Implementing Immutable, Growable Vectors - data-structures

I'm interested in implementing persistent (e.g. purely functional, immutable, etc), growable vectors in F#, so that they might be used in the .NET framework. My current implementation is a variant on the Hash-Mapped Trie, and is done according to Clojure's implementation.
I'm having trouble implementing random-access insertions and deletions (inserting and removing elements at random indices) using this implementation. Is there some algorithm/modification that allows these operations efficiently, or some other implementation I can look at?
Clarification: When I say 'inserts' and 'deletes' I mean, for example, given the list [1; 2; 3; 4] an insert of 500 in position 1 will give me [1:500:2:3:4]. I don't mean a set or associate operation.

Finger trees might be what you are looking for. There is a Clojure implementation available.

Immutable vectors/lists typically provide fast updates by only allowing insertions at one end and then sharing the immutable data at the other end. If you want to do non-head/tail insertions what you're actually wanting to do is mutate the immutable end of your collection. You'll have to split the vector around the item you want to insert and then splice it back together to create a new vector, and the best you're going to be able to do it in is O(n) time.
Immutable sorted trees work a little bit differently, but they won't let you re-number indicies (keys) in less than O(n) time either.
Basically, if someone had discovered an efficient way to support random-access insertions in an immutable vector then it would be supported in one of the mainstream functional languages—but there is no such known data structure or algorithm, so there's no such implementation.

The only thing can do is split and join. This is very ineffective with clojure vectors. That is why Phill Bagwell implmented a persistent vector that can be split and join in log(n).
You might want to look at this video: http://blip.tv/clojure/phill-bagwell-striving-to-make-things-simple-and-fast-5936145
or directly to his paper here: infoscience.epfl.ch/record/169879/files/RMTrees.pdf

Port the Haskell HAMT library? The Insert operation is O(log n)

Related

Data structure for non overlapping ranges of integers?

I remember learning a data structure that stored a set of integers as ranges in a tree, but it's been 10 years and I can't remember the name of the data structure, and I'm a bit fuzzy on the details. If it helps, it's a functional data structure that was taught at CMU, I believe in 15-212 (Principles of Programming) in 2002.
Basically, I want to store a set of integers, most of which are consecutive. I want to be able to query for set membership efficiently, add a range of integers efficiently, and remove a range of integers efficiently. In particular, I don't care to preserve what the original ranges are. It's better if adjacent ranges are coalesced into a single larger range.
A naive implementation would be to simply use a generic set data structure such as a HashSet or TreeSet, and add all integers in a range when adding a range, or remove all integers in a range when removing a range. But of course, that would waste a lot of memory in addition to making add and remove slow.
I'm thinking of a purely functional data structure, but for my current use I don't need it to be. IIRC, lookup, insertion, and deletion were all O(log N), where N was the number of ranges in the set.
So, can you tell me the name of the data structure I'm trying to remember, or a suitable alternative?
I found the old homework and the data structure I had in mind were Discrete Interval Encoding Trees or diets for short. They are described in detail in Diets for Fat Sets, Martin Erwig. Journal of Functional Programming, Vol. 8, No. 6, 627-632, 1998. It is basically a tree of intervals with the invariant that all of the intervals are non-overlapping and non-touching. There is a Haskell implementation in Hackage. I was hoping there would be an existing implementation for Scala, but I'm not seeing any.
The homework also included another data structure they called a Recursive Interval-Occluding Tree (RIOT), which rather than keeping only an interval at each node keeps an interval and another (possibly empty) RIOT of things removed from the interval. The assignment included benchmarks showing it did better than diets for random insertions and deletions. AFAICT it is simply something the TAs made up and never published as it no longer seems to exist anywhere on the Internets, at least not under that name.
You probably are looking for segment trees. This might be helpful: http://www.topcoder.com/tc?d1=tutorials&d2=lowestCommonAncestor&module=Static
You can also use binary search trees for the same, for which each node will have two data fields: min_val and max_val.
During insertion algorithm, you just need to call another merging operation to check if the left-child,parent,right-child create a sequence, so as to club them into a single node. This will take O(log n) time.
Other operations like deletion and look-up will take O(log n) time as usual, but special measures need to be taken while deletion.

Is there a bidirectional multimap persistent data structure?

