It would be great if someone could point me towards an algorithm that would allow me to :
create a random square matrix, with entries 0 and 1, such that
every row and every column contain exactly two non-zero entries,
two non-zero entries cannot be adjacent,
all possible matrices are equiprobable.
Right now I manage to achieve points 1 and 2 doing the following : such a matrix can be transformed, using suitable permutations of rows and columns, into a diagonal block matrix with blocks of the form
1 1 0 0 ... 0
0 1 1 0 ... 0
0 0 1 1 ... 0
.............
1 0 0 0 ... 1
So I start from such a matrix using a partition of [0, ..., n-1] and scramble it by permuting rows and columns randomly. Unfortunately, I can't find a way to integrate the adjacency condition, and I am quite sure that my algorithm won't treat all the matrices equally.
Update
I have managed to achieve point 3. The answer was actually straight under my nose : the block matrix I am creating contains all the information needed to take into account the adjacency condition. First some properties and definitions:
a suitable matrix defines permutations of [1, ..., n] that can be build like so: select a 1 in row 1. The column containing this entry contains exactly one other entry equal to 1 on a row a different from 1. Again, row a contains another entry 1 in a column which contains a second entry 1 on a row b, and so on. This starts a permutation 1 -> a -> b ....
For instance, with the following matrix, starting with the marked entry
v
1 0 1 0 0 0 | 1
0 1 0 0 0 1 | 2
1 0 0 1 0 0 | 3
0 0 1 0 1 0 | 4
0 0 0 1 0 1 | 5
0 1 0 0 1 0 | 6
------------+--
1 2 3 4 5 6 |
we get permutation 1 -> 3 -> 5 -> 2 -> 6 -> 4 -> 1.
the cycles of such a permutation lead to the block matrix I mentioned earlier. I also mentioned scrambling the block matrix using arbitrary permutations on the rows and columns to rebuild a matrix compatible with the requirements.
But I was using any permutation, which led to some adjacent non-zero entries. To avoid that, I have to choose permutations that separate rows (and columns) that are adjacent in the block matrix. Actually, to be more precise, if two rows belong to a same block and are cyclically consecutive (the first and last rows of a block are considered consecutive too), then the permutation I want to apply has to move these rows into non-consecutive rows of the final matrix (I will call two rows incompatible in that case).
So the question becomes : How to build all such permutations ?
The simplest idea is to build a permutation progressively by randomly adding rows that are compatible with the previous one. As an example, consider the case n = 6 using partition 6 = 3 + 3 and the corresponding block matrix
1 1 0 0 0 0 | 1
0 1 1 0 0 0 | 2
1 0 1 0 0 0 | 3
0 0 0 1 1 0 | 4
0 0 0 0 1 1 | 5
0 0 0 1 0 1 | 6
------------+--
1 2 3 4 5 6 |
Here rows 1, 2 and 3 are mutually incompatible, as are 4, 5 and 6. Choose a random row, say 3.
We will write a permutation as an array: [2, 5, 6, 4, 3, 1] meaning 1 -> 2, 2 -> 5, 3 -> 6, ... This means that row 2 of the block matrix will become the first row of the final matrix, row 5 will become the second row, and so on.
Now let's build a suitable permutation by choosing randomly a row, say 3:
p = [3, ...]
The next row will then be chosen randomly among the remaining rows that are compatible with 3 : 4, 5and 6. Say we choose 4:
p = [3, 4, ...]
Next choice has to be made among 1 and 2, for instance 1:
p = [3, 4, 1, ...]
And so on: p = [3, 4, 1, 5, 2, 6].
Applying this permutation to the block matrix, we get:
1 0 1 0 0 0 | 3
0 0 0 1 1 0 | 4
1 1 0 0 0 0 | 1
0 0 0 0 1 1 | 5
0 1 1 0 0 0 | 2
0 0 0 1 0 1 | 6
------------+--
1 2 3 4 5 6 |
Doing so, we manage to vertically isolate all non-zero entries. Same has to be done with the columns, for instance by using permutation p' = [6, 3, 5, 1, 4, 2] to finally get
0 1 0 1 0 0 | 3
0 0 1 0 1 0 | 4
0 0 0 1 0 1 | 1
1 0 1 0 0 0 | 5
0 1 0 0 0 1 | 2
1 0 0 0 1 0 | 6
------------+--
6 3 5 1 4 2 |
So this seems to work quite efficiently, but building these permutations needs to be done with caution, because one can easily be stuck: for instance, with n=6 and partition 6 = 2 + 2 + 2, following the construction rules set up earlier can lead to p = [1, 3, 2, 4, ...]. Unfortunately, 5 and 6 are incompatible, so choosing one or the other makes the last choice impossible. I think I've found all situations that lead to a dead end. I will denote by r the set of remaining choices:
p = [..., x, ?], r = {y} with x and y incompatible
p = [..., x, ?, ?], r = {y, z} with y and z being both incompatible with x (no choice can be made)
p = [..., ?, ?], r = {x, y} with x and y incompatible (any choice would lead to situation 1)
p = [..., ?, ?, ?], r = {x, y, z} with x, y and z being cyclically consecutive (choosing x or z would lead to situation 2, choosing y to situation 3)
p = [..., w, ?, ?, ?], r = {x, y, z} with xwy being a 3-cycle (neither x nor y can be chosen, choosing z would lead to situation 3)
p = [..., ?, ?, ?, ?], r = {w, x, y, z} with wxyz being a 4-cycle (any choice would lead to situation 4)
p = [..., ?, ?, ?, ?], r = {w, x, y, z} with xyz being a 3-cycle (choosing w would lead to situation 4, choosing any other would lead to situation 4)
Now it seems that the following algorithm gives all suitable permutations:
As long as there are strictly more than 5 numbers to choose, choose randomly among the compatible ones.
If there are 5 numbers left to choose: if the remaining numbers contain a 3-cycle or a 4-cycle, break that cycle (i.e. choose a number belonging to that cycle).
If there are 4 numbers left to choose: if the remaining numbers contain three cyclically consecutive numbers, choose one of them.
If there are 3 numbers left to choose: if the remaining numbers contain two cyclically consecutive numbers, choose one of them.
I am quite sure that this allows me to generate all suitable permutations and, hence, all suitable matrices.
Unfortunately, every matrix will be obtained several times, depending on the partition that was chosen.
Intro
Here is some prototype-approach, trying to solve the more general task of
uniform combinatorial sampling, which for our approach here means: we can use this approach for everything which we can formulate as SAT-problem.
It's not exploiting your problem directly and takes a heavy detour. This detour to the SAT-problem can help in regards to theory (more powerful general theoretical results) and efficiency (SAT-solvers).
That being said, it's not an approach if you want to sample within seconds or less (in my experiments), at least while being concerned about uniformity.
Theory
The approach, based on results from complexity-theory, follows this work:
GOMES, Carla P.; SABHARWAL, Ashish; SELMAN, Bart. Near-uniform sampling of combinatorial spaces using XOR constraints. In: Advances In Neural Information Processing Systems. 2007. S. 481-488.
The basic idea:
formulate the problem as SAT-problem
add randomly generated xors to the problem (acting on the decision-variables only! that's important in practice)
this will reduce the number of solutions (some solutions will get impossible)
do that in a loop (with tuned parameters) until only one solution is left!
search for some solution is being done by SAT-solvers or #SAT-solvers (=model-counting)
if there is more than one solution: no xors will be added but a complete restart will be done: add random-xors to the start-problem!
The guarantees:
when tuning the parameters right, this approach achieves near-uniform sampling
this tuning can be costly, as it's based on approximating the number of possible solutions
empirically this can also be costly!
Ante's answer, mentioning the number sequence A001499 actually gives a nice upper bound on the solution-space (as it's just ignoring adjacency-constraints!)
The drawbacks:
inefficient for large problems (in general; not necessarily compared to the alternatives like MCMC and co.)
need to change / reduce parameters to produce samples
those reduced parameters lose the theoretical guarantees
but empirically: good results are still possible!
Parameters:
In practice, the parameters are:
N: number of xors added
L: minimum number of variables part of one xor-constraint
U: maximum number of variables part of one xor-constraint
N is important to reduce the number of possible solutions. Given N constant, the other variables of course also have some effect on that.
Theory says (if i interpret correctly), that we should use L = R = 0.5 * #dec-vars.
This is impossible in practice here, as xor-constraints hurt SAT-solvers a lot!
