This question already has answers here:
Closed 10 years ago.
Possible Duplicate:
multiplicative inverse of modulo m in scheme
I have written a code for finding to solve x and y as a pair.
I need to write a modular-inverse code that finds the multiplicative inverse of e modulo n, using ax + by = 1.
Blockquote
(define (ax+by=1 a b)
(if (= b 0)
(cons 1 0)
(let* ((q (quotient a b))
(r (remainder a b))
(e (ax+by=1 b r))
(s (car e))
(t (cdr e)))
(cons t (- s (* q t))))))
Edit : Problem Solved with the function below.
Blockquote
(define inverse-mod (lambda (a m)
(if (not (= 1 (gcd a m)))
(display "**Error** No inverse exists.")
(if (> 0(car (ax+by=1 a m)))
(+ (car (ax+by=1 a m)) m)
(car (ax+by=1 a m))))))
Consider the Extended Euclidean Algorithm
This uses the extended euclidean algorithm to find the modular inverse:
(define (inverse x m)
(let loop ((x x) (b m) (a 0) (u 1))
(if (zero? x)
(if (= b 1) (modulo a m)
(error 'inverse "must be coprime"))
(let* ((q (quotient b x)))
(loop (modulo b x) x u (- a (* u q)))))))
Related
I'm trying to write a code for extended Euclidian Algorithm in Scheme for an RSA implementation.
The thing about my problem is I can't write a recursive algorithm where the output of the inner step must be the input of the consecutive outer step. I want it to give the result of the most-outer step but as it can be seen, it gives the result of the most inner one. I wrote a program for this (it is a bit messy but I couldn't find time to edit.):
(define ax+by=1
(lambda (a b)
(define q (quotient a b))
(define r (remainder a b))
(define make-list (lambda (x y)
(list x y)))
(define solution-helper-x-prime (lambda (a b q r)
(if (= r 1) (- 0 q) (solution-helper-x-prime b r (quotient b r) (remainder b r)))
))
(define solution-helper-y-prime (lambda (a b q r)
(if (= r 1) (- r (* q (- 0 q) )) (solution-helper-y-prime b r (quotient b r) (remainder b r))
))
(define solution-first-step (lambda (a b q r)
(if (= r 1) (make-list r (- 0 q))
(make-list (solution-helper-x-prime b r (quotient b r) (remainder b r)) (solution-helper-y-prime b r (quotient b r) (remainder b r))))
))
(display (solution-first-step a b q r))
))
All kinds of help and advice would be greatly appreciated. (P.S. I added a scrrenshot of the instructions that was given to us but I can't see the image. If there is a problem, please let me know.)
This is a Diophantine equation and is a bit tricky to solve. I came up with an iterative solution adapted from this explanation, but had to split the problem in parts - first, obtain the list of quotients by applying the extended Euclidean algorithm:
(define (quotients a b)
(let loop ([a a] [b b] [lst '()])
(if (<= b 1)
lst
(loop b (remainder a b) (cons (quotient a b) lst)))))
Second, go back and solve the equation:
(define (solve x y lst)
(if (null? lst)
(list x y)
(solve y (+ x (* (car lst) y)) (cdr lst))))
Finally, put it all together and determine the correct signs of the solution:
(define (ax+by=1 a b)
(let* ([ans (solve 0 1 (quotients a b))]
[x (car ans)]
[y (cadr ans)])
(cond ((and (= a 0) (= b 1))
(list 0 1))
((and (= a 1) (= b 0))
(list 1 0))
((= (+ (* a (- x)) (* b y)) 1)
(list (- x) y))
((= (+ (* a x) (* b (- y))) 1)
(list x (- y)))
(else (error "Equation has no solution")))))
For example:
(ax+by=1 1027 712)
=> '(-165 238)
(ax+by=1 91 72)
=> '(19 -24)
(ax+by=1 13 13)
=> Equation has no solution
Im want to make a function where rootcheck has a list L as input, L always is 3 atoms (a b c) where a is coefficient of x^2, b coef of x and c is the constant. it checks if the equation is quadratic, using discriminant (b^2 - 4ac) and should output this (num 'L) where num is the number of roots and L is a list that contains the roots themselves (using quadratic formula), L is empty in case of no roots. here is my code:
(define roots-2
(lambda (L)
(let ((d (- (* (cdr L) (cdr L)) (4 (car L) (caddr L))))))
(cond ((< d 0) (cons(0 null)))
((= d 0) (cons(1 null)))
(else((> d 0) (cons(2 null)))))
))
its giving me no expression in body error.
