How to add Big O and Big omega - algorithm

If an algorithm has two sub algorithm, when it is best case for sub algorithm A1 to the given input, it is the worst case for sub algorithm A2. How could I find the overall algorithm complexity?
Simply I mean Ω(N) + O(N)=?
I know if the algorithms are in sequential executing order the over all complexity is O(N)+ O(N) and in nested order O(N)* O(N).
Please tell me in both cases, when in sequential and in nested order

Essentially Ω(N) + O(N)= Ω(N). Because O(N) means lower (or at most the same) order of Ω(N). When they are summed, the lower order can be omitted.

If your algorithm includes one operation which takes (for example) O(N) time, and another which takes O(N^2) time, then the overall complexity is O(N^2). There's no such thing as O(N^2 + N). The same goes for Ω(). This answers your question about "sequential executing order".
If your algorithm includes N operations, each of which takes O(N) time, then the overall complexity is O(N^2). The same goes for Ω(). You just multiply the polynomials, and take the term which grows most quickly with increasing N. This answers your question about "nested execution order".

Related

Is an algorithm with a worst-case time complexity of O(n) always faster than an algorithm with a worst-case time complexity of O(n^2)?

This question has appeared in my algorithms class. Here's my thought:
I think the answer is no, an algorithm with worst-case time complexity of O(n) is not always faster than an algorithm with worst-case time complexity of O(n^2).
For example, suppose we have total-time functions S(n) = 99999999n and T(n) = n^2. Then clearly S(n) = O(n) and T(n) = O(n^2), but T(n) is faster than S(n) for all n < 99999999.
Is this reasoning valid? I'm slightly skeptical that, while this is a counterexample, it might be a counterexample to the wrong idea.
Thanks so much!
Big-O notation says nothing about the speed of an algorithm for any given input; it describes how the time increases with the number of elements. If your algorithm executes in constant time, but that time is 100 billion years, then it's certainly slower than many linear, quadratic and even exponential algorithms for large ranges of inputs.
But that's probably not really what the question is asking. The question is asking whether an algorithm A1 with worst-case complexity O(N) is always faster than an algorithm A2 with worst-case complexity O(N^2); and by faster it probably refers to the complexity itself. In which case you only need a counter-example, e.g.:
A1 has normal complexity O(log n) but worst-case complexity O(n^2).
A2 has normal complexity O(n) and worst-case complexity O(n).
In this example, A1 is normally faster (i.e. scales better) than A2 even though it has a greater worst-case complexity.
Since the question says Always it means it is enough to find only one counter example to prove that the answer is No.
Example for O(n^2) and O(n logn) but the same is true for O(n^2) and O(n)
One simple example can be a bubble sort where you keep comparing pairs until the array is sorted. Bubble sort is O(n^2).
If you use bubble sort on a sorted array, it will be faster than using other algorithms of time complexity O(nlogn).
You're talking about worst-case complexity here, and for some algorithms the worst case never happen in a practical application.
Saying that an algorithm runs faster than another means it run faster for all input data for all sizes of input. So the answer to your question is obviously no because the worst-case time complexity is not an accurate measure of the running time, it measures the order of growth of the number of operations in a worst case.
In practice, the running time depends of the implementation, and is not only about this number of operations. For example, one has to care about memory allocated, cache-efficiency, space/temporal locality. And obviously, one of the most important thing is the input data.
If you want examples of when the an algorithm runs faster than another while having a higher worst-case complexity, look at all the sorting algorithms and their running time depending of the input.
You are correct in every sense, that you provide a counter example to the statement. If it is for exam, then period, it should grant you full mark.
Yet for a better understanding about big-O notation and complexity stuff, I will share my own reasoning below. I also suggest you to always think the following graph when you are confused, especially the O(n) and O(n^2) line:
Big-O notation
My own reasoning when I first learnt computational complexity is that,
Big-O notation is saying for sufficient large size input, "sufficient" depends on the exact formula (Using the graph, n = 20 when compared O(n) & O(n^2) line), a higher order one will always be slower than lower order one
That means, for small input, there is no guarantee a higher order complexity algorithm will run slower than lower order one.
But Big-O notation tells you an information: When the input size keeping increasing, keep increasing....until a "sufficient" size, after that point, a higher order complexity algorithm will be always slower. And such a "sufficient" size is guaranteed to exist*.
Worst-time complexity
While Big-O notation provides a upper bound of the running time of an algorithm, depends on the structure of the input and the implementation of the algorithm, it may generally have a best complexity, average complexity and worst complexity.
The famous example is sorting algorithm: QuickSort vs MergeSort!
QuickSort, with a worst case of O(n^2)
MergeSort, with a worst case of O(n lg n)
However, Quick Sort is basically always faster than Merge Sort!
So, if your question is about Worst Case Complexity, quick sort & merge sort maybe the best counter example I can think of (Because both of them are common and famous)
Therefore, combine two parts, no matter from the point of view of input size, input structure, algorithm implementation, the answer to your question is NO.