Here some more scientific slides about the impact of L and U.
They call xors of size 8-20 short-XORS, while we will need to use even shorter ones later!
Implementation
Final version
Here is a pretty hacky implementation in python, using the XorSample scripts from here.
The underlying SAT-solver in use is Cryptominisat.
The code basically boils down to:
Transform the problem to conjunctive normal-form
as DIMACS-CNF
Implement the sampling-approach:
Calls XorSample (pipe-based + file-based)
Call SAT-solver (file-based)
Add samples to some file for later analysis
Code: (i hope i did warn you already about the code-quality)
from itertools import count
from time import time
import subprocess
import numpy as np
import os
import shelve
import uuid
import pickle
from random import SystemRandom
cryptogen = SystemRandom()
""" Helper functions """
# K-ARY CONSTRAINT GENERATION
# ###########################
# SINZ, Carsten. Towards an optimal CNF encoding of boolean cardinality constraints.
# CP, 2005, 3709. Jg., S. 827-831.
def next_var_index(start):
next_var = start
while(True):
yield next_var
next_var += 1
class s_index():
def __init__(self, start_index):
self.firstEnvVar = start_index
def next(self,i,j,k):
return self.firstEnvVar + i*k +j
def gen_seq_circuit(k, input_indices, next_var_index_gen):
cnf_string = ''
s_index_gen = s_index(next_var_index_gen.next())
# write clauses of first partial sum (i.e. i=0)
cnf_string += (str(-input_indices[0]) + ' ' + str(s_index_gen.next(0,0,k)) + ' 0\n')
for i in range(1, k):
cnf_string += (str(-s_index_gen.next(0, i, k)) + ' 0\n')
# write clauses for general case (i.e. 0 < i < n-1)
for i in range(1, len(input_indices)-1):
cnf_string += (str(-input_indices[i]) + ' ' + str(s_index_gen.next(i, 0, k)) + ' 0\n')
cnf_string += (str(-s_index_gen.next(i-1, 0, k)) + ' ' + str(s_index_gen.next(i, 0, k)) + ' 0\n')
for u in range(1, k):
cnf_string += (str(-input_indices[i]) + ' ' + str(-s_index_gen.next(i-1, u-1, k)) + ' ' + str(s_index_gen.next(i, u, k)) + ' 0\n')
cnf_string += (str(-s_index_gen.next(i-1, u, k)) + ' ' + str(s_index_gen.next(i, u, k)) + ' 0\n')
cnf_string += (str(-input_indices[i]) + ' ' + str(-s_index_gen.next(i-1, k-1, k)) + ' 0\n')
# last clause for last variable
cnf_string += (str(-input_indices[-1]) + ' ' + str(-s_index_gen.next(len(input_indices)-2, k-1, k)) + ' 0\n')
return (cnf_string, (len(input_indices)-1)*k, 2*len(input_indices)*k + len(input_indices) - 3*k - 1)
# K=2 clause GENERATION
# #####################
def gen_at_most_2_constraints(vars, start_var):
constraint_string = ''
used_clauses = 0
used_vars = 0
index_gen = next_var_index(start_var)
circuit = gen_seq_circuit(2, vars, index_gen)
constraint_string += circuit[0]
used_clauses += circuit[2]
used_vars += circuit[1]
start_var += circuit[1]
return [constraint_string, used_clauses, used_vars, start_var]
def gen_at_least_2_constraints(vars, start_var):
k = len(vars) - 2
vars = [-var for var in vars]
constraint_string = ''
used_clauses = 0
used_vars = 0
index_gen = next_var_index(start_var)
circuit = gen_seq_circuit(k, vars, index_gen)
constraint_string += circuit[0]
used_clauses += circuit[2]
used_vars += circuit[1]
start_var += circuit[1]
return [constraint_string, used_clauses, used_vars, start_var]
# Adjacency conflicts
# ###################
def get_all_adjacency_conflicts_4_neighborhood(N, X):
conflicts = set()
for x in range(N):
for y in range(N):
if x < (N-1):
conflicts.add(((x,y),(x+1,y)))
if y < (N-1):
conflicts.add(((x,y),(x,y+1)))
cnf = '' # slow string appends
for (var_a, var_b) in conflicts:
var_a_ = X[var_a]
var_b_ = X[var_b]
cnf += '-' + var_a_ + ' ' + '-' + var_b_ + ' 0 \n'
return cnf, len(conflicts)
# Build SAT-CNF
#############
def build_cnf(N, verbose=False):
var_counter = count(1)
N_CLAUSES = 0
X = np.zeros((N, N), dtype=object)
for a in range(N):
for b in range(N):
X[a,b] = str(next(var_counter))
# Adjacency constraints
CNF, N_CLAUSES = get_all_adjacency_conflicts_4_neighborhood(N, X)
# k=2 constraints
NEXT_VAR = N*N+1
for row in range(N):
constraint_string, used_clauses, used_vars, NEXT_VAR = gen_at_most_2_constraints(X[row, :].astype(int).tolist(), NEXT_VAR)
N_CLAUSES += used_clauses
CNF += constraint_string
constraint_string, used_clauses, used_vars, NEXT_VAR = gen_at_least_2_constraints(X[row, :].astype(int).tolist(), NEXT_VAR)
N_CLAUSES += used_clauses
CNF += constraint_string
for col in range(N):
constraint_string, used_clauses, used_vars, NEXT_VAR = gen_at_most_2_constraints(X[:, col].astype(int).tolist(), NEXT_VAR)
N_CLAUSES += used_clauses
CNF += constraint_string
constraint_string, used_clauses, used_vars, NEXT_VAR = gen_at_least_2_constraints(X[:, col].astype(int).tolist(), NEXT_VAR)
N_CLAUSES += used_clauses
CNF += constraint_string
# build final cnf
CNF = 'p cnf ' + str(NEXT_VAR-1) + ' ' + str(N_CLAUSES) + '\n' + CNF
return X, CNF, NEXT_VAR-1
# External tools
# ##############
def get_random_xor_problem(CNF_IN_fp, N_DEC_VARS, N_ALL_VARS, s, min_l, max_l):
# .cnf not part of arg!
p = subprocess.Popen(['./gen-wff', CNF_IN_fp,
str(N_DEC_VARS), str(N_ALL_VARS),
str(s), str(min_l), str(max_l), 'xored'],
stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
result = p.communicate()
os.remove(CNF_IN_fp + '-str-xored.xor') # file not needed
return CNF_IN_fp + '-str-xored.cnf'
def solve(CNF_IN_fp, N_DEC_VARS):
seed = cryptogen.randint(0, 2147483647) # actually no reason to do it; but can't hurt either
p = subprocess.Popen(["./cryptominisat5", '-t', '4', '-r', str(seed), CNF_IN_fp], stdin=subprocess.PIPE, stdout=subprocess.PIPE)
result = p.communicate()[0]
sat_line = result.find('s SATISFIABLE')
if sat_line != -1:
# solution found!
vars = parse_solution(result)[:N_DEC_VARS]
# forbid solution (DeMorgan)
negated_vars = list(map(lambda x: x*(-1), vars))
with open(CNF_IN_fp, 'a') as f:
f.write( (str(negated_vars)[1:-1] + ' 0\n').replace(',', ''))
# assume solve is treating last constraint despite not changing header!
# solve again
seed = cryptogen.randint(0, 2147483647)
p = subprocess.Popen(["./cryptominisat5", '-t', '4', '-r', str(seed), CNF_IN_fp], stdin=subprocess.PIPE, stdout=subprocess.PIPE)
result = p.communicate()[0]
sat_line = result.find('s SATISFIABLE')
if sat_line != -1:
os.remove(CNF_IN_fp) # not needed anymore
return True, False, None
else:
return True, True, vars
else:
return False, False, None
def parse_solution(output):
# assumes there is one
vars = []
for line in output.split("\n"):
if line:
if line[0] == 'v':
line_vars = list(map(lambda x: int(x), line.split()[1:]))
vars.extend(line_vars)
return vars
# Core-algorithm
# ##############
def xorsample(X, CNF_IN_fp, N_DEC_VARS, N_VARS, s, min_l, max_l):
start_time = time()
while True:
# add s random XOR constraints to F
xored_cnf_fp = get_random_xor_problem(CNF_IN_fp, N_DEC_VARS, N_VARS, s, min_l, max_l)
state_lvl1, state_lvl2, var_sol = solve(xored_cnf_fp, N_DEC_VARS)
print('------------')
if state_lvl1 and state_lvl2:
print('FOUND')
d = shelve.open('N_15_70_4_6_TO_PLOT')
d[str(uuid.uuid4())] = (pickle.dumps(var_sol), time() - start_time)
d.close()
return True
else:
if state_lvl1:
print('sol not unique')
else:
print('no sol found')
print('------------')
""" Run """
N = 15
N_DEC_VARS = N*N
X, CNF, N_VARS = build_cnf(N)
with open('my_problem.cnf', 'w') as f:
f.write(CNF)
counter = 0
while True:
print('sample: ', counter)
xorsample(X, 'my_problem', N_DEC_VARS, N_VARS, 70, 4, 6)
counter += 1
Output will look like (removed some warnings):
------------
no sol found
------------
------------
no sol found
------------
------------
no sol found
------------
------------
sol not unique
------------
------------
FOUND
Core: CNF-formulation
We introduce one variable for every cell of the matrix. N=20 means 400 binary-variables.
