross.
Total complexity is O(n·logn)+O(n) = O(n·logn).

Sort your array using Quicksort. After this happened, use two indexes, let's call them positive and negative.
positive <- 0
negative <- size - 1
while ((array[positive] > 0) and (array(negative < 0) and (positive >= 0) and (negative < size)) do
delta <- array[positive] + array[negative]
if (delta = 0) then
return true
else if (delta < 0) then
negative <- negative + 1
else
positive <- positive - 1
end if
end while
return (array[positive] * array[negative] = 0)
You didn't say what should the algorithm do if 0 is part of the array, I've supposed that in this case true should be returned.

Related

Minimal non-contiguous sequence of exactly k elements

The problem I'm having can be reduced to:
Given an array of N positive numbers, find the non-contiguous sequence of exactly K elements with the minimal sum.
Ok-ish: report the sum only. Bonus: the picked elements can be identified (at least one set of indices, if many can realize the same sum).
(in layman terms: pick any K non-neighbouring elements from N values so that their sum is minimal)
Of course, 2*K <= N+1 (otherwise no solution is possible), the problem is insensitive to positive/negative (just shift the array values with the MIN=min(A...) then add back K*MIN to the answer).
What I got so far (the naive approach):
select K+2 indexes of the values closest to the minimum. I'm not sure about this, for K=2 this seems to be the required to cover all the particular cases, but I don't know if it is required/sufficient for K>2**
brute force the minimal sum from the values of indices resulted at prev step respecting the non-contiguity criterion - if I'm right and K+2 is enough, I can live brute-forcing a (K+1)*(K+2) solution space but, as I said. I'm not sure K+2 is enough for K>2 (if in fact 2*K points are necessary, then brute-forcing goes out of window - the binomial coefficient C(2*K, K) grows prohibitively fast)
Any clever idea of how this can be done with minimal time/space complexity?
** for K=2, a non-trivial example where 4 values closest to the absolute minimum are necessary to select the objective sum [4,1,0,1,4,3,4] - one cannot use the 0 value for building the minimal sum, as it breaks the non-contiguity criterion.
PS - if you feel like showing code snippets, C/C++ and/or Java will be appreciated, but any language with decent syntax or pseudo-code will do (I reckon "decent syntax" excludes Perl, doesn't it?)
Let's assume input numbers are stored in array a[N]
Generic approach is DP: f(n, k) = min(f(n-1, k), f(n-2, k-1)+a[n])
It takes O(N*K) time and has 2 options:
for lazy backtracking recursive solution O(N*K) space
for O(K) space for forward cycle
In special case of big K there is another possibility:
use recursive back-tracking
instead of helper array of N*K size use map(n, map(k, pair(answer, list(answer indexes))))
save answer and list of indexes for this answer
instantly return MAX_INT if k>N/2
This way you'll have lower time than O(NK) for K~=N/2, something like O(Nlog(N)). It will increase up to O(N*log(N)Klog(K)) for small K, so decision between general approach or special case algorithm is important.
There should be a dynamic programming approach to this.
Work along the array from left to right. At each point i, for each value of j from 1..k, find the value of the right answer for picking j non-contiguous elements from 1..i. You can work out the answers at i by looking at the answers at i-1, i-2, and the value of array[i]. The answer you want is the answer at n for an array of length n. After you have done this you should be able to work out what the elements are by back-tracking along the array to work out whether the best decision at each point involves selecting the array element at that point, and therefore whether it used array[i-1][k] or array[i-2][k-1].

Is there a Sorting Algorithm that sorts in O(∞) permutations?

