How to write a predicate listtran(L, R)? - prolog

How to write a predicate listtran(L, R),
L is [0,1,2,3,4,5,6,7,8,9,10],
R is [zero, one, ..., ten]
Example:
?- listtran([0,4,5], L).
L = [zero, four, five].
?- listtran(L, [two, ten, two]).
L = [2, 10, 2].

if you only have to go from 0-10, I would definitely start building a predicate that translates numbers to text names:
num(0,zero).
num(1,one).
num(2,two).
num(3,three).
num(4,four).
num(5,five).
num(6,six).
num(7,seven).
num(8,eight).
num(9,nine).
num(10,ten).
then using them in the listtran predicate is easy:
listtran(IntLst,TxtLst) :-
maplist(num,IntLst,TxtLst).
to build this in a clearer way without the helper maplist predicate, try this:
listtran([],[]). %base rule
listtran([Int|IntRest], [Txt|TxtRest]) :-
num(Int,Txt),
listtran(IntRest,TxtRest).

Form a pairing domain, PairDom = [0-zero, 1-one, 2-two, ...] and use member( X1-Y1, PairDom):
pair(A,B,A-B).
listtran(L,R):-
maplist(pair,[0,1,2,3, ...,10],[zero,one, ...,ten],PairDom),
maplist(pair,L,R, ...),
maplist(member, ...).
To get a feel for how this might work, try it:
?- PairDom=[0-zero, 1-one, 2-two], member(1-Y1,PairDom).
Y1 = one
?- PairDom=[0-zero, 1-one, 2-two], member(X1-three,PairDom).
No.

Related

How to check order in prolog?

I am trying to solve this puzzle in prolog
Five people were eating apples, A finished before B, but behind C. D finished before E, but behind B. What was the finishing order?
My current solution has singleton variable, I am not sure how to fix this.
finishbefore(A, B, Ls) :- append(_, [A,B|_], Ls).
order(Al):-
length(Al,5),
finishbefore(A,B,Al),
finishbefore(C,A,Al),
finishbefore(D,E,Al),
finishbefore(B,D,Al).
%%query
%%?- order(Al).
Here is a pure version using constraints of library(clpz) or library(clpfd). The idea is to ask for a slightly different problem.
How can an endpoint in time be associated to each person respecting the constraints given?
Since we have five persons, five different points in time are sufficient but not strictly necessary, like 1..5.
:- use_module(library(clpz)). % or clpfd
:- set_prolog_flag(double_quotes, chars). % for "abcde" below.
appleeating_(Ends, Zs) :-
Ends = [A,B,C,D,E],
Zs = Ends,
Ends ins 1..5,
% alldifferent(Ends),
A #< B,
C #< A,
D #< E,
B #< D.
?- appleeating_(Ends, Zs).
Ends = [2, 3, 1, 4, 5], Zs = [2, 3, 1, 4, 5].
There is exactly one solution! Note that alldifferent/1 is not directly needed since nowhere is it stated that two persons are not allowed to end at precisely the same time. In fact, above proves that there is no shorter solution. #CapelliC's solution imposes an order, even if two persons finish ex aequo. But for the sake of compatibility, lets now map the solution back to your representation.
list_nth1(Es, N, E) :-
nth1(N, Es, E).
appleeatingorder(OrderedPeople) :-
appleeating_(Ends, Zs),
same_length(OrderedPeople, Ends),
labeling([], Zs), % not strictly needed
maplist(list_nth1(OrderedPeople), Ends,"abcde"). % effectively enforces alldifferent/1
?- appleeatingorder(OrderedPeople).
OrderedPeople = [c,a,b,d,e].
?- appleeatingorder(OrderedPeople).
OrderedPeople = "cabde".
The last solution using double quotes produces Scryer directly. In SWI use library(double_quotes).
(The extra argument Zs of appleeating_/2 is not strictly needed in this case, but it is a very useful convention for CLP predicates in general. It separates the modelling part (appleeating_/2) from the search part (labeling([], Zs)) such that you can easily try various versions for search/labeling at the same time. In order to become actually solved, all variables in Zs have to have an actual value.)
Let's correct finishbefore/3:
finishbefore(X, Y, L) :-
append(_, [X|R], L),
memberchk(Y, R).
then let's encode the known constraints:
check_finish_time(Order) :-
forall(
member(X<Y, [a<b,c<a, d<e,d<b]),
finishbefore(X,Y,Order)).
and now let's test all possible orderings
?- permutation([a,b,c,d,e],P),check_finish_time(P).
I get 9 solutions, backtracking with ;... maybe there are implicit constraints that should be encoded.
edit
Sorry for the noise, have found the bug. Swap the last constraint order, that is b<d instead of d<b, and now only 1 solution is allowed...