Is n or nlog(n) better than constant or logarithmic time?

In the Princeton tutorial on Coursera the lecturer explains the common order-of-growth functions that are encountered. He says that linear and linearithmic running times are "what we strive" for and his reasoning was that as the input size increases so too does the running time. I think this is where he made a mistake because I have previously heard him refer to a linear order-of-growth as unsatisfactory for an efficient algorithm.
While he was speaking he also showed a chart that plotted the different running times - constant and logarithmic running times looked to be more efficient. So was this a mistake or is this true?
It is a mistake when taken in the context that O(n) and O(n log n) functions have better complexity than O(1) and O(log n) functions. When looking typical cases of complexity in big O notation:
O(1) < O(log n) < O(n) < O(n log n) < O(n^2)
Notice that this doesn't necessarily mean that they will always be better performance-wise - we could have an O(1) function that takes a long time to execute even though its complexity is unaffected by element count. Such a function would look better in big O notation than an O(log n) function, but could actually perform worse in practice.
Generally speaking: a function with lower complexity (in big O notation) will outperform a function with greater complexity (in big O notation) when n is sufficiently high.
You're missing the broader context in which those statements must have been made. Different kinds of problems have different demands, and often even have theoretical lower bounds on how much work is absolutely necessary to solve them, no matter the means.
For operations like sorting or scanning every element of a simple collection, you can make a hard lower bound of the number of elements in the collection for those operations, because the output depends on every element of the input. [1] Thus, O(n) or O(n*log(n)) are the best one can do.
For other kinds of operations, like accessing a single element of a hash table or linked list, or searching in a sorted set, the algorithm needn't examine all of the input. In those settings, an O(n) operation would be dreadfully slow.
[1] Others will note that sorting by comparisons also has an n*log(n) lower bound, from information-theoretic arguments. There are non-comparison based sorting algorithms that can beat this, for some types of input.
Generally speaking, what we strive for is the best we can manage to do. But depending on what we're doing, that might be O(1), O(log log N), O(log N), O(N), O(N log N), O(N2), O(N3), or (or certain algorithms) perhaps O(N!) or even O(2N).
Just for example, when you're dealing with searching in a sorted collection, binary search borders on trivial and gives O(log N) complexity. If the distribution of items in the collection is reasonably predictable, we can typically do even better--around O(log log N). Knowing that, an algorithm that was O(N) or O(N2) (for a couple of obvious examples) would probably be pretty disappointing.
On the other hand, sorting is generally quite a bit higher complexity--the "good" algorithms manage O(N log N), and the poorer ones are typically around O(N2). Therefore, for sorting an O(N) algorithm is actually very good (in fact, only possible for rather constrained types of inputs), and we can pretty much count on the fact that something like O(log log N) simply isn't possible.
Going even further, we'd be happy to manage a matrix multiplication in only O(N2) instead of the usual O(N3). We'd be ecstatic to get optimum, reproducible answers to the traveling salesman problem or subset sum problem in only O(N3), given that optimal solutions to these normally require O(N!).
Algorithms with a sublinear behavior like O(1) or O(Log(N)) are special in that they do not require to look at all elements. In a way this is a fallacy because if there are really N elements, it will take O(N) just to read or compute them.
Sublinear algorithms are often possible after some preprocessing has been performed. Think of binary search in a sorted table, taking O(Log(N)). If the data is initially unsorted, it will cost O(N Log(N)) to sort it first. The cost of sorting can be balanced if you perform many searches, say K, on the same data set. Indeed, without the sort, the cost of the searches will be O(K N), and with pre-sorting O(N Log(N)+ K Log(N)). You win if K >> Log(N).
This said, when no preprocessing is allowed, O(N) behavior is ideal, and O(N Log(N)) is quite comfortable as well (for a million elements, Lg(N) is only 20). You start screaming with O(N²) and worse.
He said those algorithms are what we strive for, which is generally true. Many algorithms cannot possibly be improved better than logarithmic or linear time, and while constant time would be better in a perfect world, it's often unattainable.
constant time is always better because the time (or space) complexity doesn't depend on the problem size... isn't it a great feature? :-)
then we have O(N) and then Nlog(N)
did you know? problems with constant time complexity exist!
e.g.
let A[N] be an array of N integer values, with N > 3. Find and algorithm to tell if the sum of the first three elements is positive or negative.
What we strive for is efficiency, in the sense of designing algorithms with a time (or space) complexity that does not exceed their theoretical lower bound.
For instance, using comparison-based algorithms, you can't find a value in a sorted array faster than Omega(Log(N)), and you cannot sort an array faster than Omega(N Log(N)) - in the worst case.
Thus, binary search O(Log(N)) and Heapsort O(N Log(N)) are efficient algorithms, while linear search O(N) and Bubblesort O(N²) are not.
The lower bound depends on the problem to be solved, not on the algorithm.
Yes constant time i.e. O(1) is better than linear time O(n) because the former is not depending on the input-size of the problem. The order is O(1) > O (logn) > O (n) > O (nlogn).
Linear or linearthimic time we strive for because going for O(1) might not be realistic as in every sorting algorithm we atleast need a few comparisons which the professor tries to prove with his decison Tree- comparison analysis where he tries to sort three elements a b c and proves a lower bound of nlogn. Check his "Complexity of Sorting" in the Mergesort lecture.