also I tried to code the quadratic function and even tried some that are online, one compiled fint but gave me an error when I inserted input this is the code for the quadratic function, NOT MINE!
(define quadratic-solutions
(lambda (a b c) (list (root1 a b c) (root2 a b c))))
(define root1
(lambda (a b c) (/ (+ (- b) (sqrt (discriminant a b c)))
(* 2 a))))
(define root2
(lambda (a b c) (/ (- (- b) (sqrt (discriminant a b c)))
(*2 a))))
(define discriminant
(lambda (a b c) (- (square b) (* 4 (* a c)))))
There are several mistakes in the code:
Some parentheses are incorrectly placed, use a good IDE to detect such problems. This is causing the error reported, the let doesn't have a body
You forgot to multiply in the 4ac part
You're incorrectly accessing the second element in the list
The else part must not have a condition
The output list is not correctly constructed
This should fix the errors, now replace null with the actual call to the function that calculates the roots for the second and third cases (the (< d 0) case is fine as it is):
(define roots-2
(lambda (L)
(let ((d (- (* (cadr L) (cadr L)) (* 4 (car L) (caddr L)))))
(cond ((< d 0) (list 0 null))
((= d 0) (list 1 null))
(else (list 2 null))))))
for the quadractic function part, I found a code online and tweaked it to provide both roots of a quadratic equation. returns a list of both roots
(define (solve-quadratic-equation a b c)
(define disc (sqrt (- (* b b)
(* 4.0 a c))))
(list (/ (+ (- b) disc) (* 2.0 a))
(/ (- (- b) disc) (* 2.0 a))
))
I've written the code for multiplicative inverse of modulo m. It works for most of the initial cases but not for some. The code is below:
(define (inverse x m)
(let loop ((x (modulo x m)) (a 1))
(cond ((zero? x) #f) ((= x 1) a)
(else (let ((q (- (quotient m x))))
(loop (+ m (* q x)) (modulo (* q a) m)))))))
For example it gives correct values for (inverse 5 11) -> 9 (inverse 9 11) -> 5 (inverse 7 11 ) - > 8 (inverse 8 12) -> #f but when i give (inverse 5 12) it produces #f while it should have been 5. Can you see where the bug is?
Thanks for any help.
The algorithm you quoted is Algorithm 9.4.4 from the book Prime Numbers by Richard Crandall and Carl Pomerance. In the text of the book they state that the algorithm works for both prime and composite moduli, but in the errata to their book they correctly state that the algorithm works always for prime moduli and mostly, but not always, for composite moduli. Hence the failure that you found.
Like you, I used Algorithm 9.4.4 and was mystified at some of my results until I discovered the problem.
Here's the modular inverse function that I use now, which works with both prime and composite moduli, as long as its two arguments are coprime to one another. It is essentially the extended Euclidean algorithm that #OscarLopez uses, but with some redundant calculations stripped out. If you like, you can change the function to return #f instead of throwing an error.