Prolog: "chili" interpreter that expresses call stack and choice points

The usual vanilla interpreter uses Prolog backtracking
itself to archive backtacking. I guess this is the reason
why its called "vanilla":
solve(true).
solve((A,B)) :- solve(A), solve(B).
solve(H) :- clause(H, B), solve(B).
How about a "chili" interpreter, that doesn't use any
Prolog backtracking. Basically a predicate first/? to obtain
a first solution and a predicate next/? to obtain further solutions.
How would one go about it and realize such an interpreter in Prolog. The solution needs not be pure, could also use findall and cut. Although a purer solution could be also illustrative.
This solution is a slightly dumbed-down version of the interpreter given in Markus Triska's A Couple of Meta-interpreters in Prolog (part of The Power of Prolog) under Reifying backtracking. It is a bit more verbose and less efficient, but possibly a bit more immediately understandable than that code.
first(Goal, Answer, Choices) :-
body_append(Goal, [], Goals),
next([Goals-Goal], Answer, Choices).
next([Goals-Query|Choices0], Answer, Choices) :-
next(Goals, Query, Answer, Choices0, Choices).
next([], Answer, Answer, Choices, Choices).
next([Goal|Goals0], Query, Answer, Choices0, Choices) :-
findall(Goals-Query, clause_append(Goal, Goals0, Goals), Choices1),
append(Choices1, Choices0, Choices2),
next(Choices2, Answer, Choices).
clause_append(Goal, Goals0, Goals) :-
clause(Goal, Body),
body_append(Body, Goals0, Goals).
body_append((A, B), List0, List) :-
!,
body_append(B, List0, List1),
body_append(A, List1, List).
body_append(true, List, List) :-
!.
body_append(A, As, [A|As]).
The idea is that the Prolog engine state is represented as a list of disjunctive Choices, playing the role of a stack of choice points. Each choice is of the form Goals-Query, where Goals is a conjunctive list of goals still to be satisfied, i.e. the resolvent at that node of the SLD tree, and Query is an instance of the original query term whose variables have been instantiated according to the unifications made in the path leading up to that node.
If the resolvent of a choice becomes empty, it's Query instantiation is returned as an Answer and we continue with other choices. Note how when no clauses are found for a goal, i.e. it "fails", Choices1 unifies with [] and we "backtrack" by proceeding through the remaining choices in Choices0. Also note that when there are no choices in the list, next/3 fails.
An example session:
?- assertz(mem(X, [X|_])), assertz(mem(X, [_|Xs]) :- mem(X, Xs)).
true.
?- first(mem(X, [1, 2, 3]), A0, S0), next(S0, A1, S1), next(S1, A2, S2).
A0 = mem(1, [1, 2, 3]),
S0 = [[mem(_G507, [2, 3])]-mem(_G507, [1, 2, 3])],
A1 = mem(2, [1, 2, 3]),
S1 = [[mem(_G579, [3])]-mem(_G579, [1, 2, 3])],
A2 = mem(3, [1, 2, 3]),
S2 = [[mem(_G651, [])]-mem(_G651, [1, 2, 3])].
The problem with this approach is that findall/3 does a lot of copying of the resolvent i.e. the remaining conjunction of goals to be proved in a disjunctive branch. I would love to see a more efficient solution where terms are copied and variables shared more cleverly.
Here is a slight variation of reified backtracking, using difference lists.
first(G, [[]|L], R) :- !, first(G, L, R). %% choice point elimination
first([A], L, [A|L]) :- !.
first([H|T], L, R) :- findall(B, rule(H,B,T), [B|C]), !, first(B, [C|L], R).
first(_, L, R) :- next(L, R).
next([[B|C]|L], R) :- !, first(B, [C|L], R).
next([_|L], R) :- next(L, R).
Representation of rules and facts via difference lists looks for Peano arithmetic as follows:
rule(add(n,X,X),T,T).
rule(add(s(X),Y,s(Z)),[add(X,Y,Z)|T],T).
rule(mul(n,_,n),T,T).
rule(mul(s(X),Y,Z),[mul(X,Y,H),add(Y,H,Z)|T],T).
And you can run queries as follows:
?- first([mul(s(s(n)),s(s(s(n))),X),X],[],[X|L]).
X = s(s(s(s(s(s(n))))))
L = []
?- first([add(X,Y,s(s(s(n)))),X-Y],[],[X-Y|L]).
X = n
Y = s(s(s(n)))
L = [[[add(_A,_B,s(s(n))),s(_A)-_B]]]
?- first([add(X,Y,s(s(s(n)))),X-Y],[],[_|L]), next(L,[X-Y|R]).
L = [[[add(_A,_B,s(s(n))),s(_A)-_B]]],
X = s(n)
Y = s(s(n))
R = [[[add(_C,_D,s(n)),s(s(_C))-_D]]]