In other words, can we model many to many relationships in a persistent data structure efficiently?
A pair of unidirectional multimaps was suggested. However, I'm not sure how this would work well for removal in a persistent data structure. Let's take the case where we have keys 1..4 to values "1".."4" and let's say they each refer to all the others, so we have two maps that look very similar for both directions:
{1 => ["2","3","4"], 2 => ["1","3","4"], ...}
{"1" => [2,3,4], "2" => [1,3,4], ...}
Now we want to remove item 1 completely from the system. That requires changing one node in the first map, but it requires changing n-1 nodes in the second. For n in the thousands (which is likely in the case I'm considering this for) wouldn't that be rather expensive? Or is a multimap optimized for handling that type of a change? It's a pathological case, but still...
Quadtrees seems like a fascinating idea. I'm going to give that some more thought.
The simplest way is to use a pair of unidirectional maps. It has some cost, but you won't get much better (you could get a bit better using dedicated binary trees, but you have a huge complexity cost to pay if you have to implement it yourself). In essence, lookups will be just as fast, but addition and deletion will be twice as slow. Which isn't so bad for a logarithmic operation. Another advantage of this technique is that you can use specialized maps types for the key or value type if you have one available. You won't get as much flexibility with a specific generalist data structure.
A different solution is to use a quadtree (instead of considering a NxN relation as a pair of 1xN and Nx1 relations, you see it as a set of elements in the cartesian product (Key*Value) of your types, that is, a spatial plane), but it's not clear to me that the time and memory costs are better than with two maps. I suppose it needs to be tested.
Finally, I there is a mind-blowing non-regular recursive data structure to do that, but I can't find a reference for it in english.
Edit: I just quickly pasted an adapted version of the original code for this mysterious data structure.
Proof by construction: the bimap package for Haskell.
A Bimap is essentially a bijection between subsets of its two argument types
And how is it implemented?
data Bimap a b = MkBimap !(M.Map a b) !(M.Map b a)
As a pair of unidirectional maps.