Adjancency:
Precalculate all symmetry-reduced conflicts and add conflict-clauses.
Basic theory:
a -> !b
<->
!a v !b (propositional logic)
Row/Col-wise Cardinality:
This is tough to express in CNF and naive approaches need an exponential number
of constraints.
We use some adder-circuit based encoding (SINZ, Carsten. Towards an optimal CNF encoding of boolean cardinality constraints) which introduces new auxiliary-variables.
Remark:
sum(var_set) <= k
<->
sum(negated(var_set)) >= len(var_set) - k
These SAT-encodings can be put into exact model-counters (for small N; e.g. < 9). The number of solutions equals Ante's results, which is a strong indication for a correct transformation!
There are also interesting approximate model-counters (also heavily based on xor-constraints) like approxMC which shows one more thing we can do with the SAT-formulation. But in practice i have not been able to use these (approxMC = autoconf; no comment).
Other experiments
I did also build a version using pblib, to use more powerful cardinality-formulations
for the SAT-CNF formulation. I did not try to use the C++-based API, but only the reduced pbencoder, which automatically selects some best encoding, which was way worse than my encoding used above (which is best is still a research-problem; often even redundant-constraints can help).
Empirical analysis
For the sake of obtaining some sample-size (given my patience), i only computed samples for N=15. In this case we used:
N=70 xors
L,U = 4,6
I also computed some samples for N=20 with (100,3,6), but this takes a few mins and we reduced the lower bound!
Visualization
Here some animation (strengthening my love-hate relationship with matplotlib):
Edit: And a (reduced) comparison to brute-force uniform-sampling with N=5 (NXOR,L,U = 4, 10, 30):
(I have not yet decided on the addition of the plotting-code. It's as ugly as the above one and people might look too much into my statistical shambles; normalizations and co.)
Theory
Statistical analysis is probably hard to do as the underlying problem is of such combinatoric nature. It's even not entirely obvious how that final cell-PDF should look like. In the case of N=odd, it's probably non-uniform and looks like a chess-board (i did brute-force check N=5 to observe this).
One thing we can be sure about (imho): symmetry!
Given a cell-PDF matrix, we should expect, that the matrix is symmetric (A = A.T).
This is checked in the visualization and the euclidean-norm of differences over time is plotted.
We can do the same on some other observation: observed pairings.
For N=3, we can observe the following pairs:
0,1
0,2
1,2
Now we can do this per-row and per-column and should expect symmetry too!
Sadly, it's probably not easy to say something about the variance and therefore the needed samples to speak about confidence!
Observation
According to my simplified perception, current-samples and the cell-PDF look good, although convergence is not achieved yet (or we are far away from uniformity).
The more important aspect are probably the two norms, nicely decreasing towards 0.
(yes; one could tune some algorithm for that by transposing with prob=0.5; but this is not done here as it would defeat it's purpose).
Potential next steps
Tune parameters
Check out the approach using #SAT-solvers / Model-counters instead of SAT-solvers
Try different CNF-formulations, especially in regards to cardinality-encodings and xor-encodings
XorSample is by default using tseitin-like encoding to get around exponentially grow
for smaller xors (as used) it might be a good idea to use naive encoding (which propagates faster)
XorSample supports that in theory; but the script's work differently in practice
Cryptominisat is known for dedicated XOR-handling (as it was build for analyzing cryptography including many xors) and might gain something by naive encoding (as inferring xors from blown-up CNFs is much harder)
More statistical-analysis
Get rid of XorSample scripts (shell + perl...)
Summary
The approach is very general
This code produces feasible samples
It should be not hard to prove, that every feasible solution can be sampled
Others have proven theoretical guarantees for uniformity for some params
does not hold for our params
Others have empirically / theoretically analyzed smaller parameters (in use here)
(Updated test results, example run-through and code snippets below.)
You can use dynamic programming to calculate the number of solutions resulting from every state (in a much more efficient way than a brute-force algorithm), and use those (pre-calculated) values to create equiprobable random solutions.
Consider the example of a 7x7 matrix; at the start, the state is:
0,0,0,0,0,0,0
meaning that there are seven adjacent unused columns. After adding two ones to the first row, the state could be e.g.:
0,1,0,0,1,0,0
with two columns that now have a one in them. After adding ones to the second row, the state could be e.g.:
0,1,1,0,1,0,1
After three rows are filled, there is a possibility that a column will have its maximum of two ones; this effectively splits the matrix into two independent zones:
1,1,1,0,2,0,1 -> 1,1,1,0 + 0,1
These zones are independent in the sense that the no-adjacent-ones rule has no effect when adding ones to different zones, and the order of the zones has no effect on the number of solutions.
In order to use these states as signatures for types of solutions, we have to transform them into a canonical notation. First, we have to take into account the fact that columns with only 1 one in them may be unusable in the next row, because they contain a one in the current row. So instead of a binary notation, we have to use a ternary notation, e.g.:
2,1,1,0 + 0,1
where the 2 means that this column was used in the current row (and not that there are 2 ones in the column). At the next step, we should then convert the twos back into ones.
Additionally, we can also mirror the seperate groups to put them into their lexicographically smallest notation:
2,1,1,0 + 0,1 -> 0,1,1,2 + 0,1
Lastly, we sort the seperate groups from small to large, and then lexicographically, so that a state in a larger matrix may be e.g.:
0,0 + 0,1 + 0,0,2 + 0,1,0 + 0,1,0,1
Then, when calculating the number of solutions resulting from each state, we can use memoization using the canonical notation of each state as a key.
Creating a dictionary of the states and the number of solutions for each of them only needs to be done once, and a table for larger matrices can probably be used for smaller matrices too.
Practically, you'd generate a random number between 0 and the total number of solutions, and then for every row, you'd look at the different states you could create from the current state, look at the number of unique solutions each one would generate, and see which option leads to the solution that corresponds with your randomly generated number.
Note that every state and the corresponding key can only occur in a particular row, so you can store the keys in seperate dictionaries per row.
TEST RESULTS
A first test using unoptimized JavaScript gave very promising results. With dynamic programming, calculating the number of solutions for a 10x10 matrix now takes a second, where a brute-force algorithm took several hours (and this is the part of the algorithm that only needs to be done once). The size of the dictionary with the signatures and numbers of solutions grows with a diminishing factor approaching 2.5 for each step in size; the time to generate it grows with a factor of around 3.