After reading this question and through the various Phone Book sorting scenarios put forth in the answer, I found the concept of the BOGO sort to be quite interesting. Certainly there is no use for this type of sorting algorithm but it did raise an interesting question in my mind-- could their be a sorting algorithm that is infinitely impossible to complete?
In other words, is there a process where one could attempt to compare and re-order a fixed set of data and can yet never achieve an actual sorted list?
This is much more of a theoretical/philosophical question than a practical one and if I was more of a mathematician I'd probably be able to prove/disprove such a possibility. Has anyone asked this question before and if so, what can be said about it?
[edit:] no deterministic process with a finite amount of state takes "O(infinity)" since the slowest it can be is to progress through all possible states. this includes sorting.
[earlier, more specific answer:]
no. for a list of size n you only have state space of size n! in which to store progress (assuming that the entire state of the sort is stored in the ordering of the elements and it really is "doing something," deterministically).
so the worst possible behaviour would cycle through all available states before terminating and take time proportional to n! (at the risk of confusing matters, there must be a single path through the state - since that is "all the state" you cannot have a process move from state X to Y, and then later from state X to Z, since that requires additional state, or is non-deterministic)
Idea 1:
function sort( int[] arr ) {
int[] sorted = quicksort( arr ); // compare and reorder data
while(true); // where'd this come from???
return sorted; // return answer
}
Idea 2
How do you define O(infinity)? The formal definition of Big-O merely states that f(x)=O(g(x)) implies that M*g(x) is an upper bound of f(x) given sufficiently large x and some constant M.
Typically when you talking about "infinity", you are talking about some sort of unbounded limit. So in this case, the only reasonable definition is saying that O(infinity) is O(function that's larger than every function). Obviously a function that's larger than every function is an upper bound. Thus technically everything is "O(infinity)"
Idea 3
Assuming you mean theta notation (tight bound)...
If you impose the additional restriction that the algorithm is smart (returns when it finds a sorted permutation) and every permutation of the list must be visited in a finite amount of time, then the answer no. There are only N! permutations of a list. The upper bound for such a sorting algorithm is then a finite over finite numbers, which is finite.
Your question doesn't really have much to do with sorting. An algorithm which is guaranteed never to complete would be pretty dull. Indeed, even an algorithm which would might or might not ever complete would be pretty dull. Much more interesting would be an algorithm which would be guaranteed to complete, eventually, but whose worst-case computation time with respect to the size of the input would not be expressible as O(F(N)) for any function F that could itself be computed in bounded time. My hunch would be that such an algorithm could be devised, but I'm not sure how.
How about this one:
Start at the first item.
Flip a coin.
If it's heads, switch it with the next item.
If it's tails, don't switch them.
If list is sorted, stop.
If not, move onto the next pair ...
It's a sorting algorithm -- the kind a monkey might do. Is there any guarantee that you'll arrive at a sorted list? I don't think so!
Yes -
SortNumbers(collectionOfNumbers)
{
If IsSorted(collectionOfNumbers){
reverse(collectionOfNumbers(1:end/2))
}
return SortNumbers(collectionOfNumbers)
}
Input: A[1..n] : n unique integers in arbitrary order
Output: A'[1..n] : reordering of the elements of A
such that A'[i] R(A') A'[j] if i < j.
Comparator: a R(A') b iff A'[i] = a, A'[j] = b and i > j
More generally, make the comparator something that's either (a) impossible to reconcile with the output specification, so that no solution can exist, or (b) uncomputable (e.g., sort these (input, turing machine) pairs in order of the number of steps needed for the machine to halt on the input).
Even more generally, if you have a procedure that fails to halt on a valid input, the procedure is not an algorithm which solves the problem on that input/output domain... which means you don't have an algorithm at all, or that what you have is only an algorithm if you appropriately restrict the domain.
Let's suppose that you have a random coin flipper, infinite arithmetic, and infinite rationals. Then the answer is yes. You can write a sorting algorithm which has 100% chance of successfully sorting your data (so it really is a sorting function), but which on average will take infinite time to do so.
Here is an emulation of this in Python.
# We'll pretend that these are true random numbers.
import random
import fractions
def flip ():
return 0.5 < random.random()
# This tests whether a number is less than an infinite precision number in the range
# [0, 1]. It has a 100% probability of returning an answer.
def number_less_than_rand (x):
high = fractions.Fraction(1, 1)
low = fractions.Fraction(0, 1)
while low < x and x < high:
if flip():
low = (low + high) / 2
else:
high = (low + high) / 2
return high < x
def slow_sort (some_array):
n = fractions.Fraction(100, 1)
# This loop has a 100% chance of finishing, but its average time to complete
# is also infinite. If you haven't studied infinite series and products, you'll
# just have to take this on faith. Otherwise proving that is a fun exercise.
while not number_less_than_rand(1/n):
n += 1
print n
some_array.sort()

