Is there a `pipe` equivalent in ruby? - ruby

Occasionally when writing Ruby I find myself wanting a pipe method, similar to tap but returning the result of calling the block with self as a parameter, like this:
class Object
def pipe(&block)
block.call(self)
end
end
some_operation.pipe { |x| some_other_operation(x) }
..but so far I haven't managed to find out what it's called, if it exists. Does it exist?
If it doesn't, I know I could monkey-patch object to add it but, y'know, that's bad. Unless there's a brilliant, guaranteed to never clash (and descriptive and short) name I could use for it...

This abstraction doesn't exist in the core. I usually call it as, it's short and declarative:
class Object
def as
yield(self)
end
end
"3".to_i.as { |x| x*x } #=> 9
Raganwald usually mentions that abstraction in his posts, he calls it into.
So, summing it up, some names: pipe, as, into, peg, thru.

Ruby 2.5 introduced Object.yield_self which is exactly the pipe operator you're using: it receives a block, passes self as the first argument to it and returns the result of evaluating the block.
class Object
def yield_self(*args)
yield(self, *args)
end
end
Example usage:
"Hello".yield_self { |str| str + " World" }
# Returns "Hello World"
You can also read a little more about it in the following blog posts:
Explains the difference with Rails' try and Ruby's tap methods
Some very nice examples of using yield_self to simplify code

Here's the the technique I use to chain objects. It's pretty much exactly as above except I don't reopen the Object class. Instead, I create a Module which I will use to extend whatever object instance I'm working with. See below:
module Chainable
def as
(yield self.dup).extend(Chainable)
end
end
I've defined this method to prohibit mutative methods from altering the original object. Below is a trivial example of using this module:
[3] pry(main)> m = 'hi'
=> "hi"
[4] pry(main)> m.extend(Chainable).as { |m| m << '!' }.as { |m| m+'?'}
=> "hi!?"
[5] pry(main)> m
=> "hi"
If anybody sees anything wrong with this code, please let me know! Hope this helps.

Related

Metaprogramming in Ruby with derived classes

I'm trying to write a method that prints class variable names and their values. As an example:
class A
def printvars
???
end
end
class <<A
def varlist(*args)
???
end
end
class B < A
varlist :c
def initialize(c)
#c = c
end
b = B.new(10)
b.printvars()
And I would like the output to be c => 10. But I don't know what goes in the ???. I've tried using a self.class_eval in the body of varlist, but that won't let me store args. I've also tried keeping a hash in the class A and just printing it out in printvars, but the singleton class is a superclass of A and so has no access to this hash. So far everything I've tried doesn't work.
I think something similar must be possible, since Rails does something related with its validates_* methods. Ideally I could make this work exactly as expected, but even a pointer to how to print just the variable names (so just c as output) would be most appreciated.
You might like this answer: What is attr_accessor in Ruby?
Basically, as you surmised, varlist needs to be a class method which takes a variable list of arguments (*args). Once you have those arguments you could try any number of things using send, respond_to?, or maybe even instance_variable_get. Note, none of those are really recommended, but I wanted to answer your question a bit.
The other half is that you should probably look into method_missing in order to understand how things like validates_* are working. The * part necessitates that you do something like method_missing because you can't actually do module_eval until you know what you're looking for. In the case of the magic rails methods, you don't necessarily ever know what you're looking for! So we rely on the built in method_missing to let us know what got called.
For funzies, try this in IRB:
class A
def method_missing(method, *args, &block)
puts method, args.inspect
end
end
A.new.banana(13, 'snakes')
A.new.validates_serenity_of('Scooters', :within => [:calm, :uncalm])
Does that help?
Just use Module#class_variables
As far as I can tell, you're vastly over-complicating this. All you need is the pre-defined Module#class_variables method. You can call this directly on the class, or invoke it through self if you want to bind it to an instance of the class. For example:
class Foo
##bar = "baz"
def show_class_variables
self.class.class_variables
end
end
Foo.class_variables
#=> [:##bar]
foo = Foo.new
foo.show_class_variables
#=> [:##bar]

What is the point of using "send" instead of a normal method call?

