If I understand Big-O notation correctly, k should be a constant time for the efficiency of an algorithm. Why would a constant time be considered O(1) rather than O(k), considering it takes a variable time? Linear growth ( O(n + k) ) uses this variable to shift the time right by a specific amount of time, so why not the same for constant complexity?
There is no such linear growth asymptotic O(n + k) where k is a constant. If k were a constant and you went back to the limit representation of algorithmic growth rates, you'd see that O(n + k) = O(n) because constants drop out in limits.
Your answer may be O(n + k) due to a variable k that is fundamentally independent of the other input set n. You see this commonly in compares vs moves in sorting algorithm analysis.
To try to answer your question about why we drop k in Big-O notation (which I think is taught poorly, leading to all this confusion), one definition (as I recall) of O() is as follows:
Read: f(n) is in O( g(n) ) iff there exists d and n_0 where for all n > n_0,
f(n) <= d * g(n)
Let's try to apply it to our problem here where k is a constant and thus f(x) = k and g(x) = 1.
Is there a d and n_0 that exist to satisfy these requirements?
Trivially, the answer is of course yes. Choose d > k and for n > 0, the definition holds.
Related
I am reading an example where the following are equivalent to O(N):
O(N + P), where P < N/2
O(N + log N)
Can someone explain in laymen terms how it is that the two examples above are the same thing as O(N)?
We always take the greater one in case of addition.
In both the cases N is bigger than the other part.
In first case P < N/2 < N
In second case log N < N
Hence the complexity is O(N) in both the cases.
Let f and g be two functions defined on some subset of the real numbers. One writes
f(x) = O(g(x)) as x -> infinite
if and only if there is a positive constant M such that for all sufficiently large values of x, the absolute value of f(x) is at most M multiplied by the absolute value of g(x). That is, f(x) = O(g(x)) if and only if there exists a positive real number M and a real number x0 such that
|f(x)| <= M |g(x)| for all x > x0
So in your case 1:
f(N) = N + P <= N + N/2
We could set M = 2 Then:
|f(N)| <= 3/2|N| <= 2|N| (N0 could any number)
So:
N+p = O(N)
In your second case, we could also set M=2 and N0=1 to satify that:
|N + logN| <= 2 |N| for N > 1
Big O notation usually only provides an upper bound on the growth rate of the function, wiki. Meaning for your both cases, as P < N and logN < N. So that O(N + P) = O(2N) = O(N), The same to O(N + log N) = O(2N) = O(N). Hope that can answer your question.
For the sake of understanding you can assume that O(n) represents that the complexity is of the order of n and also that O notation represents the upper bound(or the complexity in worst case). So, when I say that O(n+p) it represents that the order of n+p.
Let's assume that in worst case p = n/2, then what would be order of n+n/2? It would still be O(n), that is, linear because constants do form a part of the Big-O notation.
Similary, for O(n+logn) because logn can never be greater than n. So, overall complexity turns out to be linear.
In short
If N is a function and C is a constant:
O(N+N/2):
If C=2, then for any N>1 :
(C=2)*N > N+N/2,
2*N>3*N/2,
2> 3/2 (true)
O(N+logN):
If C=2, then for any N>2 :
(C=2)*N > N+logN,
2*N > N+logN,
2>(N+logN)/N,
2> 1 + logN/N (limit logN/N is 0),
2>1+0 (true)
Counterexample O(N^2):
No C exists such that C*N > N^2 :
C > N^2/N,
C>N (contradiction).
Boring mathematical part
I think the source of confusion is that equals sign in O(f(x))=O(N) does not mean equality! Usually if x=y then y=x. However consider O(x)=O(x^2) which is true, but reverse is false: O(x^2) != O(x)!
O(f(x)) is an upper bound of how fast a function is growing.
Upper bound is not an exact value.
If g(x)=x is an upper bound for some function f(x), then function 2*g(x) (and in general anything growing faster than g(x)) is also an upper bound for f(x).
The formal definition is: for function f(x) to be bound by some other function g(x) if you chose any constant C then, starting from some x_0 g(x) is always greater than f(x).
f(x)=N+N/2 is the same as 3*N/2=1.5*N. If we take g(x)=N and our constant C=2 then 2*g(x)=2*N is growing faster than 1.5*N:
If C=2 and x_0=1 then for any n>(x_0=1) 2*N > 1.5*N.
same applies to N+log(N):
C*N>N+log(N)
C>(N+logN)/N
C>1+log(N)/N
...take n_0=2
C>1+1/2
C>3/2=1.5
use C=2: 2*N>N+log(N) for any N>(n_0=2),
e.g.
2*3>3+log(3), 6>3+1.58=4.68
...
2*100>100+log(100), 200>100+6.64
...