These are the number of solutions, states, signatures (total size of the dictionaries), and maximum number of signatures per row (largest dictionary per row) that are created:
size unique solutions states signatures max/row
4x4 2 9 6 2
5x5 16 73 26 8
6x6 722 514 107 40
7x7 33,988 2,870 411 152
8x8 2,215,764 13,485 1,411 596
9x9 179,431,924 56,375 4,510 1,983
10x10 17,849,077,140 218,038 13,453 5,672
11x11 2,138,979,146,276 801,266 38,314 14,491
12x12 304,243,884,374,412 2,847,885 104,764 35,803
13x13 50,702,643,217,809,908 9,901,431 278,561 96,414
14x14 9,789,567,606,147,948,364 33,911,578 723,306 238,359
15x15 2,168,538,331,223,656,364,084 114,897,838 1,845,861 548,409
16x16 546,386,962,452,256,865,969,596 ... 4,952,501 1,444,487
17x17 155,420,047,516,794,379,573,558,433 12,837,870 3,754,040
18x18 48,614,566,676,379,251,956,711,945,475 31,452,747 8,992,972
19x19 17,139,174,923,928,277,182,879,888,254,495 74,818,773 20,929,008
20x20 6,688,262,914,418,168,812,086,412,204,858,650 175,678,000 50,094,203
(Additional results obtained with C++, using a simple 128-bit integer implementation. To count the states, the code had to be run using each state as a seperate signature, which I was unable to do for the largest sizes. )
EXAMPLE
The dictionary for a 5x5 matrix looks like this:
row 0: 00000 -> 16 row 3: 101 -> 0
1112 -> 1
row 1: 20002 -> 2 1121 -> 1
00202 -> 4 1+01 -> 0
02002 -> 2 11+12 -> 2
02020 -> 2 1+121 -> 1
0+1+1 -> 0
row 2: 10212 -> 1 1+112 -> 1
12012 -> 1
12021 -> 2 row 4: 0 -> 0
12102 -> 1 11 -> 0
21012 -> 0 12 -> 0
02121 -> 3 1+1 -> 1
01212 -> 1 1+2 -> 0
The total number of solutions is 16; if we randomly pick a number from 0 to 15, e.g. 13, we can find the corresponding (i.e. the 14th) solution like this:
state: 00000
options: 10100 10010 10001 01010 01001 00101
signature: 00202 02002 20002 02020 02002 00202
solutions: 4 2 2 2 2 4
This tells us that the 14th solution is the 2nd solution of option 00101. The next step is:
state: 00101
options: 10010 01010
signature: 12102 02121
solutions: 1 3
This tells us that the 2nd solution is the 1st solution of option 01010. The next step is:
state: 01111
options: 10100 10001 00101
signature: 11+12 1112 1+01
solutions: 2 1 0
This tells us that the 1st solution is the 1st solution of option 10100. The next step is:
state: 11211
options: 01010 01001
signature: 1+1 1+1
solutions: 1 1
This tells us that the 1st solutions is the 1st solution of option 01010. The last step is:
state: 12221
options: 10001
And the 5x5 matrix corresponding to randomly chosen number 13 is:
0 0 1 0 1
0 1 0 1 0
1 0 1 0 0
0 1 0 1 0
1 0 0 0 1
And here's a quick'n'dirty code example; run the snippet to generate the signature and solution count dictionary, and generate a random 10x10 matrix (it takes a second to generate the dictionary; once that is done, it generates random solutions in half a millisecond):
function signature(state, prev) {
var zones = [], zone = [];
for (var i = 0; i < state.length; i++) {
if (state[i] == 2) {
if (zone.length) zones.push(mirror(zone));
zone = [];
}
else if (prev[i]) zone.push(3);
else zone.push(state[i]);
}
if (zone.length) zones.push(mirror(zone));
zones.sort(function(a,b) {return a.length - b.length || a - b;});
return zones.length ? zones.join("2") : "2";
function mirror(zone) {
var ltr = zone.join('');
zone.reverse();
var rtl = zone.join('');
return (ltr < rtl) ? ltr : rtl;
}
}
function memoize(n) {
var memo = [], empty = [];
for (var i = 0; i <= n; i++) memo[i] = [];
for (var i = 0; i < n; i++) empty[i] = 0;
memo[0][signature(empty, empty)] = next_row(empty, empty, 1);
return memo;
function next_row(state, prev, row) {
if (row > n) return 1;
var solutions = 0;
for (var i = 0; i < n - 2; i++) {
if (state[i] == 2 || prev[i] == 1) continue;
for (var j = i + 2; j < n; j++) {
if (state[j] == 2 || prev[j] == 1) continue;
var s = state.slice(), p = empty.slice();
++s[i]; ++s[j]; ++p[i]; ++p[j];
var sig = signature(s, p);
var sol = memo[row][sig];
if (sol == undefined)
memo[row][sig] = sol = next_row(s, p, row + 1);
solutions += sol;
}
}
return solutions;
}
}
function random_matrix(n, memo) {
var matrix = [], empty = [], state = [], prev = [];
for (var i = 0; i < n; i++) empty[i] = state[i] = prev[i] = 0;
var total = memo[0][signature(empty, empty)];
var pick = Math.floor(Math.random() * total);
document.write("solution " + pick.toLocaleString('en-US') +
" from a total of " + total.toLocaleString('en-US') + "<br>");
for (var row = 1; row <= n; row++) {
var options = find_options(state, prev);
for (var i in options) {
var state_copy = state.slice();
for (var j in state_copy) state_copy[j] += options[i][j];
var sig = signature(state_copy, options[i]);
var solutions = memo[row][sig];
if (pick < solutions) {
matrix.push(options[i].slice());
prev = options[i].slice();
state = state_copy.slice();
break;
}
else pick -= solutions;
}
}
return matrix;
function find_options(state, prev) {
var options = [];
for (var i = 0; i < n - 2; i++) {
if (state[i] == 2 || prev[i] == 1) continue;
for (var j = i + 2; j < n; j++) {
if (state[j] == 2 || prev[j] == 1) continue;
var option = empty.slice();
++option[i]; ++option[j];
options.push(option);
}
}
return options;
}
}
var size = 10;
var memo = memoize(size);
var matrix = random_matrix(size, memo);
for (var row in matrix) document.write(matrix[row] + "<br>");
The code snippet below shows the dictionary of signatures and solution counts for a matrix of size 10x10. I've used a slightly different signature format from the explanation above: the zones are delimited by a '2' instead of a plus sign, and a column which has a one in the previous row is marked with a '3' instead of a '2'. This shows how the keys could be stored in a file as integers with 2×N bits (padded with 2's).
function signature(state, prev) {
var zones = [], zone = [];
for (var i = 0; i < state.length; i++) {
if (state[i] == 2) {
if (zone.length) zones.push(mirror(zone));
zone = [];
}
else if (prev[i]) zone.push(3);
else zone.push(state[i]);
}
if (zone.length) zones.push(mirror(zone));
zones.sort(function(a,b) {return a.length - b.length || a - b;});
return zones.length ? zones.join("2") : "2";
function mirror(zone) {
var ltr = zone.join('');
zone.reverse();
var rtl = zone.join('');
return (ltr < rtl) ? ltr : rtl;
}
}
function memoize(n) {
var memo = [], empty = [];
for (var i = 0; i <= n; i++) memo[i] = [];
for (var i = 0; i < n; i++) empty[i] = 0;
memo[0][signature(empty, empty)] = next_row(empty, empty, 1);
return memo;
function next_row(state, prev, row) {
if (row > n) return 1;
var solutions = 0;
for (var i = 0; i < n - 2; i++) {
if (state[i] == 2 || prev[i] == 1) continue;
for (var j = i + 2; j < n; j++) {
if (state[j] == 2 || prev[j] == 1) continue;
var s = state.slice(), p = empty.slice();
++s[i]; ++s[j]; ++p[i]; ++p[j];
var sig = signature(s, p);
var sol = memo[row][sig];
if (sol == undefined)
memo[row][sig] = sol = next_row(s, p, row + 1);
solutions += sol;
}
}
return solutions;
}
}
var memo = memoize(10);
for (var i in memo) {
document.write("row " + i + ":<br>");
for (var j in memo[i]) {
document.write(""" + j + "": " + memo[i][j] + "<br>");
}
}
Just few thoughts. Number of matrices satisfying conditions for n <= 10:
3 0
4 2
5 16
6 722
7 33988
8 2215764
9 179431924
10 17849077140
Unfortunatelly there is no sequence with these numbers in OEIS.
There is one similar (A001499), without condition for neighbouring one's. Number of nxn matrices in this case is 'of order' as A001499's number of (n-1)x(n-1) matrices. That is to be expected since number
of ways to fill one row in this case, position 2 one's in n places with at least one zero between them is ((n-1) choose 2). Same as to position 2 one's in (n-1) places without the restriction.
I don't think there is an easy connection between these matrix of order n and A001499 matrix of order n-1, meaning that if we have A001499 matrix than we can construct some of these matrices.
With this, for n=20, number of matrices is >10^30. Quite a lot :-/
This solution use recursion in order to set the cell of the matrix one by one. If the random walk finish with an impossible solution then we rollback one step in the tree and we continue the random walk.
