Dyanmic Task Scheduling Interview Street - algorithm

The task scheduling problem for n tasks is solved by greedy algorithm. I have encountered this particular sort of problem in various coding challenges which asks to find out minimum of maximum overshoot dynamically. One of them is stated below:
Interview Street Problem:
You have a long list of tasks that you need to do today. Task i is specified by the deadline by which you have to complete it (Di) and the number of minutes it will take you to complete the task (Mi). You need not complete a task at a stretch. You can complete a part of it, switch to another task and then switch back.
You've realized that it might not actually be possible complete all the tasks by their deadline, so you have decided to complete them so that the maximum amount by which a task's completion time overshoots its deadline is minimized.
My Approach
Now consider an intermediate stage where we have found the solution for i-1 tasks and have arranged them in sorted order. We have also stored the index of the task which had the maximum overshoot with i-1 tasks say maxLate. After the arrival of the *i*th task we check if D[i] < D[maxlate] then the new maxLate will be either old maxLate of the ith task.
I am confused for the case when D[i] > D[maxlate]. Is a linear scan necessary for this case?
Also suggest a good data structure for updating the new list and keeping them in sorted order.
Thanks for your help.

First of all, you need to prove that given a set of task (m_i, d_i), the best schedule is finish the jobs according to their deadlines, i.e. emergent jobs first.
And the problem is equivalent to:
for each job in original order:
dynamically insert this job (m_i, d_i) into a sorted job_list
query max{ (sum(m_k for all k <= n) - d_n) for all n in job_list }
This algorithm run in O(N^2) where N is the number of jobs, which is too slow for getting accepted in interview street. However, we can use some advanced data structure, to speed up the insert and query operation.
I use a segment tree with lazy update to solve this problem in O(NlgN) time, and here's my code
#include <iostream>
#include <vector>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
using namespace std;
class SegTree
{
public:
SegTree(int left, int right, const vector<int>& original_data)
{
this->left = left;
this->right = right;
this->lazy_flag = 0;
left_tree = right_tree = NULL;
if (left == right)
{
this->value = this->max_value = original_data[left];
}
else
{
mid = (left + right) / 2;
left_tree = new SegTree(left, mid, original_data);
right_tree = new SegTree(mid + 1, right, original_data);
push_up();
}
}
void modify(int left, int right, int m_value)
{
if (this->left == left && this->right == right)
{
leaf_modify(m_value);
}
else
{
push_down();
if (left <= mid)
{
if (right >= mid + 1)
{
left_tree->modify(left, mid, m_value);
right_tree->modify(mid + 1, right, m_value);
}
else
{
left_tree->modify(left, right, m_value);
}
}
else
{
right_tree->modify(left, right, m_value);
}
push_up();
}
}
int query(int left, int right)
{
if (this->left == left && this->right == right)
{
return this->max_value;
}
else
{
push_down();
if (left <= mid)
{
if (right >= mid + 1)
{
int max_value_l = left_tree->query(left, mid);
int max_value_r = right_tree->query(mid + 1, right);
return max(max_value_l, max_value_r);
}
else
{
return left_tree->query(left, right);
}
}
else
{
return right_tree->query(left, right);
}
}
}
private:
int left, right, mid;
SegTree *left_tree, *right_tree;
int value, lazy_flag, max_value;
void push_up()
{
this->max_value = max(this->left_tree->max_value, this->right_tree->max_value);
}
void push_down()
{
if (this->lazy_flag > 0)
{
left_tree->leaf_modify(this->lazy_flag);
right_tree->leaf_modify(this->lazy_flag);
this->lazy_flag = 0;
}
}