as far as I understand 'send' method, this
some_object.some_method("im an argument")
is same as this
some_object.send :some_method, "im an argument"
So what is the point using 'send' method?
It can come in handy if you don't know in advance the name of the method, when you're doing metaprogramming for example, you can have the name of the method in a variable and pass it to the send method.
It can also be used to call private methods, although this particular usage is not considered to be a good practice by most Ruby developers.
class Test
private
def my_private_method
puts "Yay"
end
end
t = Test.new
t.my_private_method # Error
t.send :my_private_method #Ok
You can use public_send though to only be able to call public methods.
In addition to Intrepidd's use cases, it is convenient when you want to route different methods on the same receiver and/or arguments. If you have some_object, and want to do different things on it depending on what foo is, then without send, you need to write like:
case foo
when blah_blah then some_object.do_this(*some_arguments)
when whatever then some_object.do_that(*some_arguments)
...
end
but if you have send, you can write
next_method =
case foo
when blah_blah then :do_this
when whatever then :do_that
....
end
some_object.send(next_method, *some_arguments)
or
some_object.send(
case foo
when blah_blah then :do_this
when whatever then :do_that
....
end,
*some_arguments
)
or by using a hash, even this:
NextMethod = {blah_blah: :do_this, whatever: :do_that, ...}
some_object.send(NextMethod[:foo], *some_arguments)
In addition to everyone else's answers, a good use case would be for iterating through methods that contain an incrementing digit.
class Something
def attribute_0
"foo"
end
def attribute_1
"bar"
end
def attribute_2
"baz"
end
end
thing = Something.new
3.times do |x|
puts thing.send("attribute_#{x}")
end
#=> foo
# bar
# baz
This may seem trivial, but it's occasionally helped me keep my Rails code and templates DRY. It's a very specific case, but I think it's a valid one.
The summing briefly up what was already said by colleagues: send method is a syntax sugar for meta-programming. The example below demonstrates the case when native calls to methods are likely impossible:
class Validator
def name
'Mozart'
end
def location
'Salzburg'
end
end
v = Validator.new
'%name% was born in %location%'.gsub (/%(?<mthd>\w+)%/) do
# v.send :"#{Regexp.last_match[:mthd]}"
v.send Regexp.last_match[:mthd].to_sym
end
=> "Mozart was born in Salzburg"
I like this costruction
Object.get_const("Foo").send(:bar)

How does the "#map(&proc)" idiom work when introspecting module classes?