Hash table vs Balanced binary tree [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 6 years ago.
Improve this question
What factors should I take into account when I need to choose between a hash table or a balanced binary tree in order to implement a set or an associative array?
This question cannot be answered, in general, I fear.
The issue is that there are many types of hash tables and balanced binary trees, and their performances vary widely.
So, the naive answer is: it depends on the functionality you need. Use a hash table if you do not need ordering and a balanced binary tree otherwise.
For a more elaborate answer, let's consider some alternatives.
Hash Table (see Wikipedia's entry for some basics)
Not all hash tables use a linked-list as a bucket. A popular alternative is to use a "better" bucket, for example a binary tree, or another hash table (with another hash function), ...
Some hash tables do not use buckets at all: see Open Addressing (they come with other issues, obviously)
There is something called Linear re-hashing (it's a quality of implementation detail), which avoids the "stop-the-world-and-rehash" pitfall. Basically during the migration phase you only insert in the "new" table, and also move one "old" entry into the "new" table. Of course, migration phase means double look-up etc...
Binary Tree
Re-balancing is costly, you may consider a Skip-List (also better for multi-threaded accesses) or a Splay Tree.
A good allocator can "pack" nodes together in memory (better caching behavior), even though this does not alleviate the pointer-look-up issue.
B-Tree and variants also offer "packing"
Let's not forget that O(1) is an asymptotic complexity. For few elements, the coefficient is usually more important (performance-wise). Which is especially true if your hash function is slow...
Finally, for sets, you may also wish to consider probabilistic data structures, like Bloom Filters.
Hash tables are generally better if there isn't any need to keep the data in any sort of sequence. Binary trees are better if the data must be kept sorted.
A worthy point on a modern architecture: A Hash table will usually, if its load factor is low, have fewer memory reads than a binary tree will. Since memory access tend to be rather costly compared to burning CPU cycles, the Hash table is often faster.
In the following Binary tree is assumed to be self-balancing, like a red black tree, an AVL tree or like a treap.
On the other hand, if you need to rehash everything in the hash table when you decide to extend it, this may be a costly operation which occur (amortized). Binary trees does not have this limitation.
Binary trees are easier to implement in purely functional languages.
Binary trees have a natural sort order and a natural way to walk the tree for all elements.
When the load factor in the hash table is low, you may be wasting a lot of memory space, but with two pointers, binary trees tend to take up more space.
Hash tables are nearly O(1) (depending on how you handle the load factor) vs. Bin trees O(lg n).
Trees tend to be the "average performer". There are nothing they do particularly well, but then nothing they do particularly bad.
Hash tables are faster lookups:
You need a key that generates an even distribution (otherwise you'll miss a lot and have to rely on something other than hash; like a linear search).
Hash's can use a lot of empty space. You may reserve 256 entries but only need 8 (so far).
Binary trees:
Deterministic. O(log n) I think...
Don't need extra space like hash tables can
Must be kept sorted. Adding an element in the middle means moving the rest around.
A binary search tree requires a total order relationship among the keys. A hash table requires only an equivalence or identity relationship with a consistent hash function.
If a total order relationship is available, then a sorted array has lookup performance comparable to binary trees, worst-case insert performance in the order of hash tables, and less complexity and memory use than both.
The worst-case insertion complexity for a hash table can be left at O(1)/O(log K) (with K the number of elements with the same hash) if it's acceptable to increase the worst-case lookup complexity to O(K) or O(log K) if the elements can be sorted.
Invariants for both trees and hash tables are expensive to restore if the keys change, but less than O(n log N) for sorted arrays.
These are factors to take into account in deciding which implementation to use:
Availability of a total order relationship.
Availability of a good hashing function for the equivalence relationship.
A-priory knowledge of the number of elements.
Knowledge about the rate of insertions, deletions, and lookups.
Relative complexity of the comparison and hashing functions.
If you only need to access single elements, hashtables are better. If you need a range of elements, you simply have no other option than binary trees.
To add to the other great answers above, I'd say:
Use a hash table if the amount of data will not change (e.g. storing constants); but, if the amount of data will change, use a tree. This is due to the fact that, in a hash table, once the load factor has been reached, the hash table must resize. The resize operation can be very slow.
One point that I don't think has been addressed is that trees are much better for persistent data structures. That is, immutable structures. A standard hash table (i.e. one that uses a single array of linked lists) cannot be modified without modifying the whole table. One situation in which this is relevant is if two concurrent functions both have a copy of a hash table, and one of them changes the table (if the table is mutable, that change will be visible to the other one as well). Another situation would be something like the following:
def bar(table):
# some intern stuck this line of code in
table["hello"] = "world"
return table["the answer"]
def foo(x, y, table):
z = bar(table)
if "hello" in table:
raise Exception("failed catastrophically!")
return x + y + z
important_result = foo(1, 2, {
"the answer": 5,
"this table": "doesn't contain hello",
"so it should": "be ok"
})
# catastrophic failure occurs
With a mutable table, we can't guarantee that the table a function call receives will remain that table throughout its execution, because other function calls might modify it.
So, mutability is sometimes not a pleasant thing. Now, a way around this would be to keep the table immutable, and have updates return a new table without modifying the old one. But with a hash table this would often be a costly O(n) operation, since the entire underlying array would need to be copied. On the other hand, with a balanced tree, a new tree can be generated with only O(log n) nodes needing to be created (the rest of the tree being identical).
This means that an efficient tree can be very convenient when immutable maps are desired.
If you''ll have many slightly-different instances of sets, you'll probably want them to share structure. This is easy with trees (if they're immutable or copy-on-write). I'm not sure how well you can do it with hashtables; it's at least less obvious.
In my experience, hastables are always faster because trees suffer too much of cache effects.
To see some real data, you can check the benchmark page of my TommyDS library http://tommyds.sourceforge.net/
Here you can see compared the performance of the most common hashtable, tree and trie libraries available.
One point to note is about the traversal, minimum and maximum item. Hash tables don’t support any kind of ordered traversal, or access to the minimum or maximum items. If these capabilities are important, the binary tree is a better choice.

Best Data Structure to Store Large Amounts of Data with Dynamic and Non-unique Keys?