void leaf_modify(int m_value)
{
this->lazy_flag += m_value;
this->max_value += m_value;
}
};
vector<int> vec_d, vec_m, vec_idx, vec_rank, vec_d_reorder;
int cmp(int idx_x, int idx_y)
{
return vec_d[idx_x] < vec_d[idx_y];
}
int main()
{
int T;
scanf("%d", &T);
for (int i = 0; i < T; i++)
{
int d, m;
scanf("%d%d", &d, &m);
vec_d.push_back(d);
vec_m.push_back(m);
vec_idx.push_back(i);
}
sort(vec_idx.begin(), vec_idx.end(), cmp);
vec_rank.assign(T, 0);
vec_d_reorder.assign(T, 0);
for (int i = 0; i < T; i++)
{
vec_rank[ vec_idx[i] ] = i;
}
for (int i = 0; i < T; i++)
{
vec_d_reorder[i] = -vec_d[ vec_idx[i] ];
}
// for (int i = 0; i < T; i++)
// {
// printf("m:%d\td:%d\tidx:%d\trank:%d\t-d:%d\n", vec_m[i], vec_d[i], vec_idx[i], vec_rank[i], vec_d_reorder[i]);
// }
SegTree tree(0, T-1, vec_d_reorder);
for (int i = 0; i < T; i++)
{
tree.modify(vec_rank[i], T-1, vec_m[i]);
int ans = tree.query(0, T-1);
printf("%d\n", max(0,ans));
}
}

class Schedule {
int deadLine = 0;
int taskCompletionTime = 0;
int done = 0;
Schedule(int deadline, int taskCompletionTime) {
this.deadLine = deadline;
this.taskCompletionTime = taskCompletionTime;
}
}
class TaskScheduler {
public static void main(String args[]) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int max = 0;
ArrayList<Schedule> sch = new ArrayList<Schedule>();
for(int i = 0; i < n; i++) {
int deadLine = in.nextInt();
int taskCompletionTime = in.nextInt();
Schedule s = new Schedule(deadLine, taskCompletionTime);
int j = i-1;
while(j >= 0 && sch.get(j).deadLine > s.deadLine) {
Schedule s1 = sch.get(j);
if(s1.deadLine <= s.deadLine) break;
s1.done += s.taskCompletionTime;
max = Math.max(max, s1.done - s1.deadLine);
j--;
}
sch.add(j+1, s);
if(j < 0)
s.done = s.taskCompletionTime;
else
s.done = sch.get(j).done + s.taskCompletionTime;
max = Math.max(max, s.done - s.deadLine);
System.out.println(max);
}
}
}

Related

Knight on Chess Board - Shortest Path

I'm trying to solve this problem: https://www.interviewbit.com/problems/knight-on-chess-board/#
Basically, you're given a board, a start point and an end point and have to find the shortest path. I'm trying to do BFS on the the board using the 8 possible moves a knight can make and returning the number of moves it took, or -1 if there was no solution. I'm getting a run time out of memory error. I'm not sure where the error (or potential errors) are occurring.
Edit: Previously I was getting an error because I forgot got to mark nodes as visited. I've added that in but I'm still not getting the right answer.
public class Solution {
private class Node {
int row;
int col;
int count;
public Node() {
this.row = 0;
this.col = 0;
this.count = 0;
}
public Node(int row, int col, int count) {
this.row = row;
this.col = col;
this.count = count;
}
}
public int knight(int A, int B, int sr, int sc, int er, int ec) {
int[][] matrix = new int[A][B];
Queue<Node> q = new LinkedList<>(); //linkedlist??
Node n = new Node(sr, sc, 0);
q.add(n);
matrix[sr][sc] = -1;
final int[][] SHIFTS = {
{-2,1},
{-2,-1},
{2,1},
{2,-1},
{-1,2},
{-1,-2},
{1,2},
{1,-2}
};
int count = 0;
while(!q.isEmpty()) {
Node cur = q.remove();
if(cur.row == er && cur.col == ec) {
return cur.count;
}
for(int[] i : SHIFTS) {
if(canTraverse(matrix, cur.row + i[0], cur.col + i[1])) {
matrix[cur.row + i[0]][cur.col + i[1]] = -1;
q.add(new Node(cur.row + i[0], cur.col + i[1], cur.count + 1));
}
}
}
return -1;
}
public static boolean canTraverse(int[][] matrix, int sr, int sc) {
if(sr < 0 || sr >= matrix.length || sc < 0 || sc >= matrix[sr].length || matrix[sr][sc] == -1) {
return false;
}
return true;
}
}
BFS algorithm needs to mark every visited position (node) to work properly. Else, such code could cause (almost certainly) runtime error or memory limit exceded (in short terms: A calls B and B calls A).