Now interesting part is: no such constant exist for N & N^2. E.g. N squared grows faster than N:
C*N > N^2
C > N^2/N
C > N
obviously no single constant exists which is greater than a variable. Imagine such a constant exists C=C_0. Then starting from N=C_0+1 function N is greater than constant C, therefore such constant does not exist.
Why is this useful in computer science?
In most cases calculating exact algorithm time or space does not make sense as it would depend on hardware speed, language overhead, algorithm implementation details and many other factors.
Big O notation provides means to estimate which algorithm is better independently from real world complications. It's easy to see that O(N) is better than O(N^2) starting from some n_0 no matter which constants are there in front of two functions.
Another benefit is ability to estimate algorithm complexity by just glancing at program and using Big O properties:
for x in range(N):
sub-calc with O(C)
has complexity of O(N) and
for x in range(N):
sub-calc with O(C_0)
sub-calc with O(C_1)
still has complexity of O(N) because of "multiplication by constant rule".
for x in range(N):
sub-calc with O(N)
has complexity of O(N*N)=O(N^2) by "product rule".
for x in range(N):
sub-calc with O(C_0)
for y in range(N):
sub-calc with O(C_1)
has complexity of O(N+N)=O(2*N)=O(N) by "definition (just take C=2*C_original)".
for x in range(N):
sub-calc with O(C)
for x in range(N):
sub-calc with O(N)
has complexity of O(N^2) because "the fastest growing term determines O(f(x)) if f(x) is a sum of other functions" (see explanation in the mathematical section).
Final words
There is much more to Big-O than I can write here! For example in some real world applications and algorithms beneficial n_0 might be so big that an algorithm with worse complexity works faster on real data.
CPU cache might introduce unexpected hidden factor into otherwise asymptotically good algorithm.
Etc...
I would like to know, because I couldn't find any information online, how is an algorithm like O(n * m^2) or O(n * k) or O(n + k) supposed to be analysed?
Does only the n count?
The other terms are superfluous?
So O(n * m^2) is actually O(n)?
No, here the k and m terms are not superfluous,they do have a valid existence and essential for computing time complexity. They are wrapped together to provide a concrete-complexity to the code.
It may seem like the terms n and k are independent to each other in the code,but,they both combinedly determines the complexity of the algorithm.
Say, if you've to iterate a loop of size n-elements, and, in between, you have another loop of k-iterations, then the overall complexity turns O(nk).
Complexity of order O(nk), you can't dump/discard k here.
for(i=0;i<n;i++)
for(j=0;j<k;j++)
// do something
Complexity of order O(n+k), you can't dump/discard k here.
for(i=0;i<n;i++)
// do something
for(j=0;j<k;j++)
// do something
Complexity of order O(nm^2), you can't dump/discard m here.
for(i=0;i<n;i++)
for(j=0;j<m;j++)
for(k=0;k<m;k++)
// do something
Answer to the last question---So O(n.m^2) is actually O(n)?
No,O(nm^2) complexity can't be reduced further to O(n) as that would mean m doesn't have any significance,which is not the case actually.
FORMALLY: O(f(n)) is the SET of ALL functions T(n) that satisfy:
There exist positive constants c and N such that, for all n >= N,
T(n) <= c f(n)
Here are some examples of when and why factors other than n matter.
[1] 1,000,000 n is in O(n). Proof: set c = 1,000,000, N = 0.
Big-Oh notation doesn't care about (most) constant factors. We generally leave constants out; it's unnecessary to write O(2n), because O(2n) = O(n). (The 2 is not wrong; just unnecessary.)
[2] n is in O(n^3). [That's n cubed]. Proof: set c = 1, N = 1.
Big-Oh notation can be misleading. Just because an algorithm's running time is in O(n^3) doesn't mean it's slow; it might also be in O(n). Big-Oh notation only gives us an UPPER BOUND on a function.
[3] n^3 + n^2 + n is in O(n^3). Proof: set c = 3, N = 1.
Big-Oh notation is usually used only to indicate the dominating (largest
and most displeasing) term in the function. The other terms become
insignificant when n is really big.
These aren't generalizable, and each case may be different. That's the answer to the questions: "Does only the n count? The other terms are superfluous?"
Although there is already an accepted answer, I'd still like to provide the following inputs :
O(n * m^2) : Can be viewed as n*m*m and assuming that the bounds for n and m are similar then the complexity would be O(n^3).
Similarly -
O(n * k) : Would be O(n^2) (with the bounds for n and k being similar)
and -
O(n + k) : Would be O(n) (again, with the bounds for n and k being similar).
PS: It would be better not to assume the similarity between the variables and to first understand how the variables relate to each other (Eg: m=n/2; k=2n) before attempting to conclude.
I am just a bit confused. If time complexity of an algorithm is given by
what is that in big O notation? Just or we keep the log?