Rotate a list in prolog recursively

I'm trying to rotate a list in prolog recursively but it does not work as expected.
Code:
rot([],[]).
rot([H|T1], [T2|H]):-rot(T1,T2).
Output:
?- rot([1,2,3], V).
V = [[[[]|3]|2]|1]
Expected output:
?- rot([1,2,3], V).
V = [3,2,1]
Could anyone explain me why my code does not work?
Since Prolog is untyped, you can indeed write something like [List|Element], but if you want a list to make sense, the only way you can construct lists is like [Element|List]. So [T2|H] does not make sense at all. In that case T2 should be an element, and H a list (or the empty list []).
You will need to define two predicates:
the main predicate (rot/2) that simply pops the head from the given list and calls the recursive predicate; and
the recursive predicate (here rot/3) that simply passes all elements of the given list and emits the original head as tail element.
Together this works like:
%main predicate rot/2
rot([],[]).
rot([H|T1],T2) :-
rot(T1,H,T2).
%recursive predicate rot/3
rot([],Last,[Last]).
rot([H|T1],Last,[H|T2]) :-
rot(T1,Last,T2).
Your code doesn't work because in an expression like [H|T], H is an element of the list and T is the tail of the list--also a list. For instance:
?- [H|T] = [1,2,3].
H = 1,
T = [2, 3].
So what happens when you switch that around?
?- [H|T] = [1,2,3], X = [T|H].
H = 1,
T = [2, 3],
X = [[2, 3]|1].
See the problem?
The problem is with the second clause. What I do is to rotate the tail of the first list inside L1 and then call append with L1 and the first element and assign the result to L (the second argument)
my-append([], L, L).
my-append([H|T], L, [H|R]) :- my-append(T, L, R).
rot([], []).
rot([H|T], L) :- rot(T, L1), my-append(L1, H, L).