Finding the repeated element

In an array with integers between 1 and 1,000,000 or say some very larger value ,if a single value is occurring twice twice. How do you determine which one?
I think we can use a bitmap to mark the elements , and then traverse allover again to find out the repeated element . But , i think it is a process with high complexity.Is there any better way ?
This sounds like homework or an interview question ... so rather than giving away the answer, here's a hint.
What calculations can you do on a range of integers whose answer you can determine ahead of time?
Once you realize the answer to this, you should be able to figure it out .... if you still can't figure it out ... (and it's not homework) I'll post the solution :)
EDIT: Ok. So here's the elegant solution ... if the list contains ALL of the integers within the range.
We know that all of the values between 1 and N must exist in the list. Using Guass' formula we can quickly compute the expected value of a range of integers:
Sum(1..N) = 1/2 * (1 + N) * Count(1..N).
Since we know the expected sum, all we have to do is loop through all the values and sum their values. The different between this sum and the expected sum is the duplicate value.
EDIT: As other's have commented, the question doesn't state that the range contains all of the integers ... in this case, you have to decide whether you want to optimize for memory or time.
If you want to perform the operation using O(1) storage, you can perform an in-place sort of the list. As you're sorting you have to check adjacent elements. Once you see a duplicate, you know you can stop. Optimal sorting is an O(n log n) operation on average - which establishes an upper bound for find the duplicate in this manner.
If you want to optimize for speed, you can use an additional O(n) storage. Using a HashSet (or similar structure), insert values from your list until you determine you are inserting a duplicate into the HashSet. Inserting n items into a HashSet is an O(n) operation on average, which establishes that as an upper bound for this method.
you may try to use bits as hashmap:
1 at position k means that number k occured before
0 at position k means that number k did not occured before
pseudocode:
0. assume that your array is A
1. initialize bitarray(there is nice class in c# for this) of 1000000 length filled with zeros
2. for each num in A:
if bitarray[num]
return num
else
bitarray[num] = 1
end
The time complexity of the bitmap solution is O(n) and it doesn't seem like you could do better than that. However it will take up a lot of memory for a generic list of numbers. Sorting the numbers is an obvious way to detect duplicates and doesn't require extra space if you don't mind the current order changing.
Assuming the array is of length n < N (i.e. not ALL integers are present -- in this case LBushkin's trick is the answer to this homework problem), there is no way to solve this problem using less than O(n) memory using an algorithm that just takes a single pass through the array. This is by reduction to the set disjointness problem.
Suppose I made the problem easier, and I promised you that the duplicate elements were in the array such that the first one was in the first n/2 elements, and the second one was in the last n/2 elements. Now we can think of playing a game in which two people each hold a string of n/2 elements, and want to know how many messages they have to send to be sure that none of their elements are the same. Since the first player could simulate the run of any algorithm that takes a pass through the array, and send the contents of its memory to the second player, a lower bound on the number of messages they need to send implies a lower bound on the memory requirements of any algorithm.
But its easy to see in this simple game that they need to send n/2 messages to be sure that they don't hold any of the same elements, which yields the lower bound.
Edit: This generalizes to show that for algorithms that make k passes through the array and use memory m, that m*k = Omega(n). And it is easy to see that you can in fact trade off memory for time in this way.
Of course, if you are willing to use algorithms that don't simply take passes through the array, you can do better as suggested already: sort the array, then take 1 pass through. This takes time O(nlogn) and space O(1). But note curiously that this proves that any sorting algorithm that just makes passes through the array must take time Omega(n^2)! Sorting algorithms that break the n^2 bound must make random accesses.

Finding a single number in a list [duplicate]