If that's the time-complexity of the algorithm, then it is in big-O notation already, so, yes, keep the log. Asymptotically, there is a difference between O(n^2) and O((n^2)*log(n)).
A formal mathematical proof would be nice here.
Let's define following variables and functions:
N - input length of the algorithm,
f(N) = N^2*ln(N) - a function that computes algorithm's execution time.
Let's determine whether growth of this function is asymptotically bounded by O(N^2).
According to the definition of the asymptotic notation [1], g(x) is an asymptotic bound for f(x) if and only if: for all sufficiently large values of x, the absolute value of f(x) is at most a positive constant multiple of g(x). That is, f(x) = O(g(x)) if and only if there exists a positive real number M and a real number x0 such that
|f(x)| <= M*g(x) for all x >= x0 (1)
In our case, there must exists a positive real number M and a real number N0 such that:
|N^2*ln(N)| <= M*N^2 for all N >= N0 (2)
Obviously, such M and x0 do not exist, because for any arbitrary large M there is N0, such that
ln(N) > M for all N >= N0 (3)
Thus, we have proved that N^2*ln(N) is not asymptotically bounded by O(N^2).
References:
1: - https://en.wikipedia.org/wiki/Big_O_notation
A simple way to understand the big O notation is to divide the actual number of atomic steps by the term withing the big O and validate you get a constant (or a value that is smaller than some constant).
for example if your algorithm does 10n²⋅logn steps:
10n²⋅logn/n² = 10 log n -> not constant in n -> 10n²⋅log n is not O(n²)
10n²⋅logn/(n²⋅log n) = 10 -> constant in n -> 10n²⋅log n is O(n²⋅logn)
You do keep the log because log(n) will increase as n increases and will in turn increase your overall complexity since it is multiplied.
As a general rule, you would only remove constants. So for example, if you had O(2 * n^2), you would just say the complexity is O(n^2) because running it on a machine that is twice more powerful shouldn't influence the complexity.
In the same way, if you had complexity O(n^2 + n^2) you would get to the above case and just say it's O(n^2). Since O(log(n)) is more optimal than O(n^2), if you had O(n^2 + log(n)), you would say the complexity is O(n^2) because it's even less than having O(2 * n^2).
O(n^2 * log(n)) does not fall into the above situation so you should not simplify it.
if complexity of some algorithm =O(n^2) it can be written as O(n*n). is it O(n)?absolutely not. so O(n^2*logn) is not O(n^2).what you may want to know is that O(n^2+logn)=O(n^2).
A simple explanation :
O(n2 + n) can be written as O(n2) because when we increase n, the difference between n2 + n and n2 becomes non-existent. Thus it can be written O(n2).
Meanwhile, in O(n2logn) as the n increases, the difference between n2 and n2logn will increase unlike the above case.
Therefore, logn stays.
Can some one provide me a real time example for how to calculate big theta.
Is big theta some thing like average case, (min-max)/2?
I mean (minimum time - big O)/2
Please correct me if I am wrong, thanks
Big-theta notation represents the following rule:
For any two functions f(n), g(n), if f(n)/g(n) and g(n)/f(n) are both bounded as n grows to infinity, then f = Θ(g) and g = Θ(f). In that case, g is both an upper bound and a lower bound on the growth of f.
Here's an example algorithm:
def find-minimum(List)
min = +∞
foreach value in List
min = value if min > value
return min
We wish to evaluate the cost function c(n) where n is the size of the input list. This algorithm will perform one comparison for every item in the list, so c(n) = n.
c(n)/n = 1 which remains bounded as n goes to infinity, so c(n) grows no faster than n. This is what is meant by big-O notation c(n) = O(n). Conversely, n/C(n) = 1 also remains bounded, so c(n) grows no slower than n. Since it grows neither slower nor faster, it must grow at the same speed. This is what is meant by theta notation c(n) = Θ(n).
Note that c(n)/n² is also bounded, so c(n) = O(n²) as well — big-O notation is merely an upper bound on the complexity, so any O(n) function is also O(n²), O(n³)...
However, since n²/c(n) = n is not bounded, then c(n) ≠ Θ(n²). This is the interesting property of big-theta notation: it's both an upper bound and a lower bound on the complexity.
Big theta is a tight bound, for a function T(n): if: Omega(f(n))<=T(n)<=O(f(n)), then Theta(f(n)) is the tight bound for T(n).