Solution: Create a boolean array and mark the nodes at the time they enter to the queue and you are done.

How to efficiently compute weird numbers

I am trying to print n weird numbers where n is really big number (eg: 10000).
I found this site to check the algorithm for n 600 if I have some errors:
http://www.numbersaplenty.com/set/weird_number/more.php
However, my algorithm is really slow in bigger numbers:
import java.util.ArrayList;
import java.util.List;
public class Test {
public static void main(String[] args) {
int n = 2;
for ( int count = 1 ; count <= 15000 ; n += 2 ) {
if (n % 6 == 0) {
continue;
}
List<Integer> properDivisors = getProperDivisors(n);
int divisorSum = properDivisors.stream().mapToInt(i -> i.intValue()).sum();
if ( isDeficient(divisorSum, n) ) {
continue;
}
if ( isWeird(n, properDivisors, divisorSum) ) {
System.out.printf("w(%d) = %d%n", count, n);
count++;
}
}
}
private static boolean isWeird(int n, List<Integer> divisors, int divisorSum) {
return isAbundant(divisorSum, n) && ! isSemiPerfect(divisors, n);
}
private static boolean isDeficient(int divisorSum, int n) {
return divisorSum < n;
}
private static boolean isAbundant(int divisorSum, int n) {
return divisorSum > n;
}
private static boolean isSemiPerfect(List<Integer> divisors, int sum) {
int size = divisors.size();
// The value of subset[i][j] will be true if there is a subset of divisors[0..j-1] with sum equal to i
boolean subset[][] = new boolean[sum+1][size+1];
// If sum is 0, then answer is true
for (int i = 0; i <= size; i++) {
subset[0][i] = true;
}
// If sum is not 0 and set is empty, then answer is false
for (int i = 1; i <= sum; i++) {
subset[i][0] = false;
}
// Fill the subset table in bottom up manner
for ( int i = 1 ; i <= sum ; i++ ) {
for ( int j = 1 ; j <= size ; j++ ) {
subset[i][j] = subset[i][j-1];
int test = divisors.get(j-1);
if ( i >= test ) {
subset[i][j] = subset[i][j] || subset[i - test][j-1];
}
}
}
return subset[sum][size];
}
private static final List<Integer> getProperDivisors(int number) {
List<Integer> divisors = new ArrayList<Integer>();
long sqrt = (long) Math.sqrt(number);
for ( int i = 1 ; i <= sqrt ; i++ ) {
if ( number % i == 0 ) {
divisors.add(i);
int div = number / i;
if ( div != i && div != number ) {
divisors.add(div);
}
}
}
return divisors;
}
}
I have three easy breakouts:
If a number is divisable by 6 it is semiperfect which means it cannot be weird
If a number is deficient this means it cannot be weird
The above points are based on https://mathworld.wolfram.com/DeficientNumber.html
If a a number is odd it cannot be weird at least for 10^21 numbers (which is good for the numbers I am trying to obtain).
The other optimization that I used is the optimization for finding all the dividers of a number. Instead of looping to n, we loop to SQRT(n).
However, I still need to optimize:
1. isSemiPerfect because it is really slow
2. If I can optimize further getProperDivisors it will be good too.
Any suggestions are welcome, since I cannot find any more optimizations to find 10000 weird numbers in reasonable time.
PS: Any code in Java, C#, PHP and JavaScript are OK for me.
EDIT: I found this topic and modified isSemiPerfect to look like this. However, it looks like it does not optimize but slow down the calculations:
private static boolean isSemiPerfect(List<Integer> divisors, int n) {
BigInteger combinations = BigInteger.valueOf(2).pow(divisors.size());
for (BigInteger i = BigInteger.ZERO; i.compareTo(combinations) < 0; i = i.add(BigInteger.ONE)) {
int sum = 0;
for (int j = 0; j < i.bitLength(); j++) {
sum += i.testBit(j) ? divisors.get(j) : 0;
}
if (sum == n) {
return true;
}
}
return false;
}
The issue is indeed in function isSemiPerfect. I transposed your code in C++, it was still quite slow.