Basically, I have a large number of C structs to keep track of, that are essentially:
struct Data {
int key;
... // More data
};
I need to periodically access lots (hundreds) of these, and they must be sorted from lowest to highest key values. The keys are not unique and they will be changed over the course of the program. To make matters even more interesting, the majority of the structures will be culled (based on criteria completely unrelated to the key values) from the pool right before being sorted, but I still need to keep references to them.
I've looked into using a binary search tree to store them, but the keys are not guaranteed to be unique and I'm not entirely sure how to restructure the tree once a key is changed or how to cull specific structures.
To recap in case that was unclear above, I need to:
Store a large number of structures with non-unique and dynamic keys.
Cull a large percentage of the structures (but not free them entirely because different structures are culled each time).
Sort the remaining structures from highest to lowest key value.
What data structure/algorithms would you use to solve this problem? The method needs to be as fast and/or memory efficient as possible, since this is a real-time application.
EDIT: The culling is done by iterating over all of the objects and making a decision for each one. The keys change between the culling/sorting runs. I should have stated that they don't change a lot, but they do change, and they can change multiple times between the culling/sorting runs. (If it helps, the key for each structure is actually a z-order for a Sprite. They need to be sorted before each drawing loop so the Sprites with lower z-orders are drawn first.)
Just stick 'em all in a big array.
When the time comes to do the cull and sort, start by doing the sort. Do an insertion sort. That's right - nothing clever, just an insertion sort.
After the sort, go through the sorted array, and for each object, make the culling decision, then immediately output the object if it isn't culled.
This is about as memory-efficient as it gets. It should also require very little computation: there's no bookkeeping on updates between cull/sort passes, and the sort will be cheap - because insertion sort is adaptive, and for an almost-sorted array like this, it will be almost O(n). The one thing it doesn't do is cache locality: there will be two separate passes over the array, for the sort, and the cull/output.
If you demand more cleverness, then instead of an insertion sort, you could use another adaptive, in-place sort that's faster. Timsort and smoothsort are good candidates; both are utterly fiendish to implement.
The big alternative to this is to only sort unculled objects, using a secondary, temporary, list of such objects which you sort (or keep in a binary tree or whatever). But the thing is, if the keys don't change that much, then the win you get from using an adaptive sort on an almost-sorted array will (i reckon!) outweigh the win you would get from sorting a smaller dataset. It's O(n) vs O(n log n).
The general solution to this type of problem is to use a balanced search tree (e.g. AVL tree, red-black tree, B-tree), which guarantees O(log n) time (almost constant, but not quite) for insertion, deletion, and lookup, where n is the number of items currently stored in the tree. Guaranteeing no key is stored in the tree twice is quite trivial, and is done automatically by many implementations.
If you're working in C++, you could try using std::map<int, yourtype>. If in C, find or implement some simple binary search tree code, and see if it's fast enough.
However, if you use such a tree and find it's too slow, you could look into some more fine-tuned approaches. One might be to put your structs in one big array, radix sort by the integer key, cull on it, then re-sort per pass. Another approach might be to use a Patricia tree.

Self-sorted data structure with random access

I need to implement self-sorted data structure with random access. Any ideas?
A self sorted data structure can be binary search trees. If you want a self sorted data structure and a self balanced one. AVL tree is the way to go. Retrieval time will be O(lgn) for random access.
Maintaining a sorted list and accessing it arbitrarily requires at least O(lgN) / operation. So, look for AVL, red-black trees, treaps or any other similar data structure and enrich them to support random indexing. I suggest treaps since they are the easiest to understand/implement.
One way to enrich the treap tree is to keep in each node the count of nodes in the subtree rooted at that node. You'll have to update the count when you modify the tree (eg: insertion/deletion).
I'm not too much involved lately with data structures implementation. Probably this answer is not an answer at all... you should see "Introduction to algorithms" written by Thomas Cormen. That book has many "recipes" with explanations about the inner workings of many data structures.
On the other hand you have to take into account how much time do you want to spend writing an algorithm, the size of the input and the if there is an actual necessity of an special kind of datastructure.
I see one thing missing from the answers here, the Skiplist
https://en.wikipedia.org/wiki/Skip_list
You get order automatically, there is a probabilistic element to search and creation.
Fits the question no worse than binary trees.
Self sorting is a little bit to ambigious. First of all
What kind of data structure?
There are a lot of different data structures out there, such as:
Linked list
Double linked list
Binary tree
Hash set / map
Stack
Heap
And many more and each of them behave differently than others and have their benefits of course.
Now, not all of them could or should be self-sorting, such as the Stack, it would be weird if that one were self-sorting.
However, the Linked List and the Binary Tree could be self sorting, and for this you could sort it in different ways and on different times.
For Linked Lists
I would preffere Insertion sort for this, you can read various good articles about this on both wikis and other places. I like the pasted link though. Look at it and try to understand the concept.
If you want to sort after it is inserted, i.e. on random times, well then you can just implement a sorting algororithm different than insertion sort maybe, bubblesort or maybe quicksort, I would avoid bubblesort though, it's a lot slower! But easier to gasp the mind around.
Random Access
Random is always something thats being discusses around so have a read about how to perform good randomization and you will be on your way, if you have a linked list and have a "getAt"-method, you could just randomize an index between 0 and n and get the item at that index.

Resources