In other words Theta(f(n)) 'describes' a function T(n), if both O [big O] and Omega, 'describe' the same T, with the same f.
for example, a quicksort [with correct median choices], always takes at most O(nlogn), at at least Omega(nlogn), so quicksort [with good median choices] is Theta(nlogn)
EDIT:
added discussion in comments:
Searching an array is still Theta(n). the Theta function does not indicate worst/best case, but the behavior of the desired case. i.e, searching for an array, T(n)=number of ops for worst case. in here, obviously T(n)<=O(n), but also T(n)>=n/2, because at worst case you need to iterate the whole array, so T(n)>=Omega(n) and therefore Theta(n) is asymptotic bound.
From http://en.wikipedia.org/wiki/Big_O_notation#Related_asymptotic_notations, we learn that "Big O" denotes an upper bound, whereas "Big Theta" denotes an upper and lower bound, i.e. in the limit as n goes to infinity:
f(n) = O(g(n)) --> |f(n)| < k.g(n)
f(n) = Theta(g(n)) --> k1.g(n) < f(n) < k2.g(n)
So you cannot infer Big Theta from Big O.
ig-Theta (Θ) notation provides an asymptotic upper and lower bound on the growth rate of an algorithm's running time. To calculate the big-Theta notation of a function, you need to find two non-negative functions, f(n) and g(n), such that:
There exist positive constants c1, c2 and n0 such that 0 <= c1 * g(n) <= f(n) <= c2 * g(n) for all n >= n0.
f(n) and g(n) have the same asymptotic growth rate.
The big-Theta notation for the function f(n) is then written as Θ(g(n)). The purpose of this notation is to provide a rough estimate of the running time, ignoring lower order terms and constant factors.
For example, consider the function f(n) = 2n^2 + 3n + 1. To calculate its big-Theta notation, we can choose g(n) = n^2. Then, we can find c1 and c2 such that 0 <= c1 * n^2 <= 2n^2 + 3n + 1 <= c2 * n^2 for all n >= n0. For example, c1 = 1/2 and c2 = 2. So, f(n) = Θ(n^2).
According to the definition of big O f(n) <= C*g(n)(which means f(n) = O(g(n)), it could be deduced that:
f(n) <= C
f(n) <= 2C
I think there are no big differences between these two. What I could come up with is:
f(n) = 1 - 1 / n
f(n) = 2 - 1 / n
C = 1
But what differs this two complexities,since both are constant complexity?
Could you show some real world code to demonstrate the differences between O(1) and O(2).
There is no difference between O(1) and O(2). Algorithms classifying as O(1) are O(2) and vice versa. In fact, O(c1) is O(c2) for any positive constants c1 and c2.
O(c) where c is a positive constants simply means that the runtime is bounded independent of the input or problem size. From this it is clear (informally) that O(1) and O(2) are equal.
Formally, consider a function f in O(1). Then there is a constant c such that f(n) <= c * 1 for all n. Let d = c / 2. Then f(n) <= c = (c / 2) * 2 = d * 2 which shows that f is O(2). Similarly if g is O(2) there is a constant c such that g(n) <= c * 2 for all n. Let d = 2 * c. Then g(n) <= c * 2 = d = d * 1 which shows that g is O(1). Therefore O(1) = O(2).
O(1) and O(2) are the same, as is any O(constant value).
The point being that neither rely on some function of N.
There is no difference.
In the graph below, the red line represents O(n) and the green curve represents O(n2).
As you can see by the red line, the 2 and the 1 become insignificant as x increases (the green curve grows at a much faster rate). This is what Big-O notation is trying to capture; constants are relatively meaningless.
Maybe they meant that both algorithms execute in constant time regardless of input size (usually denoted as N), but one of them is twice as fast. But it's an abuse of the big-O notation.
There is no difference between O(1) and O(2).
The order-of notation is unique up to a constant. O(f(x)) means that there is some constant k such that the time would be less than kf(x).
If something is O(2), then there is some constant k that the program takes less than 2k. Therefore, there's another constant, k' = 2k that works for O(1).
There is not difference between O(1) and O(2). In fact you would not use this notation. It is more like O(N) or O(n^2), O(log(N)) etc. This is just a indication of the order of magnitude of the algorithm. Put in other words, O(1) would be constant in time. O(N) would be linear in the number of items (N), O(n^2) would be exponential in time, etc.
Big-O notation is generally used for asymptotic analysis of algorithm complexity, ie analysis of how the algorithm performs as n increases toward infinity. The highest order term in n of the function f(n) will be the dominant part of the function in this case.
As such, lower order terms in n are usually dropped from the function when expressed in big-O (for example, f(n)=2n^2+4 will result in O(n^2) asymptotic big-O complexity).
In the case of the highest term being constant and not dependent on n, then all these constants are effectively the same asymptotically speaking and are usually simply reduced to O(1).
Hence, O(2) would be considered equivalent to O(1).
You typically do not write O(2) or O(2n) but O(1) and O(n) instead. The difference is in actual speed, of course - 5s vs 10s for instance. I found your question a bit confusing.