Presenting the Idiom
I found an interesting but unexplained alternative to an accepted answer. The code clearly works in the REPL. For example:
module Foo
class Bar
def baz
end
end
end
Foo.constants.map(&Foo.method(:const_get)).grep(Class)
=> [Foo::Bar]
However, I don't fully understand the idiom in use here. In particular, I don't understand the use of &Foo, which seems to be some sort of closure, or how this specific invocation of #grep operates on the result.
Parsing the Idiom
So far, I've been able to parse bits and pieces of this, but I'm not really seeing how it all fits together. Here's what I think I understand about the sample code.
Foo.constants returns an array of module constants as symbols.
method(:const_get) uses Object#method to perform a method lookup and return a closure.
Foo.method(:const_get).call :Bar is a closure that returns a qualified path to a constant within the class.
&Foo seems to be some sort of special lambda. The docs say:
The & argument preserves the tricks if a Proc object is given by & argument.
I'm not sure I fully understand what that means in this specific context, either. Why a Proc? What "tricks," and why are they necessary here?
grep(Class) is operating on the value of the #map method, but its features are not obvious.
Why is this #map construct returning a greppable Array instead of an Enumerator?
Foo.constants.map(&Foo.method(:const_get)).class
=> Array
How does grepping for a class named Class actually work, and why is that particular construction necessary here?
[Foo::Bar].grep Class
=> [Foo::Bar]
The Question, Restated
I'd really like to understand this idiom in its entirety. Can anyone fill in the gaps here, and explain how the pieces all fit together?
&Foo.method(:const_get) is the method const_get of the Foo object. Here's another example:
m = 1.method(:+)
#=> #<Method: Fixnum#+>
m.call(1)
#=> 2
(1..3).map(&m)
#=> [2, 3, 4]
So in the end this is just a pointfree way of saying Foo.constants.map { |c| Foo.const_get(c) }. grep uses === to select elements, so it would only get constants that refer to classes, not other values. This can be verified by adding another constant to Foo, e.g. Baz = 1, which will not get grepped.
If you have further questions please add them as comments and I'll try to clarify them.
Your parse of the idiom is pretty spot on, but I'll go through it and try to clear up any questions you mentioned.
1. Foo.constants
As you mentioned, this returns an array of module constant names as symbols.
2. Array#map
You obviously know what this does, but I want to include it for completeness. Map takes a block and calls that block with each element as an argument. It returns an Array of the results of these block calls.
3. Object#method
Also as you mentioned, this does a method lookup. This is important because a method without parentheses in Ruby is a method call of that method without any arguments.
4. &
This operator is for converting things to blocks. We need this because blocks are not first-class objects in Ruby. Because of this second-class status, we have no way to create blocks which stand alone, but we can convert Procs into blocks (but only when we are passing them to a function)! The & operator is our way of doing this conversion. Whenever we want to pass a Proc object as if it were a block, we can prepend it with the & operator and pass it as the last argument to our function. But & can actually convert more than just Proc objects, it can convert anything that has a to_proc method!
In our case, we have a Method object, which does have a to_proc method. The difference between a Proc object and a Method object lies in their context. A Method object is bound to a class instance and has access to the variables which belong to that class. A Proc is bound to the context in which it is created; that is, it has access to the scope in which it was created. Method#to_proc bundles up the context of the method so that the resulting Proc has access to the same variables. You can find more about the & operator here.
5. grep(Class)
The way Enumerable#grep works is that it runs argument === x for all x in the enumerable. The ordering of the arguments to === is very important in this case, since it's calling Class.=== rather than Foo::Bar.===. We can see the difference between these two by running:
irb(main):043:0> Class === Foo::Bar
=> true
irb(main):044:0> Foo::Bar === Class
=> false
Module#=== (Class inherits its === method from Method) returns True when the argument is an instance of Module or one of its descendants (like Class!), which will filter out constants which are not of type Module or Class.
You can find the documentation for Module#=== here.
The first thing to know is that:
& calls to_proc on the object succeeding it and uses the proc produced as the methods' block.
Now you have to drill down to how exactly the to_proc method is implemented in a specific class.
1. Symbol
class Symbol
def to_proc
Proc.new do |obj, *args|
obj.send self, *args
end
end
end
Or something like this. From the above code you clearly see that the proc produced calls the method (with name == the symbol) on the object and passes the arguments to the method. For a quick example:
[1,2,3].reduce(&:+)
#=> 6
which does exactly that. It executes like this:
Calls :+.to_proc and gets a proc object back => #<Proc:0x007fea74028238>
It takes the proc and passes it as the block to the reduce method, thus instead of calling [1,2,3].reduce { |el1, el2| el1 + el2 } it calls
[1,2,3].reduce { |el1, el2| el1.send(:+, el2) }.
2. Method
class Method
def to_proc
Proc.new do |*args|
self.call(*args)
end
end
end
Which as you can see it has a different implementation of Symbol#to_proc. To illustrate this consider again the reduce example, but now let as see how it uses a method instead:
def add(x, y); x + y end
my_proc = method(:add)
[1,2,3].reduce(&my_proc)
#=> 6
In the above example is calling [1,2,3].reduce { |el1, el2| my_proc(el1, el2) }.
Now on why the map method returns an Array instead of an Enumerator is because you are passing it a block, try this instead:
[1,2,3].map.class
#=> Enumerator
Last but not least the grep on an Array is selecting the elements that are === to its argument. Hope this clarifies your concerns.
Your sequence is equivalent to:
c_names = Foo.constants #=> ["Bar"]
cs = c_names.map { |c_name| Foo.__send__(:const_get, c_name) } #=> [Foo::Bar]
cs.select{ |c| Class === c } #=> [Foo::Bar]
You can consider Object#method as (roughly):
class Object
def method(m)
lambda{ |*args| self.__send__(m, *args) }
end
end
grep is described here http://ruby-doc.org/core-1.9.3/Enumerable.html#method-i-grep
=== for Class (which is subclass of Module) is described here http://ruby-doc.org/core-1.9.3/Module.html#method-i-3D-3D-3D
UPDATE: And you need to grep because there can be other constants:
module Foo
PI = 3.14
...
end
and you probably don't need them.

Does Ruby have a method_missing equivalent for undefined instance variables?