Time Complexity Explanation with addition

If i have something with O(logN) and add it to something with O(1)
Is the overall complexity still logN?
thanks
Often big-O notation is an approximation. For example, you might say logN when the actual complexity is 4logN + 7. This is still considered to be logN time, because the major factor is the behaviour as N changes.
If you had some algorithm that is N^2 + logN, then the most significant term is N^2 and the logN quickly becomes unimportant as N increases... In that case, you might simply say it is O(N^2) because it describes the characteristic time complexity of the algorithm.
So it depends on your needs. If you simply need to describe the nature of the algorithm, then logN should suffice. If you need to completely categorize every part of it or compare with similar but optimized algorithms, then add in all the terms.

Big theta notation of insertion sort algorithm

I'm studying asymptotic notations from the book and I can't understand what the author means. I know that if f(n) = Θ(n^2) then f(n) = O(n^2). However, I understand from the author's words that for insertion sort function algorithm f(n) = Θ(n) and f(n)=O(n^2).
Why? Does the big omega or big theta change with different inputs?
He says that:
"The Θ(n^2) bound on the worst-case running time of insertion sort, however, does not imply a Θ(n^2) bound on the running time of insertion sort on every input. "
However it is different for big-oh notation. What does he mean? What is the difference between them?
I'm so confused. I'm copy pasting it below:
Since O-notation describes an upper bound, when we use it to bound the worst-case running
time of an algorithm, we have a bound on the running time of the algorithm on every input.
Thus, the O(n^2) bound on worst-case running time of insertion sort also applies to its running
time on every input. The Θ(n^2) bound on the worst-case running time of insertion sort,
however, does not imply a Θ(n^2) bound on the running time of insertion sort on every input.
For example, when the input is already sorted, insertion sort runs in
Θ(n) time.
Does the big omega or big theta change with different inputs?
Yes. To give a simpler example, consider linear search in an array from left to right. In the worst and average case, this algorithm takes f(n) = a × n/2 + b expected steps for some constants a and b. But when the left element is guaranteed to always hold the key you're looking for, it always takes a + b steps.
Since Θ denotes a strict bound, and Θ(n) != Θ(n²), it follows that the Θ for the two kinds of input is different.
EDIT: as for Θ and big-O being different on the same input, yes, that's perfectly possible. Consider the following (admittedly trivial) example.
When we set n to 5, then n = 5 and n < 6 are both true. But when we set n to 1, then n = 5 is false while n < 6 is still true.
Similarly, big-O is just an upper bound, just like < on numbers, while Θ is a strict bound like =.
(Actually, Θ is more like a < n < b for constants a and b, i.e. it defines something analogous to a range of numbers, but the principle is the same.)
Refer to CLRS edition 3
Page -44(Asymptotic notation,functions,and running times)
It says -
Even when we use asymptotic notation to apply to the running time of an algorithm, we need to understand which running time we mean. Sometimes we are interested in the worst-case running time. Often, however, we wish to characterize the running time no matter what the input. In other words, we often wish to make a blanket statement that covers all inputs, not just the worst case.
Takings from the above para:
Worst case provides the atmost limit for the running time of an algorithm.
Thus, the O(n^2) bound on worst-case running time of insertion sort also applies to its running time on every input.
But Theta(n^2) bound on the worst-case running time of insertion sort, however, does not imply Theta(n^2) bound on the running time of insertion sort on every input.