PROLOG: Determining if elements in list are equal if order does not matter

I'm trying to figure out a way to check if two lists are equal regardless of their order of elements.
My first attempt was:
areq([],[]).
areq([],[_|_]).
areq([H1|T1], L):- member(H1, L), areq(T1, L).
However, this only checks if all elements of the list on the left exist in the list on the right; meaning areq([1,2,3],[1,2,3,4]) => true. At this point, I need to find a way to be able to test thing in a bi-directional sense. My second attempt was the following:
areq([],[]).
areq([],[_|_]).
areq([H1|T1], L):- member(H1, L), areq(T1, L), append([H1], T1, U), areq(U, L).
Where I would try to rebuild the lest on the left and swap lists in the end; but this failed miserably.
My sense of recursion is extremely poor and simply don't know how to improve it, especially with Prolog. Any hints or suggestions would be appreciated at this point.
As a starting point, let's take the second implementation of equal_elements/2 by #CapelliC:
equal_elements([], []).
equal_elements([X|Xs], Ys) :-
select(X, Ys, Zs),
equal_elements(Xs, Zs).
Above implementation leaves useless choicepoints for queries like this one:
?- equal_elements([1,2,3],[3,2,1]).
true ; % succeeds, but leaves choicepoint
false.
What could we do? We could fix the efficiency issue by using
selectchk/3 instead of
select/3, but by doing so we would lose logical-purity! Can we do better?
We can!
Introducing selectd/3, a logically pure predicate that combines the determinism of selectchk/3 and the purity of select/3. selectd/3 is based on
if_/3 and (=)/3:
selectd(E,[A|As],Bs1) :-
if_(A = E, As = Bs1,
(Bs1 = [A|Bs], selectd(E,As,Bs))).
selectd/3 can be used a drop-in replacement for select/3, so putting it to use is easy!
equal_elementsB([], []).
equal_elementsB([X|Xs], Ys) :-
selectd(X, Ys, Zs),
equal_elementsB(Xs, Zs).
Let's see it in action!
?- equal_elementsB([1,2,3],[3,2,1]).
true. % succeeds deterministically
?- equal_elementsB([1,2,3],[A,B,C]), C=3,B=2,A=1.
A = 1, B = 2, C = 3 ; % still logically pure
false.
Edit 2015-05-14
The OP wasn't specific if the predicate
should enforce that items occur on both sides with
the same multiplicities.
equal_elementsB/2 does it like that, as shown by these two queries:
?- equal_elementsB([1,2,3,2,3],[3,3,2,1,2]).
true.
?- equal_elementsB([1,2,3,2,3],[3,3,2,1,2,3]).
false.
If we wanted the second query to succeed, we could relax the definition in a logically pure way by using meta-predicate
tfilter/3 and
reified inequality dif/3:
equal_elementsC([],[]).
equal_elementsC([X|Xs],Ys2) :-
selectd(X,Ys2,Ys1),
tfilter(dif(X),Ys1,Ys0),
tfilter(dif(X),Xs ,Xs0),
equal_elementsC(Xs0,Ys0).
Let's run two queries like the ones above, this time using equal_elementsC/2:
?- equal_elementsC([1,2,3,2,3],[3,3,2,1,2]).
true.
?- equal_elementsC([1,2,3,2,3],[3,3,2,1,2,3]).
true.
Edit 2015-05-17
As it is, equal_elementsB/2 does not universally terminate in cases like the following:
?- equal_elementsB([],Xs), false. % terminates universally
false.
?- equal_elementsB([_],Xs), false. % gives a single answer, but ...
%%% wait forever % ... does not terminate universally
If we flip the first and second argument, however, we get termination!
?- equal_elementsB(Xs,[]), false. % terminates universally
false.
?- equal_elementsB(Xs,[_]), false. % terminates universally
false.
Inspired by an answer given by #AmiTavory, we can improve the implementation of equal_elementsB/2 by "sharpening" the solution set like so:
equal_elementsBB(Xs,Ys) :-
same_length(Xs,Ys),
equal_elementsB(Xs,Ys).
To check if non-termination is gone, we put queries using both predicates head to head:
?- equal_elementsB([_],Xs), false.
%%% wait forever % does not terminate universally
?- equal_elementsBB([_],Xs), false.
false. % terminates universally