The algorithm is efficient and i think that the generated data are highly equiprobable.
package rndsqmatrix;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.stream.IntStream;
public class RndSqMatrix {
/**
* Generate a random matrix
* #param size the size of the matrix
* #return the matrix encoded in 1d array i=(x+y*size)
*/
public static int[] generate(final int size) {
return generate(size, new int[size * size], new int[size],
new int[size]);
}
/**
* Build a matrix recursivly with a random walk
* #param size the size of the matrix
* #param matrix the matrix encoded in 1d array i=(x+y*size)
* #param rowSum
* #param colSum
* #return
*/
private static int[] generate(final int size, final int[] matrix,
final int[] rowSum, final int[] colSum) {
// generate list of valid positions
final List<Integer> positions = new ArrayList();
for (int y = 0; y < size; y++) {
if (rowSum[y] < 2) {
for (int x = 0; x < size; x++) {
if (colSum[x] < 2) {
final int p = x + y * size;
if (matrix[p] == 0
&& (x == 0 || matrix[p - 1] == 0)
&& (x == size - 1 || matrix[p + 1] == 0)
&& (y == 0 || matrix[p - size] == 0)
&& (y == size - 1 || matrix[p + size] == 0)) {
positions.add(p);
}
}
}
}
}
// no valid positions ?
if (positions.isEmpty()) {
// if the matrix is incomplete => return null
for (int i = 0; i < size; i++) {
if (rowSum[i] != 2 || colSum[i] != 2) {
return null;
}
}
// the matrix is complete => return it
return matrix;
}
// random walk
Collections.shuffle(positions);
for (int p : positions) {
// set '1' and continue recursivly the exploration
matrix[p] = 1;
rowSum[p / size]++;
colSum[p % size]++;
final int[] solMatrix = generate(size, matrix, rowSum, colSum);
if (solMatrix != null) {
return solMatrix;
}
// rollback
matrix[p] = 0;
rowSum[p / size]--;
colSum[p % size]--;
}
// we can't find a valid matrix from here => return null
return null;
}
public static void printMatrix(final int size, final int[] matrix) {
for (int y = 0; y < size; y++) {
for (int x = 0; x < size; x++) {
System.out.print(matrix[x + y * size]);
System.out.print(" ");
}
System.out.println();
}
}
public static void printStatistics(final int size, final int count) {
final int sumMatrix[] = new int[size * size];
for (int i = 0; i < count; i++) {
final int[] matrix = generate(size);
for (int j = 0; j < sumMatrix.length; j++) {
sumMatrix[j] += matrix[j];
}
}
printMatrix(size, sumMatrix);
}
public static void checkAlgorithm() {
final int size = 8;
final int count = 2215764;
final int divisor = 122;
final int sumMatrix[] = new int[size * size];
for (int i = 0; i < count/divisor ; i++) {
final int[] matrix = generate(size);
for (int j = 0; j < sumMatrix.length; j++) {
sumMatrix[j] += matrix[j];
}
}
int total = 0;
for(int i=0; i < sumMatrix.length; i++) {
total += sumMatrix[i];
}
final double factor = (double)total / (count/divisor);
System.out.println("Factor=" + factor + " (theory=16.0)");
}
public static void benchmark(final int size, final int count,
final boolean parallel) {
final long begin = System.currentTimeMillis();
if (!parallel) {
for (int i = 0; i < count; i++) {
generate(size);
}
} else {
IntStream.range(0, count).parallel().forEach(i -> generate(size));
}
final long end = System.currentTimeMillis();
System.out.println("rate="
+ (double) (end - begin) / count + "ms/matrix");
}
public static void main(String[] args) {
checkAlgorithm();
benchmark(8, 10000, true);
//printStatistics(8, 2215764/36);
printStatistics(8, 2215764);
}
}
The output is:
Factor=16.0 (theory=16.0)
rate=0.2835ms/matrix
552969 554643 552895 554632 555680 552753 554567 553389
554071 554847 553441 553315 553425 553883 554485 554061
554272 552633 555130 553699 553604 554298 553864 554028
554118 554299 553565 552986 553786 554473 553530 554771
554474 553604 554473 554231 553617 553556 553581 553992
554960 554572 552861 552732 553782 554039 553921 554661
553578 553253 555721 554235 554107 553676 553776 553182
553086 553677 553442 555698 553527 554850 553804 553444
Here is a very fast approach of generating the matrix row by row, written in Java:
public static void main(String[] args) throws Exception {
int n = 100;
Random rnd = new Random();
byte[] mat = new byte[n*n];
byte[] colCount = new byte[n];
//generate row by row
for (int x = 0; x < n; x++) {
//generate a random first bit
int b1 = rnd.nextInt(n);
while ( (x > 0 && mat[(x-1)*n + b1] == 1) || //not adjacent to the one above
(colCount[b1] == 2) //not in a column which has 2
) b1 = rnd.nextInt(n);
//generate a second bit, not equal to the first one
int b2 = rnd.nextInt(n);
while ( (b2 == b1) || //not the same as bit 1
(x > 0 && mat[(x-1)*n + b2] == 1) || //not adjacent to the one above
(colCount[b2] == 2) || //not in a column which has 2
(b2 == b1 - 1) || //not adjacent to b1
(b2 == b1 + 1)
) b2 = rnd.nextInt(n);
//fill the matrix values and increment column counts
mat[x*n + b1] = 1;
mat[x*n + b2] = 1;
colCount[b1]++;
colCount[b2]++;
}
String arr = Arrays.toString(mat).substring(1, n*n*3 - 1);
System.out.println(arr.replaceAll("(.{" + n*3 + "})", "$1\n"));
}
It essentially generates each a random row at a time. If the row will violate any of the conditions, it is generated again (again randomly). I believe this will satisfy condition 4 as well.
Adding a quick note that it will spin forever for N-s where there is no solutions (like N=3).
My goal is to know how to create my own marker and use it
I'm having trouble to understand how to make the matrix matches the AR Marker PNG.
Id really love someone to either explain how this and the PNG are working together,
Actually Im a bit embarrassed as on further reading it is not hamming code,
but based on hamming code Still possibly someone familiar with hamming code might be able to help this is
(the whole tutorial link is at the bottom of the post)
The main difference with the hamming code is that the first bit (parity of bits 3 and 5) is inverted. So, ID 0 (which in hamming code is 00000) becomes 10000 in our code. The idea is to prevent a completely black rectangle from being a valid marker ID, with the goal of reducing the likelihood of false positives with objects of the environment.
As there are four possible orientations of the marker picture, we have to find the correct marker position. Remember, we introduced three parity bits for each two bits of information. With their help we can find the hamming distance for each possible marker orientation. The correct marker position will have zero hamming distance error, while the other rotations won't.
Here is a code snippet that rotates the bit matrix four times and finds the correct marker orientation:
//check all possible rotations
cv::Mat rotations[4];
int distances[4];
rotations[0] = bitMatrix;
distances[0] = hammDistMarker(rotations[0]);
std::pair<int,int> minDist(distances[0],0);
for (int i=1; i<4; i++)
{
//get the hamming distance to the nearest possible word
rotations[i] = rotate(rotations[i-1]);
distances[i] = hammDistMarker(rotations[i]);
if (distances[i] < minDist.first)
{
minDist.first = distances[i];
minDist.second = i;
}
}
This code finds the orientation of the bit matrix in such a way that it gives minimal error for the hamming distance metric. This error should be zero for correct marker ID; if it's not, it means that we encountered a wrong marker pattern (corrupted image or false-positive marker detection).
**this is the code that I think is relating to the Marker png shown
can anyone help me to understand the matrix so I can use it.
ALL diagrams, thoughts and explanations happily accepted for a non maths person to get an understanding of this quite complex problem ;P !
![the working AR marker when view from iPad][4]
//
// Marker.cpp
// Example_MarkerBasedAR
//
// Created by Ievgen Khvedchenia on 3/13/12.
// Copyright (c) 2012 Ievgen Khvedchenia. All rights reserved.