Because best case running time of insertion sort yields Theta(n).(When the list is already sorted)
We usually write the worst case time complexity of an algorithm but when best case and average case come into accountability the time complexity varies according to these cases.
In simple words, the running time of a programs is described as a
function of its input size i.e. f(n).
The = is asymmetric, thus an+b=O(n) means f(n) belongs to set O(g(n)). So we can also say an+b=O(n^2) and its true because f(n) for some value of a,b and n belongs to set O(n^2).
Thus Big-Oh(O) only gives an upper bound or you can say the notation gives a blanket statement, which means all the inputs of a given input size are covered not just the worst case once. For example in case of insertion sort an array of size n in reverse order.
So n=O(n^2) is true but will be an abuse when defining worst case running time for an algorithm. As worst case running time gives an upper bound on the running time for any input. And as we all know that in case of insertion sort the running time will depend upon how the much sorted the input is in the given array of a fixed size. So if the array is sort the running will be linear.
So we need a tight asymptotic bound notation to describe our worst case,
which is provided by Θ notation thus the worst case of insertion sort will be Θ(n^2) and best case will be Θ(n).
we have a bound on the running time of the algorithm on every input
It means that if there is a set of inputs with running time n^2 while other have less, then the algorithm is O(n^2).
The Θ(n^2) bound on the worst-case running time of insertion sort,
however, does not imply a Θ(n^2) bound on the running time of
insertion sort on every input
He is saying that the converse is not true. If an algorithm is O(n^2), it doesnt not mean every single input will run with quadratic time.
My academic theory on the insertion sort algorithm is far away in the past, but from what I understand in your copy-paste :
big-O notation always describe the worst case, but big-Theta describe some sort of average for typical data.
take a look at this : What is the difference between Θ(n) and O(n)?

Avgerage Time Complexity of a sorting algorithm

I have a treesort function which performs two distinct tasks, each with its own time complexity. I figured out the avg. case time complexity of the two tasks but how do I find the overall complexity of the algorithm.
For example the algorithm takes in a random list of "n" keys x:
Sort(x):
Insert(x):
#Time complexity of O(nLog(n))
Traverse(x):
#Time complexity of O(n)
Do I just add the two complexities together to give me O(n + nLog(n)) or do I take the dominant task (in this case Insert) and end up with an overall complexity of O(nLog(n))
In a simple case like this,
O((n) + (n log(n)) = O(n + n log(n))
= O(n (log(n) + 1))
= O(n log(n))
or do I take the dominant task (in this case Insert) and end up with an over complexity of O(nLog(n))
That's right. As n grows, first element in O(n + nLog(n)) sum will become less and less significant. Thus, for sufficiently large n, its contribution can be ignored.
You need to take the dominant one.
The whole idea of measuring complexity this way is based on the assumption that you want to know what happens with large ns.
So if you have a polynomial, you can discard all but the highest order element, if you have a logarithm, you can ignore the base and so on.
In everyday practice however, these differences may start to matter, so it's sometimes good to have a more precise picture of your algorithm's complexity, even down to the level where you assign different weights to different operations.
(Returning to your original questions, assuming you're using base 2 logarithms, at n=1048576, the difference between n+n*logn and n*logn is around 5%, which is probably not really worth worrying about.)

Resources