Note that the same "trick" does not work with equal_elementsC/2,
because of the size of solution set is infinite (for all but the most trivial instances of interest).
A simple solution using the sort/2 ISO standard built-in predicate, assuming that neither list contains duplicated elements:
equal_elements(List1, List2) :-
sort(List1, Sorted1),
sort(List2, Sorted2),
Sorted1 == Sorted2.
Some sample queries:
| ?- equal_elements([1,2,3],[1,2,3,4]).
no
| ?- equal_elements([1,2,3],[3,1,2]).
yes
| ?- equal_elements([a(X),a(Y),a(Z)],[a(1),a(2),a(3)]).
no
| ?- equal_elements([a(X),a(Y),a(Z)],[a(Z),a(X),a(Y)]).
yes
In Prolog you often can do exactly what you say
areq([],_).
areq([H1|T1], L):- member(H1, L), areq(T1, L).
bi_areq(L1, L2) :- areq(L1, L2), areq(L2, L1).
Rename if necessary.
a compact form:
member_(Ys, X) :- member(X, Ys).
equal_elements(Xs, Xs) :- maplist(member_(Ys), Xs).
but, using member/2 seems inefficient, and leave space to ambiguity about duplicates (on both sides). Instead, I would use select/3
?- [user].
equal_elements([], []).
equal_elements([X|Xs], Ys) :-
select(X, Ys, Zs),
equal_elements(Xs, Zs).
^D here
1 ?- equal_elements(X, [1,2,3]).
X = [1, 2, 3] ;
X = [1, 3, 2] ;
X = [2, 1, 3] ;
X = [2, 3, 1] ;
X = [3, 1, 2] ;
X = [3, 2, 1] ;
false.
2 ?- equal_elements([1,2,3,3], [1,2,3]).
false.
or, better,
equal_elements(Xs, Ys) :- permutation(Xs, Ys).
The other answers are all elegant (way above my own Prolog level), but it struck me that the question stated
efficient for the regular uses.
The accepted answer is O(max(|A| log(|A|), |B|log(|B|)), irrespective of whether the lists are equal (up to permutation) or not.
At the very least, it would pay to check the lengths before bothering to sort, which would decrease the runtime to something linear in the lengths of the lists in the case where they are not of equal length.
Expanding this, it is not difficult to modify the solution so that its runtime is effectively linear in the general case where the lists are not equal (up to permutation), using random digests.
Suppose we define
digest(L, D) :- digest(L, 1, D).
digest([], D, D) :- !.
digest([H|T], Acc, D) :-
term_hash(H, TH),
NewAcc is mod(Acc * TH, 1610612741),
digest(T, NewAcc, D).
This is the Prolog version of the mathematical function Prod_i h(a_i) | p, where h is the hash, and p is a prime. It effectively maps each list to a random (in the hashing sense) value in the range 0, ...., p - 1 (in the above, p is the large prime 1610612741).
We can now check if two lists have the same digest:
same_digests(A, B) :-
digest(A, DA),
digest(B, DB),
DA =:= DB.
If two lists have different digests, they cannot be equal. If two lists have the same digest, then there is a tiny chance that they are unequal, but this still needs to be checked. For this case I shamelessly stole Paulo Moura's excellent answer.
The final code is this:
equal_elements(A, B) :-
same_digests(A, B),
sort(A, SortedA),
sort(B, SortedB),
SortedA == SortedB.
same_digests(A, B) :-
digest(A, DA),
digest(B, DB),
DA =:= DB.
digest(L, D) :- digest(L, 1, D).
digest([], D, D) :- !.
digest([H|T], Acc, D) :-
term_hash(H, TH),
NewAcc is mod(Acc * TH, 1610612741),
digest(T, NewAcc, D).
One possibility, inspired on qsort:
split(_,[],[],[],[]) :- !.
split(X,[H|Q],S,E,G) :-
compare(R,X,H),
split(R,X,[H|Q],S,E,G).
split(<,X,[H|Q],[H|S],E,G) :-
split(X,Q,S,E,G).
split(=,X,[X|Q],S,[X|E],G) :-
split(X,Q,S,E,G).
split(>,X,[H|Q],S,E,[H|G]) :-
split(X,Q,S,E,G).
cmp([],[]).
cmp([H|Q],L2) :-
split(H,Q,S1,E1,G1),
split(H,L2,S2,[H|E1],G2),
cmp(S1,S2),
cmp(G1,G2).
A simple solution using cut.
areq(A,A):-!.
areq([A|B],[C|D]):-areq(A,C,D,E),areq(B,E).
areq(A,A,B,B):-!.
areq(A,B,[C|D],[B|E]):-areq(A,C,D,E).
Some sample queries:
?- areq([],[]).
true.
?- areq([1],[]).
false.
?- areq([],[1]).
false.
?- areq([1,2,3],[3,2,1]).
true.
?- areq([1,1,2,2],[2,1,2,1]).
true.