(define (inverse x m)
(let loop ((x x) (b m) (a 0) (u 1))
(if (zero? x)
(if (= b 1) (modulo a m)
(error 'inverse "must be coprime"))
(let* ((q (quotient b x)))
(loop (modulo b x) x u (- a (* u q)))))))
Does it have to be precisely that algorithm? if not, try this one, taken from wikibooks:
(define (egcd a b)
(if (zero? a)
(values b 0 1)
(let-values (((g y x) (egcd (modulo b a) a)))
(values g (- x (* (quotient b a) y)) y))))
(define (modinv a m)
(let-values (((g x y) (egcd a m)))
(if (not (= g 1))
#f
(modulo x m))))
It works as expected:
(modinv 5 11) ; 9
(modinv 9 11) ; 5
(modinv 7 11) ; 8
(modinv 8 12) ; #f
(modinv 5 12) ; 5
I think this is the Haskell code on that page translated directly into Scheme:
(define (inverse p q)
(cond ((= p 0) #f)
((= p 1) 1)
(else
(let ((recurse (inverse (mod q p) p)))
(and recurse
(let ((n (- p recurse)))
(div (+ (* n q) 1) p)))))))
It looks like you're trying to convert it from recursive to tail-recursive, which is why things don't match up so well.
These two functions below can help you as well.
Theory
Here’s how we find the multiplicative inverse d. We want e*d = 1(mod n), which means that ed + nk = 1 for some integer k. So we’ll write a procedure that solves the general equation ax + by = 1, where a and b are given, x and y are variables, and all of these values are integers. We’ll use this procedure to solve ed + nk = 1 for d and k. Then we can throw away k and simply return d.
>
(define (ax+by=1 a b)
(if (= b 0)
(cons 1 0)
(let* ((q (quotient a b))
(r (remainder a b))
(e (ax+by=1 b r))
(s (car e))
(t (cdr e)))
(cons t (- s (* q t))))))
This function is a general solution to an equation in form of ax+by=1 where a and b is given.The inverse-mod function simply uses this solution and returns the inverse.
(define inverse-mod (lambda (a m)
(if (not (= 1 (gcd a m)))
(display "**Error** No inverse exists.")
(if (> 0(car (ax+by=1 a m)))
(+ (car (ax+by=1 a m)) m)
(car (ax+by=1 a m))))))
Some test cases are :
(inverse-mod 5 11) ; -> 9 5*9 = 45 = 1 (mod 11)
(inverse-mod 9 11) ; -> 5
(inverse-mod 7 11) ; -> 8 7*8 = 56 = 1 (mod 11)
(inverse-mod 5 12) ; -> 5 5*5 = 25 = 1 (mod 12)
(inverse-mod 8 12) ; -> error no inverse exists
I'm going through "Structure and Interpretation of Computer Programs" and I'm having a bit of trouble doing one of the exercises ( 2.1 ) . I'm coding in DrRacket in R5RS mode.
here's my code :
(define (make-rat n d)
(let (((c (gcd n d))
(neg (< (* n d) 0))
(n (/ (abs n) c))
(d (/ (abs d) c)))
(cons (if neg (- n) n) d))))
and here's the error message DrRacket is giving me:
let: bad syntax (not an identifier and expression for a binding) in: ((c (gcd n d)) (neg (< (* n d) 0)) (pn (/ (abs n) c)) (pd (/ (abs d) c)))
I think I've messed up let's syntax. but I'm not sure how to fix it.
I added an extra set of parentheses around the variable declarations, whoops.
Also, since I used c to define n and d, I had to change let into let* to make it work properly
my fixed code:
(define (make-rat n d)
(let* ((c (gcd n d))
(neg (< (* n d) 0))
(n (/ (abs n) c))
(d (/ (abs d) c)))
(cons (if neg (- n) n) d)))
As your edit indicates, you're using the c identifier prematurely. (Which is why it isn't working after fixing the syntax issue of the extra parenthesis.) Identifiers in "let" don't see each other. You'd need to nest your second three lets under the first.
(let ((c (gcd ...)))
(let ((...))
exps ...))
I don't recall when/if SICP introduces other let forms, but if you are stuck using a lot of nested lets, you can use let* in which each subsequent identifier is in the scope of all the previous. That is, the following two definitions are equivalent:
(define foo
(let* ((a 1)
(b (+ 1 a))
(c (+ 1 b)))
(+ 1 c)))
(define foo
(let ((a 1))
(let ((b (+ 1 a)))
(let ((c (+ 1 b)))
(+ 1 c)))))
The scoping rules of the different let forms can be a bit much for a beginner, unfortunately.