//
#include "Marker.hpp"
#include "DebugHelpers.hpp"
Marker::Marker()
: id(-1)
{
}
bool operator<(const Marker &M1,const Marker&M2)
{
return M1.id<M2.id;
}
cv::Mat Marker::rotate(cv::Mat in)
{
cv::Mat out;
in.copyTo(out);
for (int i=0;i<in.rows;i++)
{
for (int j=0;j<in.cols;j++)
{
out.at<uchar>(i,j)=in.at<uchar>(in.cols-j-1,i);
}
}
return out;
}
int Marker::hammDistMarker(cv::Mat bits)
{
int ids[4][5]=
{
{1,0,0,0,0},
{1,0,1,1,1},
{0,1,0,0,1},
{0,1,1,1,0}
};
int dist=0;
for (int y=0;y<5;y++)
{
int minSum=1e5; //hamming distance to each possible word
for (int p=0;p<4;p++)
{
int sum=0;
//now, count
for (int x=0;x<5;x++)
{
sum += bits.at<uchar>(y,x) == ids[p][x] ? 0 : 1;
}
if (minSum>sum)
minSum=sum;
}
//do the and
dist += minSum;
}
return dist;
}
int Marker::mat2id(const cv::Mat &bits)
{
int val=0;
for (int y=0;y<5;y++)
{
val<<=1;
if ( bits.at<uchar>(y,1)) val|=1;
val<<=1;
if ( bits.at<uchar>(y,3)) val|=1;
}
return val;
}
int Marker::getMarkerId(cv::Mat &markerImage,int &nRotations)
{
assert(markerImage.rows == markerImage.cols);
assert(markerImage.type() == CV_8UC1);
cv::Mat grey = markerImage;
// Threshold image
cv::threshold(grey, grey, 125, 255, cv::THRESH_BINARY | cv::THRESH_OTSU);
#ifdef SHOW_DEBUG_IMAGES
cv::showAndSave("Binary marker", grey);
#endif
//Markers are divided in 7x7 regions, of which the inner 5x5 belongs to marker info
//the external border should be entirely black
int cellSize = markerImage.rows / 7;
for (int y=0;y<7;y++)
{
int inc=6;
if (y==0 || y==6) inc=1; //for first and last row, check the whole border
for (int x=0;x<7;x+=inc)
{
int cellX = x * cellSize;
int cellY = y * cellSize;
cv::Mat cell = grey(cv::Rect(cellX,cellY,cellSize,cellSize));
int nZ = cv::countNonZero(cell);
if (nZ > (cellSize*cellSize) / 2)
{
return -1;//can not be a marker because the border element is not black!
}
}
}
cv::Mat bitMatrix = cv::Mat::zeros(5,5,CV_8UC1);
//get information(for each inner square, determine if it is black or white)
for (int y=0;y<5;y++)
{
for (int x=0;x<5;x++)
{
int cellX = (x+1)*cellSize;
int cellY = (y+1)*cellSize;
cv::Mat cell = grey(cv::Rect(cellX,cellY,cellSize,cellSize));
int nZ = cv::countNonZero(cell);
if (nZ> (cellSize*cellSize) /2)
bitMatrix.at<uchar>(y,x) = 1;
}
}
//check all possible rotations
cv::Mat rotations[4];
int distances[4];
rotations[0] = bitMatrix;
distances[0] = hammDistMarker(rotations[0]);
std::pair<int,int> minDist(distances[0],0);
for (int i=1; i<4; i++)
{
//get the hamming distance to the nearest possible word
rotations[i] = rotate(rotations[i-1]);
distances[i] = hammDistMarker(rotations[i]);
if (distances[i] < minDist.first)
{
minDist.first = distances[i];
minDist.second = i;
}
}
nRotations = minDist.second;
if (minDist.first == 0)
{
return mat2id(rotations[minDist.second]);
}
return -1;
}
void Marker::drawContour(cv::Mat& image, cv::Scalar color) const
{
float thickness = 2;
cv::line(image, points[0], points[1], color, thickness, CV_AA);
cv::line(image, points[1], points[2], color, thickness, CV_AA);
cv::line(image, points[2], points[3], color, thickness, CV_AA);
cv::line(image, points[3], points[0], color, thickness, CV_AA);
}
AR tutorial I'm working from
https://www.packtpub.com/books/content/marker-based-augmented-reality-iphone-or-ipad
I don't have an exhaustive answer, but I think I can explain enough to help your confusion since I am familiar with Hamming distance as well as matrix rotations and other transformations.
From what I can tell:
The matrix you have isn't the bitmap for that marker. It is an array of rotations.
In the algorithm as implemented in the article, the hamming distances are computed with 4 rotations of a marker. So the reason you have 4 rows in the matrix is it is 4 rotations.
I could be wrong, or have oversimplified, maybe this answer will trigger discussion and someone better will see it. I'll look closer at the algorithm and article to see if I can understand it. I made an A in Matrix Theory, but that was 18 years ago and I've frankly forgotten how to transform matrices.
I just found out a clue, but not very sure. Here is my thought:
I found the explanation of "Hamming code" via Wiki http://en.wikipedia.org/wiki/Hamming_code, and how to encode.(have no privilege to insert picture, so please visit the link above)
Here is the code from the book《Mastering OpenCV ...》:
int Marker::mat2id(const cv::Mat &bits)
{
int val=0;
for (int y=0;y<5;y++)
{
val<<=1;
if ( bits.at<uchar>(y,1)) val|=1;
val<<=1;
if ( bits.at<uchar>(y,3)) val|=1;
}
return val;
}
I think only bits 1 and 3 are data, so I took a look at the matrix:
int ids[4][5]=
{
{1,0,0,0,0},// 0,0 -> 0
{1,0,1,1,1},// 0,1 -> 1
{0,1,0,0,1},// 1,0 -> 2
{0,1,1,1,0} // 1,1 -> 3
}; ^ ^
| |
So these 4 cols should be the hamming-code of [0][1][2][3](which 2 bits can encode)
The following is my explanation( maybe incorrect~):
//(1):'d' represents data, 'p' represents parity bits. Among [d1~d4],only [d1][d2] are useful
//(2):then place [d1][d2] into [p1][p2][p4],[p1~p3] is calculated following the circle graph(?) in the Wiki webpage.
//(3):next, write the matrix from the high bits
//(4):finally, according to what the book explains:
The main difference with the hamming code is that the first bit (parity of bits
3 and 5) is inverted. So, ID 0 (which in hamming code is 00000) becomes 10000
in our code. The idea is to prevent a completely black rectangle from being a valid
marker ID, with the goal of reducing the likelihood of false positives with objects of
the environment.
//I invert the [p4] , and I got the matrix above.
origin Num d1 d2 d3 d4 p1 p2 p4 p1 d1 p2 d2 p4 p4 d2 p2 d1 p1 p4 d2 p2 d1 p1
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
01 1 0 0 0 1 1 0 => 1 1 1 0 0 => 0 0 1 1 1 => 1 0 1 1 1
10 0 1 0 0 1 0 1 => 1 0 0 1 1 => 1 1 0 0 1 => 0 1 0 0 1
11 1 1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 0
[ (1) ] [ (2) ] [ (3) ] [ (4) ]
I do not sure whether this is right, but I got the same result.
If it is true, then we can make our own markers with this matrix.
#Natalie and #mrjoltcola . Hope you can see this~
(this is my first time reply on this forum ,if there are something improper, I`d be glad to receiving advices :) ^_^ )
For example, here is the shape of intended spiral (and each step of the iteration)
y
|
|
16 15 14 13 12
17 4 3 2 11
-- 18 5 0 1 10 --- x
19 6 7 8 9
20 21 22 23 24
|
|
Where the lines are the x and y axes.
Here would be the actual values the algorithm would "return" with each iteration (the coordinates of the points):
[0,0],
[1,0], [1,1], [0,1], [-1,1], [-1,0], [-1,-1], [0,-1], [1,-1],
[2,-1], [2,0], [2,1], [2,2], [1,2], [0,2], [-1,2], [-2,2], [-2,1], [-2,0]..
etc.
I've tried searching, but I'm not exactly sure what to search for exactly, and what searches I've tried have come up with dead ends.
I'm not even sure where to start, other than something messy and inelegant and ad-hoc, like creating/coding a new spiral for each layer.
Can anyone help me get started?
Also, is there a way that can easily switch between clockwise and counter-clockwise (the orientation), and which direction to "start" the spiral from? (the rotation)
Also, is there a way to do this recursively?
My application
I have a sparse grid filled with data points, and I want to add a new data point to the grid, and have it be "as close as possible" to a given other point.
To do that, I'll call grid.find_closest_available_point_to(point), which will iterate over the spiral given above and return the first position that is empty and available.
So first, it'll check point+[0,0] (just for completeness's sake). Then it'll check point+[1,0]. Then it'll check point+[1,1]. Then point+[0,1], etc. And return the first one for which the position in the grid is empty (or not occupied already by a data point).
There is no upper bound to grid size.
There's nothing wrong with direct, "ad-hoc" solution. It can be clean enough too.