When I invoke a method that doesn't exist, method_missing will tell me the name of the method. When I attempt to access a variable that hasn't been set, the value is simply nil.
I'm attempting to dynamically intercept access to nil instance variables and return a value based on the name of the variable being accessed. The closest equivalent would be PHP's __get. Is there any equivalent functionality in Ruby?
I do not believe this is possible in Ruby. The recommended way would be to use a ''user'' method rather than a ''#user'' instance var in your templates.
This is consistent with the way you deal with Ruby objects externally (''obj.user'' is a method which refers to ''#user'', but is actually not ''#user'' itself). If you need any kind of special logic with an attribute, your best bet is to use a method (or method_missing), regardless if you're accessing it from inside or outside the object.
See my answer to another similar question. But just because you can do it doesn't mean that it's a good idea. Sensible design can generally overcome the need for this kind of thing and allow you to produce more readable and hence maintainable code.
instance_variable_get seems to be the closest equivalent of PHP's __get from what I can see (although I'm not a PHP user).
Looking at the relevant Ruby source code, the only 'missing' method for variables is const_missing for constants, nothing for instance variables.
there isn't an instance_variable_missing (at least that I know of)
But why are you accessing randomly named instance variables anyway?
If your thread all the access to the object state through method calls (as you should anyway) then you wouldn't need this.
If you are looking for a way to define magic stuff without messing up with the method lookup, you may want to use const_missing.
A bit late but, instance_variable_missing is the same as method_missing to a point... Take the following class:
class Test
def method_missing(*args)
puts args.inspect
end
end
t = Test.new
Now let's get some instance variables:
t.pineapples #=> [:pineapples]
t.pineapples = 5 #=> [:pineapples=,5]
Not sure why the method is nil for you...
EDIT:
By the sounds of it you want to accomplish:
t = SomeClass.new
t.property.child = 1
So let's try returning a Test object from our previous example:
class Test
def method_missing(*args)
puts args.inspect
return Test.new
end
end
So what happens when we call:
t = Test.new
t.property.child = 1
#=>[:property]
#=>[:child=,1]
So this goes to show that this is indeed possible to do. OpenStruct uses this same technique to set instance variables dynamically. In the below example, I create EternalStruct which does exactly what you wanted:
require 'ostruct'
class EternalStruct < OpenStruct
def method_missing(*args)
ret = super(*args)
if !ret
newES = EternalStruct.new
self.__send__((args[0].to_s + "=").to_sym, newES)
return newES
end
end
end
Usage of EternalStruct:
t = EternalStruct.new
t.foo.bar.baz = "Store me!"
t.foo.bar.baz #=> "Store me!"
t.foo #=> #<EternalStruct bar=#<EternalStruct baz="Store me!">>
t.a = 1
t.a #=> 1
t.b #=> #<EternalStruct:...>
t.b = {}
t.b #=> {}
def t.c(arg)
puts arg
end
t.c("hi there") #=> "hi there"

Trying to create a method that chooses a random method from that same class

Maybe this is a stupid idea... I am new to Ruby (and to OOP, so I still dont really know what I am doing most of the time), and I thought of a small, fun project to build, and I am struggling with some concepts.
What I am building is basically a string manipulator. I am building a module with extra methods, and then including that on the String class.
My module has several methods that manipulate the strings in different ways, mostly replacing words, and then return the modified string.
What I want to do in order to make the string manipulation more 'spontaneous' and natural, is to create a "main" method (the one I will be calling from the strings), that randomly selects one of the string manipulation methods, and then returns the string (and then can be called again to apply several manipulations in one go)
How can I do this, or something similar? Hope I explained myself
Thanks
O.
Here's the random manipulation module, as you described it. something_random is the main method:
module RandomStringManipulation
def something_random
methods = RandomStringManipulation.instance_methods
methods -= [:something_random]
send methods.sample # Ruby >= 1.9 required. See below for Ruby 1.8.
end
def foo
self + "foo"
end
def bar
self + "bar"
end
end
Mix it into String:
class String
include RandomStringManipulation
end
Now we can create an empty string, and then do something random to it a few times, printing it out each time:
s = ""
4.times do
s = s.something_random
p s
end
# => "foo"
# => "foobar"
# => "foobarbar"
# => "foobarbarfoo"
There are two bits that are interesting. The first is this:
methods -= [:something_random]
That removes :something_random from the array methods, preventing the *something_random* method from calling itself. The second interesting bit is this:
send methods.sample
Array.sample (Ruby >= 1.9) selects a random method. send then dispatches that method. In Ruby 1.8, do this instead:
send methods[rand(methods.size)]
If all the code that will be using your functionality is your code, I would make a new class instead of monkey-patching String. Monkey-patching leads to code that is harder to understand and share.
Anyway, given a list of mutator methods, you can easily pick one at random and use Object#send to call it:
module StringMutator
def fold() ... end
def spindle() ... end
def mutilate() ... end
end
class NiftyString
include StringMutator
def random_change()
im = StringMutator.instance_methods
self.send im[rand im.length]
end
end

Resources