Prolog programs - how to make it work?

I have these two programs and they're not working as they should. The first without_doubles_2(Xs, Ys)is supposed to show that it is true if Ys is the list of the elements appearing in Xs without duplication. The elements in Ys are in the reversed order of Xs with the first duplicate values being kept. Such as, without_doubles_2([1,2,3,4,5,6,4,4],X) prints X=[6,5,4,3,2,1] yet, it prints false.
without_doubles_2([],[]).
without_doubles_2([H|T],[H|Y]):- member(H,T),!,
delete(H,T,T1),
without_doubles_2(T1,Y).
without_doubles_2([H|T],[H|Y]):- without_doubles_2(T,Y).
reverse([],[]).
reverse([H|T],Y):- reverse(T,T1), addtoend(H,T1,Y).
addtoend(H,[],[H]).
addtoend(X,[H|T],[H|T1]):-addtoend(X,T,T1).
without_doubles_21(X,Z):- without_doubles_2(X,Y),
reverse(Y,Z).
The second one is how do I make this program use a string? It's supposed to delete the vowels from a string and print only the consonants.
deleteV([H|T],R):-member(H,[a,e,i,o,u]),deleteV(T,R),!.
deleteV([H|T],[H|R]):-deleteV(T,R),!.
deleteV([],[]).
Your call to delete always fails because you have the order of arguments wrong:
delete(+List1, #Elem, -List2)
So instead of
delete(H, T, T1)
You want
delete(T, H, T1)
Finding an error like this is simple using the trace functionality of the swi-prolog interpreter - just enter trace. to begin trace mode, enter the predicate, and see what the interpreter is doing. In this case you would have seen that the fail comes from the delete statement. The documentation related to tracing can be found here.
Also note that you can rewrite the predicate omitting the member check and thus the third clause, because delete([1,2,3],9001,[1,2,3]) evaluates to true - if the element is not in the list the result is the same as the input. So your predicate could look like this (name shortened due to lazyness):
nodubs([], []).
nodubs([H|T], [H|Y]) :- delete(T, H, T1), nodubs(T1, Y).
For your second question, you can turn a string into a list of characters (represented as ascii codes) using the string_to_list predicate.
As for the predicate deleting vovels from the string, I would implement it like this (there's probably better solutions for this problem or some built-ins you could use but my prolog is somewhat rusty):
%deleteall(+L, +Elems, -R)
%a helper predicate for deleting all items in Elems from L
deleteall(L, [], L).
deleteall(L, [H|T], R) :- delete(L, H, L1), deleteall(L1, T, R).
deleteV(S, R) :-
string_to_list(S, L), %create list L from input string
string_to_list("aeiou", A), %create a list of all vovels
deleteall(L, A, RL), %use deleteall to delete all vovels from L
string_to_list(R, RL). %turn the result back into a string
deleteV/2 could make use of library(lists):
?- subtract("carlo","aeiou",L), format('~s',[L]).
crl
L = [99, 114, 108].
while to remove duplicates we could take advantage from sort/2 and select/3:
nodup(L, N) :-
sort(L, S),
nodup(L, S, N).
nodup([], _S, []).
nodup([X|Xs], S, N) :-
( select(X, S, R) -> N = [X|Ys] ; N = Ys, R = S ),
nodup(Xs, R, Ys).
test:
?- nodup([1,2,3,4,4,4,5,2,7],L).
L = [1, 2, 3, 4, 5, 7].
edit much better, from ssBarBee
?- setof(X,member(X,[1,2,2,5,3,2]),L).
L = [1, 2, 3, 5].

Resources