Just notice that spiral is built from segments. And you can get next segment from current one rotating it by 90 degrees. And each two rotations, length of segment grows by 1.
edit Illustration, those segments numbered
... 11 10
7 7 7 7 6 10
8 3 3 2 6 10
8 4 . 1 6 10
8 4 5 5 5 10
8 9 9 9 9 9
// (di, dj) is a vector - direction in which we move right now
int di = 1;
int dj = 0;
// length of current segment
int segment_length = 1;
// current position (i, j) and how much of current segment we passed
int i = 0;
int j = 0;
int segment_passed = 0;
for (int k = 0; k < NUMBER_OF_POINTS; ++k) {
// make a step, add 'direction' vector (di, dj) to current position (i, j)
i += di;
j += dj;
++segment_passed;
System.out.println(i + " " + j);
if (segment_passed == segment_length) {
// done with current segment
segment_passed = 0;
// 'rotate' directions
int buffer = di;
di = -dj;
dj = buffer;
// increase segment length if necessary
if (dj == 0) {
++segment_length;
}
}
}
To change original direction, look at original values of di and dj. To switch rotation to clockwise, see how those values are modified.
Here's a stab at it in C++, a stateful iterator.
class SpiralOut{
protected:
unsigned layer;
unsigned leg;
public:
int x, y; //read these as output from next, do not modify.
SpiralOut():layer(1),leg(0),x(0),y(0){}
void goNext(){
switch(leg){
case 0: ++x; if(x == layer) ++leg; break;
case 1: ++y; if(y == layer) ++leg; break;
case 2: --x; if(-x == layer) ++leg; break;
case 3: --y; if(-y == layer){ leg = 0; ++layer; } break;
}
}
};
Should be about as efficient as it gets.
This is the javascript solution based on the answer at
Looping in a spiral
var x = 0,
y = 0,
delta = [0, -1],
// spiral width
width = 6,
// spiral height
height = 6;
for (i = Math.pow(Math.max(width, height), 2); i>0; i--) {
if ((-width/2 < x && x <= width/2)
&& (-height/2 < y && y <= height/2)) {
console.debug('POINT', x, y);
}
if (x === y
|| (x < 0 && x === -y)
|| (x > 0 && x === 1-y)){
// change direction
delta = [-delta[1], delta[0]]
}
x += delta[0];
y += delta[1];
}
fiddle: http://jsfiddle.net/N9gEC/18/
This problem is best understood by analyzing how changes coordinates of spiral corners. Consider this table of first 8 spiral corners (excluding origin):
x,y | dx,dy | k-th corner | N | Sign |
___________________________________________
1,0 | 1,0 | 1 | 1 | +
1,1 | 0,1 | 2 | 1 | +
-1,1 | -2,0 | 3 | 2 | -
-1,-1 | 0,-2 | 4 | 2 | -
2,-1 | 3,0 | 5 | 3 | +
2,2 | 0,3 | 6 | 3 | +
-2,2 | -4,0 | 7 | 4 | -
-2,-2 | 0,-4 | 8 | 4 | -
By looking at this table we can calculate X,Y of k-th corner given X,Y of (k-1) corner:
N = INT((1+k)/2)
Sign = | +1 when N is Odd
| -1 when N is Even
[dx,dy] = | [N*Sign,0] when k is Odd
| [0,N*Sign] when k is Even
[X(k),Y(k)] = [X(k-1)+dx,Y(k-1)+dy]
Now when you know coordinates of k and k+1 spiral corner you can get all data points in between k and k+1 by simply adding 1 or -1 to x or y of last point.
Thats it.
good luck.
I would solve it using some math. Here is Ruby code (with input and output):
(0..($*.pop.to_i)).each do |i|
j = Math.sqrt(i).round
k = (j ** 2 - i).abs - j
p = [k, -k].map {|l| (l + j ** 2 - i - (j % 2)) * 0.5 * (-1) ** j}.map(&:to_i)
puts "p => #{p[0]}, #{p[1]}"
end
E.g.
$ ruby spiral.rb 10
p => 0, 0
p => 1, 0
p => 1, 1
p => 0, 1
p => -1, 1
p => -1, 0
p => -1, -1
p => 0, -1
p => 1, -1
p => 2, -1
p => 2, 0
And golfed version:
p (0..$*.pop.to_i).map{|i|j=Math.sqrt(i).round;k=(j**2-i).abs-j;[k,-k].map{|l|(l+j**2-i-j%2)*0.5*(-1)**j}.map(&:to_i)}
Edit
First try to approach the problem functionally. What do you need to know, at each step, to get to the next step?
Focus on plane's first diagonal x = y. k tells you how many steps you must take before touching it: negative values mean you have to move abs(k) steps vertically, while positive mean you have to move k steps horizontally.
Now focus on the length of the segment you're currently in (spiral's vertices - when the inclination of segments change - are considered as part of the "next" segment). It's 0 the first time, then 1 for the next two segments (= 2 points), then 2 for the next two segments (= 4 points), etc. It changes every two segments and each time the number of points part of that segments increase. That's what j is used for.
Accidentally, this can be used for getting another bit of information: (-1)**j is just a shorthand to "1 if you're decreasing some coordinate to get to this step; -1 if you're increasing" (Note that only one coordinate is changed at each step). Same holds for j%2, just replace 1 with 0 and -1 with 1 in this case. This mean they swap between two values: one for segments "heading" up or right and one for those going down or left.
This is a familiar reasoning, if you're used to functional programming: the rest is just a little bit of simple math.
It can be done in a fairly straightforward way using recursion. We just need some basic 2D vector math and tools for generating and mapping over (possibly infinite) sequences:
// 2D vectors
const add = ([x0, y0]) => ([x1, y1]) => [x0 + x1, y0 + y1];
const rotate = θ => ([x, y]) => [
Math.round(x * Math.cos(θ) - y * Math.sin(θ)),
Math.round(x * Math.sin(θ) + y * Math.cos(θ))
];
// Iterables
const fromGen = g => ({ [Symbol.iterator]: g });
const range = n => [...Array(n).keys()];
const map = f => it =>
fromGen(function*() {
for (const v of it) {
yield f(v);
}
});
And now we can express a spiral recursively by generating a flat line, plus a rotated (flat line, plus a rotated (flat line, plus a rotated ...)):
const spiralOut = i => {
const n = Math.floor(i / 2) + 1;
const leg = range(n).map(x => [x, 0]);
const transform = p => add([n, 0])(rotate(Math.PI / 2)(p));
return fromGen(function*() {
yield* leg;
yield* map(transform)(spiralOut(i + 1));
});
};
Which produces an infinite list of the coordinates you're interested in. Here's a sample of the contents:
const take = n => it =>
fromGen(function*() {
for (let v of it) {
if (--n < 0) break;
yield v;
}
});
const points = [...take(5)(spiralOut(0))];
console.log(points);
// => [[0,0],[1,0],[1,1],[0,1],[-1,1]]
You can also negate the rotation angle to go in the other direction, or play around with the transform and leg length to get more complex shapes.
For example, the same technique works for inward spirals as well. It's just a slightly different transform, and a slightly different scheme for changing the length of the leg:
const empty = [];
const append = it1 => it2 =>
fromGen(function*() {
yield* it1;
yield* it2;
});
const spiralIn = ([w, h]) => {
const leg = range(w).map(x => [x, 0]);
const transform = p => add([w - 1, 1])(rotate(Math.PI / 2)(p));
return w * h === 0
? empty
: append(leg)(
fromGen(function*() {
yield* map(transform)(spiralIn([h - 1, w]));
})
);
};
Which produces (this spiral is finite, so we don't need to take some arbitrary number):
const points = [...spiralIn([3, 3])];
console.log(points);
// => [[0,0],[1,0],[2,0],[2,1],[2,2],[1,2],[0,2],[0,1],[1,1]]
Here's the whole thing together as a live snippet if you want play around with it:
// 2D vectors
const add = ([x0, y0]) => ([x1, y1]) => [x0 + x1, y0 + y1];
const rotate = θ => ([x, y]) => [
Math.round(x * Math.cos(θ) - y * Math.sin(θ)),
Math.round(x * Math.sin(θ) + y * Math.cos(θ))
];
// Iterables
const fromGen = g => ({ [Symbol.iterator]: g });
const range = n => [...Array(n).keys()];
const map = f => it =>
fromGen(function*() {
for (const v of it) {
yield f(v);
}
});
const take = n => it =>
fromGen(function*() {
for (let v of it) {
if (--n < 0) break;
yield v;
}
});
const empty = [];
const append = it1 => it2 =>
fromGen(function*() {
yield* it1;
yield* it2;
});
// Outward spiral
const spiralOut = i => {
const n = Math.floor(i / 2) + 1;
const leg = range(n).map(x => [x, 0]);
const transform = p => add([n, 0])(rotate(Math.PI / 2)(p));
return fromGen(function*() {
yield* leg;
yield* map(transform)(spiralOut(i + 1));
});
};
// Test
{
const points = [...take(5)(spiralOut(0))];
console.log(JSON.stringify(points));
}
// Inward spiral
const spiralIn = ([w, h]) => {
const leg = range(w).map(x => [x, 0]);
const transform = p => add([w - 1, 1])(rotate(Math.PI / 2)(p));
return w * h === 0
? empty
: append(leg)(
fromGen(function*() {
yield* map(transform)(spiralIn([h - 1, w]));
})
);
};
// Test
{
const points = [...spiralIn([3, 3])];
console.log(JSON.stringify(points));
}
Here is a Python implementation based on the answer by #mako.