This question already has answers here:
How to find the only number in an array that doesn't occur twice [duplicate]
(5 answers)
Closed 7 years ago.
What would be the best algorithm for finding a number that occurs only once in a list which has all other numbers occurring exactly twice.
So, in the list of integers (lets take it as an array) each integer repeats exactly twice, except one. To find that one, what is the best algorithm.
The fastest (O(n)) and most memory efficient (O(1)) way is with the XOR operation.
In C:
int arr[] = {3, 2, 5, 2, 1, 5, 3};
int num = 0, i;
for (i=0; i < 7; i++)
num ^= arr[i];
printf("%i\n", num);
This prints "1", which is the only one that occurs once.
This works because the first time you hit a number it marks the num variable with itself, and the second time it unmarks num with itself (more or less). The only one that remains unmarked is your non-duplicate.
By the way, you can expand on this idea to very quickly find two unique numbers among a list of duplicates.
Let's call the unique numbers a and b. First take the XOR of everything, as Kyle suggested. What we get is a^b. We know a^b != 0, since a != b. Choose any 1 bit of a^b, and use that as a mask -- in more detail: choose x as a power of 2 so that x & (a^b) is nonzero.
Now split the list into two sublists -- one sublist contains all numbers y with y&x == 0, and the rest go in the other sublist. By the way we chose x, we know that a and b are in different buckets. We also know that each pair of duplicates is still in the same bucket. So we can now apply ye olde "XOR-em-all" trick to each bucket independently, and discover what a and b are completely.
Bam.
O(N) time, O(N) memory
HT= Hash Table
HT.clear()
go over the list in order
for each item you see
if(HT.Contains(item)) -> HT.Remove(item)
else
ht.add(item)
at the end, the item in the HT is the item you are looking for.
Note (credit #Jared Updike): This system will find all Odd instances of items.
comment: I don't see how can people vote up solutions that give you NLogN performance. in which universe is that "better" ?
I am even more shocked you marked the accepted answer s NLogN solution...
I do agree however that if memory is required to be constant, then NLogN would be (so far) the best solution.
Kyle's solution would obviously not catch situations were the data set does not follow the rules. If all numbers were in pairs the algorithm would give a result of zero, the exact same value as if zero would be the only value with single occurance.
If there were multiple single occurance values or triples, the result would be errouness as well.
Testing the data set might well end up with a more costly algorithm, either in memory or time.
Csmba's solution does show some errouness data (no or more then one single occurence value), but not other (quadrouples). Regarding his solution, depending on the implementation of HT, either memory and/or time is more then O(n).
If we cannot be sure about the correctness of the input set, sorting and counting or using a hashtable counting occurances with the integer itself being the hash key would both be feasible.
I would say that using a sorting algorithm and then going through the sorted list to find the number is a good way to do it.
And now the problem is finding "the best" sorting algorithm. There are a lot of sorting algorithms, each of them with its strong and weak points, so this is quite a complicated question. The Wikipedia entry seems like a nice source of info on that.
Implementation in Ruby:
a = [1,2,3,4,123,1,2,.........]
t = a.length-1
for i in 0..t
s = a.index(a[i])+1
b = a[s..t]
w = b.include?a[i]
if w == false
puts a[i]
end
end
You need to specify what you mean by "best" - to some, speed is all that matters and would qualify an answer as "best" - for others, they might forgive a few hundred milliseconds if the solution was more readable.
"Best" is subjective unless you are more specific.
That said:
Iterate through the numbers, for each number search the list for that number and when you reach the number that returns only a 1 for the number of search results, you are done.
Seems like the best you could do is to iterate through the list, for every item add it to a list of "seen" items or else remove it from the "seen" if it's already there, and at the end your list of "seen" items will include the singular element. This is O(n) in regards to time and n in regards to space (in the worst case, it will be much better if the list is sorted).
The fact that they're integers doesn't really factor in, since there's nothing special you can do with adding them up... is there?
Question
I don't understand why the selected answer is "best" by any standard. O(N*lgN) > O(N), and it changes the list (or else creates a copy of it, which is still more expensive in space and time). Am I missing something?
Depends on how large/small/diverse the numbers are though. A radix sort might be applicable which would reduce the sorting time of the O(N log N) solution by a large degree.
The sorting method and the XOR method have the same time complexity. The XOR method is only O(n) if you assume that bitwise XOR of two strings is a constant time operation. This is equivalent to saying that the size of the integers in the array is bounded by a constant. In that case you can use Radix sort to sort the array in O(n).
If the numbers are not bounded, then bitwise XOR takes time O(k) where k is the length of the bit string, and the XOR method takes O(nk). Now again Radix sort will sort the array in time O(nk).
You could simply put the elements in the set into a hash until you find a collision. In ruby, this is a one-liner.
def find_dupe(array)
h={}
array.detect { |e| h[e]||(h[e]=true; false) }
end
So, find_dupe([1,2,3,4,5,1]) would return 1.
This is actually a common "trick" interview question though. It is normally about a list of consecutive integers with one duplicate. In this case the interviewer is often looking for you to use the Gaussian sum of n-integers trick e.g. n*(n+1)/2 subtracted from the actual sum. The textbook answer is something like this.
def find_dupe_for_consecutive_integers(array)
n=array.size-1 # subtract one from array.size because of the dupe
array.sum - n*(n+1)/2
end

How do I write a sort worse than O(n!)