Try this:
(define (make-rat n d)
(let ([c (gcd n d)]
[neg (< (* n d) 0)]
[n (/ (abs n) c)]
[d (/ (abs d) c)])
(cons (if neg
(- n)
n)
d)))
I am new to Scheme. I have tried and implemented probabilistic variant of Rabin-Miller algorithm using PLT Scheme. I know it is probabilistic and all, but I am getting the wrong results most of the time. I have implemented the same thing using C, and it worked well (never failed a try). I get the expected output while debugging, but when I run, it almost always returns with an incorrect result. I used the algorithm from Wikipedia.
(define expmod( lambda(b e m)
;(define result 1)
(define r 1)
(let loop()
(if (bitwise-and e 1)
(set! r (remainder (* r b) m)))
(set! e (arithmetic-shift e -1))
(set! b (remainder (* b b) m))
(if (> e 0)
(loop)))r))
(define rab_mil( lambda(n k)
(call/cc (lambda(breakout)
(define s 0)
(define d 0)
(define a 0)
(define n1 (- n 1))
(define x 0)
(let loop((count 0))
(if (=(remainder n1 2) 0)
(begin
(set! count (+ count 1))
(set! s count)
(set! n1 (/ n1 2))
(loop count))
(set! d n1)))
(let loop((count k))
(set! a (random (- n 3)))
(set! a (+ a 2))
(set! x (expmod a d n))
(set! count (- count 1))
(if (or (= x 1) (= x (- n 1)))
(begin
(if (> count 0)(loop count))))
(let innerloop((r 0))
(set! r (+ r 1))
(if (< r (- s 1)) (innerloop r))
(set! x (expmod x 2 n))
(if (= x 1)
(begin
(breakout #f)))
(if (= x (- n 1))
(if (> count 0)(loop count)))
)
(if (= x (- s 1))
(breakout #f))(if (> count 0) (loop count)))#t))))
Also, Am I programming the right way in Scheme? (I am not sure about the breaking out of loop part where I use call/cc. I found it on some site and been using it ever since.)
Thanks in advance.
in general you are programming in a too "imperative" fashion; a more elegant expmod would be
(define (expmod b e m)
(define (emod b e)
(case ((= e 1) (remainder b m))
((= (remainder e 2) 1)
(remainder (* b (emod b (- e 1))) m)
(else (emod (remainder (* b b) m) (/ e 2)))))))
(emod b e))
which avoids the use of set! and just implements recursively the rules
b^1 == b (mod m)
b^k == b b^(k-1) (mod m) [k odd]
b^(2k) == (b^2)^k (mod m)
Similarly the rab_mil thing is programmed in a very non-scheme fashion. Here's an alternative implementation. Note that there is no 'breaking' of the loops and no call/cc; instead the breaking out is implemented as a tail-recursive call which really corresponds to 'goto' in Scheme:
(define (rab_mil n k)
;; calculate the number 2 appears as factor of 'n'
(define (twos-powers n)
(if (= (remainder n 2) 0)
(+ 1 (twos-powers (/ n 2)))
0))
;; factor n to 2^s * d where d is odd:
(let* ((s (twos-powers n 0))
(d (/ n (expt 2 s))))
;; outer loop
(define (loop k)
(define (next) (loop (- k 1)))
(if (= k 0) 'probably-prime
(let* ((a (+ 2 (random (- n 2))))
(x (expmod a d n)))
(if (or (= x 1) (= x (- n 1)))
(next)
(inner x next))))))
;; inner loop
(define (inner x next)
(define (i r x)
(if (= r s) (next)
(let ((x (expmod x 2 n)))
(case ((= x 1) 'composite)
((= x (- n 1)) (next))
(else (i (+ 1 r) x))))
(i 1 x))
;; run the algorithm
(loop k)))