def spiral_iterator(iteration_limit=999):
x = 0
y = 0
layer = 1
leg = 0
iteration = 0
yield 0, 0
while iteration < iteration_limit:
iteration += 1
if leg == 0:
x += 1
if (x == layer):
leg += 1
elif leg == 1:
y += 1
if (y == layer):
leg += 1
elif leg == 2:
x -= 1
if -x == layer:
leg += 1
elif leg == 3:
y -= 1
if -y == layer:
leg = 0
layer += 1
yield x, y
Running this code:
for x, y in spiral_iterator(10):
print(x, y)
Yields:
0 0
1 0
1 1
0 1
-1 1
-1 0
-1 -1
0 -1
1 -1
2 -1
2 0
Try searching for either parametric or polar equations. Both are suitable to plotting spirally things. Here's a page that has plenty of examples, with pictures (and equations). It should give you some more ideas of what to look for.
I've done pretty much the same thin as a training exercise, with some differences in the output and the spiral orientation, and with an extra requirement, that the functions spatial complexity has to be O(1).
After think for a while I came to the idea that by knowing where does the spiral start and the position I was calculating the value for, I could simplify the problem by subtracting all the complete "circles" of the spiral, and then just calculate a simpler value.
Here is my implementation of that algorithm in ruby:
def print_spiral(n)
(0...n).each do |y|
(0...n).each do |x|
printf("%02d ", get_value(x, y, n))
end
print "\n"
end
end
def distance_to_border(x, y, n)
[x, y, n - 1 - x, n - 1 - y].min
end
def get_value(x, y, n)
dist = distance_to_border(x, y, n)
initial = n * n - 1
(0...dist).each do |i|
initial -= 2 * (n - 2 * i) + 2 * (n - 2 * i - 2)
end
x -= dist
y -= dist
n -= dist * 2
if y == 0 then
initial - x # If we are in the upper row
elsif y == n - 1 then
initial - n - (n - 2) - ((n - 1) - x) # If we are in the lower row
elsif x == n - 1 then
initial - n - y + 1# If we are in the right column
else
initial - 2 * n - (n - 2) - ((n - 1) - y - 1) # If we are in the left column
end
end
print_spiral 5
This is not exactly the thing you asked for, but I believe it'll help you to think your problem
I had a similar problem, but I didn't want to loop over the entire spiral each time to find the next new coordinate. The requirement is that you know your last coordinate.
Here is what I came up with with a lot of reading up on the other solutions:
function getNextCoord(coord) {
// required info
var x = coord.x,
y = coord.y,
level = Math.max(Math.abs(x), Math.abs(y));
delta = {x:0, y:0};
// calculate current direction (start up)
if (-x === level)
delta.y = 1; // going up
else if (y === level)
delta.x = 1; // going right
else if (x === level)
delta.y = -1; // going down
else if (-y === level)
delta.x = -1; // going left
// check if we need to turn down or left
if (x > 0 && (x === y || x === -y)) {
// change direction (clockwise)
delta = {x: delta.y,
y: -delta.x};
}
// move to next coordinate
x += delta.x;
y += delta.y;
return {x: x,
y: y};
}
coord = {x: 0, y: 0}
for (i = 0; i < 40; i++) {
console.log('['+ coord.x +', ' + coord.y + ']');
coord = getNextCoord(coord);
}
Still not sure if it is the most elegant solution. Perhaps some elegant maths could remove some of the if statements. Some limitations would be needing some modification to change spiral direction, doesn't take into account non-square spirals and can't spiral around a fixed coordinate.
I have an algorithm in java that outputs a similar output to yours, except that it prioritizes the number on the right, then the number on the left.
public static String[] rationals(int amount){
String[] numberList=new String[amount];
int currentNumberLeft=0;
int newNumberLeft=0;
int currentNumberRight=0;
int newNumberRight=0;
int state=1;
numberList[0]="("+newNumberLeft+","+newNumberRight+")";
boolean direction=false;
for(int count=1;count<amount;count++){
if(direction==true&&newNumberLeft==state){direction=false;state=(state<=0?(-state)+1:-state);}
else if(direction==false&&newNumberRight==state){direction=true;}
if(direction){newNumberLeft=currentNumberLeft+sign(state);}else{newNumberRight=currentNumberRight+sign(state);}
currentNumberLeft=newNumberLeft;
currentNumberRight=newNumberRight;
numberList[count]="("+newNumberLeft+","+newNumberRight+")";
}
return numberList;
}
Here's the algorithm. It rotates clockwise, but could easily rotate anticlockwise, with a few alterations. I made it in just under an hour.
// spiral_get_value(x,y);
sx = argument0;
sy = argument1;
a = max(sqrt(sqr(sx)),sqrt(sqr(sy)));
c = -b;
d = (b*2)+1;
us = (sy==c and sx !=c);
rs = (sx==b and sy !=c);
bs = (sy==b and sx !=b);
ls = (sx==c and sy !=b);
ra = rs*((b)*2);
ba = bs*((b)*4);
la = ls*((b)*6);
ax = (us*sx)+(bs*-sx);
ay = (rs*sy)+(ls*-sy);
add = ra+ba+la+ax+ay;
value = add+sqr(d-2)+b;
return(value);`
It will handle any x / y values (infinite).
It's written in GML (Game Maker Language), but the actual logic is sound in any programming language.
The single line algorithm only has 2 variables (sx and sy) for the x and y inputs. I basically expanded brackets, a lot. It makes it easier for you to paste it into notepad and change 'sx' for your x argument / variable name and 'sy' to your y argument / variable name.
`// spiral_get_value(x,y);
sx = argument0;
sy = argument1;
value = ((((sx==max(sqrt(sqr(sx)),sqrt(sqr(sy))) and sy !=(-1*max(sqrt(sqr(sx)),sqrt(sqr(sy))))))*((max(sqrt(sqr(sx)),sqrt(sqr(sy))))*2))+(((sy==max(sqrt(sqr(sx)),sqrt(sqr(sy))) and sx !=max(sqrt(sqr(sx)),sqrt(sqr(sy)))))*((max(sqrt(sqr(sx)),sqrt(sqr(sy))))*4))+(((sx==(-1*max(sqrt(sqr(sx)),sqrt(sqr(sy)))) and sy !=max(sqrt(sqr(sx)),sqrt(sqr(sy)))))*((max(sqrt(sqr(sx)),sqrt(sqr(sy))))*6))+((((sy==(-1*max(sqrt(sqr(sx)),sqrt(sqr(sy)))) and sx !=(-1*max(sqrt(sqr(sx)),sqrt(sqr(sy))))))*sx)+(((sy==max(sqrt(sqr(sx)),sqrt(sqr(sy))) and sx !=max(sqrt(sqr(sx)),sqrt(sqr(sy)))))*-sx))+(((sx==max(sqrt(sqr(sx)),sqrt(sqr(sy))) and sy !=(-1*max(sqrt(sqr(sx)),sqrt(sqr(sy))))))*sy)+(((sx==(-1*max(sqrt(sqr(sx)),sqrt(sqr(sy)))) and sy !=max(sqrt(sqr(sx)),sqrt(sqr(sy)))))*-sy))+sqr(((max(sqrt(sqr(sx)),sqrt(sqr(sy)))*2)+1)-2)+max(sqrt(sqr(sx)),sqrt(sqr(sy)));
return(value);`
I know the reply is awfully late :D but i hope it helps future visitors.