I wrote an O(n!) sort for my amusement that can't be trivially optimized to run faster without replacing it entirely. [And no, I didn't just randomize the items until they were sorted].
How might I write an even worse Big-O sort, without just adding extraneous junk that could be pulled out to reduce the time complexity?
http://en.wikipedia.org/wiki/Big_O_notation has various time complexities sorted in growing order.
Edit: I found the code, here is my O(n!) deterministic sort with amusing hack to generate list of all combinations of a list. I have a slightly longer version of get_all_combinations that returns an iterable of combinations, but unfortunately I couldn't make it a single statement. [Hopefully I haven't introduced bugs by fixing typos and removing underscores in the below code]
def mysort(somelist):
for permutation in get_all_permutations(somelist):
if is_sorted(permutation):
return permutation
def is_sorted(somelist):
# note: this could be merged into return... something like return len(foo) <= 1 or reduce(barf)
if (len(somelist) <= 1): return True
return 1 > reduce(lambda x,y: max(x,y),map(cmp, somelist[:-1], somelist[1:]))
def get_all_permutations(lst):
return [[itm] + cbo for idx, itm in enumerate(lst) for cbo in get_all_permutations(lst[:idx] + lst[idx+1:])] or [lst]
There's a (proven!) worst sorting algorithm called slow sort that uses the “multiply and surrender” paradigm and runs in exponential time.
While your algorithm is slower, it doesn't progress steadily but instead performs random jumps. Additionally, slow sort's best case is still exponential while yours is constant.
Chris and I mentioned Bozosort and Bogosort in a different question.
There's always NeverSort, which is O(∞):
def never_sort(array)
while(true)
end
return quicksort(array)
end
PS: I really want to see your deterministic O(n!) sort; I can't think of any that are O(n!), but have a finite upper bound in classical computation (aka are deterministic).
PPS: If you're worried about the compiler wiping out that empty while block, you can force it not to by using a variable both in- and outside the block:
def never_sort(array)
i=0
while(true) { i += 1 }
puts "done with loop after #{i} iterations!"
return quicksort(array)
end
You could always do a Random sort. It works by rearranging all the elements randomly, then checking to see if it's sorted. If not, it randomly resorts them. I don't know how it would fit in big-O notation, but it will definitely be slow!
Here is the slowest, finite sort you can get:
Link each operation of Quicksort to the Busy Beaver function.
By the time you get >4 operations, you'll need up-arrow notation :)
One way that I can think of would be to calculated the post position of each element through a function that vary gradually moved the large elements to the end and the small ones to the beginning. If you used a trig based function, you could make the elements osculate through the list instead of going directly toward their final position. After you've processed each element in the set, then do a full traversal to determine if the array is sorted or not.
I'm not positive that this will give you O(n!) but it should still be pretty slow.
I think that if you do lots of copying then you can get a "reasonable" brute force search (N!) to take N^2 time per case giving N!*N^2
How about looping over all arrays t of n integers (n-tuples of integers are countable, so this is doable though it's an infinite loop of course), and for each of these:
if its elements are exactly those of the input array (see algo below!) and the array is sorted (linear algo for example, but I'm sure we can do worse), then return t;
otherwise continue looping.
To check that two arrays a and b of length n contain the same elements, how about the following recursive algorithm: loop over all couples (i,j) of indices between 0 and n-1, and for each such couple
test if a[i]==b[j]:
if so, return TRUE if and only if a recursive call on the lists obtained by removing a[i] from a and b[j] from b returns TRUE;
continue looping over couples, and if all couples are done, return FALSE.
The time will depend a lot on the distribution of integers in the input array.
Seriously, though, is there a point to such a question?
Edit:
#Jon, your random sort would be in O(n!) on average (since there are n! permutations, you have probability 1/n! of finding the right one). This holds for arrays of distinct integers, might be slightly different if some elements have multiple occurences in the input array, and would then depend on the distribution of the elements of the input arrays (in the integers).

Resources