Then I modified this function by using backtracking. I now obtain the first 15000 weird values in about 15s. My interpretation is that in about all the cases, the value is semiperfect, and the backtracking function converges rapidly.
Note also that in my backtracking implementation, I sort the divisors, which allow to reduce the number of cases to be examined.
Edit 1: an error was corrected in getProperDivisors. Final results did not seem to be modified !
#include <iostream>
#include <vector>
#include <cmath>
#include <numeric>
#include <algorithm>
// return true if sum is obtained
bool test_sum (std::vector<int>& arr, int amount) {
int n = arr.size();
std::sort(arr.begin(), arr.end(), std::greater<int>());
std::vector<int> bound (n);
std::vector<int> select (n);
bound[n-1] = arr[n-1];
for (int i = n-2; i >= 0; --i) {
bound[i] = bound[i+1] + arr[i];
}
int sum = 0; // current sum
int i = 0; // index of the coin being examined
bool up_down = true;
while (true) {
if (up_down) {
if (i == n || sum + bound[i] < amount) {
up_down = false;
i--;
continue;
}
sum += arr[i];
select[i] = 1;
if (sum == amount) return true;
if (sum < amount) {
i++;
continue;
}
up_down = false;
if (select[i] == 0) i--;
} else { // DOWN
if (i < 0) break;
if (select[i] == 0) {
i--;
} else {
sum -= arr[i];
select[i] = 0;
i++;
up_down = true;
}
}
}
return false;
}
bool isDeficient(int divisorSum, int n) {
return divisorSum < n;
}
bool isAbundant(int divisorSum, int n) {
return divisorSum > n;
}
bool isSemiPerfect(std::vector<int> &divisors, int sum) {
int size = divisors.size();
// The value of subset[i][j] will be true if there is a subset of divisors[0..j-1] with sum equal to i
//bool subset[sum+1][size+1];
std::vector<std::vector<bool>> subset(sum+1, std::vector<bool> (size+1));
// If sum is 0, then answer is true
for (int i = 0; i <= size; i++) {
subset[0][i] = true;
}
// If sum is not 0 and set is empty, then answer is false
for (int i = 1; i <= sum; i++) {
subset[i][0] = false;
}
// Fill the subset table in bottom up manner
for ( int i = 1 ; i <= sum ; i++ ) {
for ( int j = 1 ; j <= size ; j++ ) {
subset[i][j] = subset[i][j-1];
int test = divisors[j-1];
if ( i >= test ) {
subset[i][j] = subset[i][j] || subset[i - test][j-1];
}
}
}
return subset[sum][size];
}
bool isWeird(int n, std::vector<int> &divisors, int divisorSum) {
//return isAbundant(divisorSum, n) && !isSemiPerfect(divisors, n);
return isAbundant(divisorSum, n) && !test_sum(divisors, n);
}
std::vector<int> getProperDivisors_old(int number) {
std::vector<int> divisors;
long sqrtn = sqrt(number);
for ( int i = 1 ; i <= sqrtn ; i++ ) {
if ( number % i == 0 ) {
divisors.push_back(i);
int div = number / i;
if (div != i && div != number) {
divisors.push_back(div);
}
}
}
return divisors;
}
std::vector<int> getProperDivisors(int number) {
std::vector<int> divisors;
long sqrtn = sqrt(number);
divisors.push_back(1);
for ( int i = 2 ; i <= sqrtn ; i++ ) {
if (number % i == 0) {
divisors.push_back(i);
int div = number/i;
if (div != i) divisors.push_back(div);
}
}
return divisors;
}
int main() {
int n = 2, count;
std::vector<int> weird;
int Nweird = 15000;
for (count = 0; count < Nweird; n += 2) {
if (n % 6 == 0) continue;
auto properDivisors = getProperDivisors(n);
int divisorSum = std::accumulate (properDivisors.begin(), properDivisors.end(), 0);
if (isDeficient(divisorSum, n) ) {
continue;
}
if (isWeird(n, properDivisors, divisorSum)) {
//std::cout << count << " " << n << "\n";
weird.push_back (n);
count++;
}
}
for (int i = Nweird - 10; i < Nweird; ++i) {
std::cout << weird.at(i) << " ";
}
std::cout << "\n";
}
EDIT 2 The generation of Divisors were completely redefined. It uses now prime decomposition. Much more complex, but global time divided by 7.5. Generation of weird numbers take now 2s on my PC.
#include <iostream>
#include <vector>
#include <cmath>
#include <numeric>
#include <algorithm>
template <typename T>
struct factor {T val = 0; T mult = 0;};
template <typename T>
class decompo {
private:
std::vector<T> memory = {2, 3, 5, 7, 11, 13, 17, 19, 23, 31, 37, 39, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97};
T index = 0;
public:
decompo () {};
void reset () {index = 0;};
T pop () {index = memory.size() - 1; return memory[index];};
T get_next ();
std::vector<T> find_all_primes (T n);
std::vector<factor<T>> decomp (T n);
std::vector<T> GetDivisors (T n);
void complete (T n);
};
template <typename T>
T decompo<T>::get_next () {
++index;
if (index <= memory.size()) {
return memory[index-1];
}
T n = memory.size();
T candidate = memory[n-1] + 2;
while (1) {
bool found = true;
for (T i = 1; memory[i] * memory[i] <= candidate; ++i) {
if (candidate % memory[i] == 0) {
found = false;
break;
}
}
if (found) {
memory.push_back (candidate);
return candidate;
}
candidate += 2;
}
}
template <typename T>
std::vector<T> decompo<T>::find_all_primes (T n) {
reset();
std::vector<T> result;
while (1) {
T candidate = get_next();
if (candidate <= n) {
result.push_back (candidate);
} else {
return result;
}
}
}
template <typename T>
void decompo<T>::complete (T n) {
T last = pop();
while (last < n) {
last = get_next();
}
return;
}
template <typename T>
std::vector<factor<T>> decompo<T>::decomp (T n) {
reset();
std::vector<factor<T>> result;
if (n < 2) return result;
T candidate = get_next();
T last_prime = 0;
while (candidate*candidate <= n) {
if (n % candidate == 0) {
if (candidate == last_prime) {
result[result.size()-1].mult ++;
} else {
result.push_back ({candidate, 1});
last_prime = candidate;
}
n /= candidate;
} else {
candidate = get_next();
}
}
if (n > 1) {
if (n != last_prime) result.push_back ({n, 1});
else result[result.size()-1].mult ++;
}
return result;
}
template <typename T>
std::vector<T> decompo<T>::GetDivisors (T n) {
std::vector<T> div;
auto primes = decomp (n);
int n_primes = primes.size();
std::vector<int> exponent (n_primes, 0);
div.push_back(1);
int current_index = 0;
int product = 1;
std::vector<int> product_partial(n_primes, 1);;
while (true) {
current_index = 0;
while (current_index < n_primes && exponent[current_index] == primes[current_index].mult) current_index++;
if (current_index == n_primes) break;
for (int index = 0; index < current_index; ++index) {
exponent[index] = 0;
product /= product_partial[index];
product_partial[index] = 1;
}
exponent[current_index]++;
product *= primes[current_index].val;
product_partial[current_index] *= primes[current_index].val;
if (product != n && product != 1) div.push_back (product);
}
return div;
}
// return true if sum is obtained
bool test_sum (std::vector<int>& arr, int amount) {
int n = arr.size();
std::sort(arr.begin(), arr.end(), std::greater<int>());
std::vector<int> bound (n);
std::vector<int> select (n);
bound[n-1] = arr[n-1];
for (int i = n-2; i >= 0; --i) {
bound[i] = bound[i+1] + arr[i];
}
int sum = 0; // current sum
int i = 0; // index of the coin being examined
bool up_down = true;
while (true) {
if (up_down) {
if (i == n || sum + bound[i] < amount) {
up_down = false;
i--;
continue;
}
sum += arr[i];
select[i] = 1;
if (sum == amount) return true;
if (sum < amount) {
i++;
continue;
}
up_down = false;
if (select[i] == 0) i--;
} else { // DOWN
if (i < 0) break;
if (select[i] == 0) {
i--;
} else {
sum -= arr[i];
select[i] = 0;
i++;
up_down = true;
}
}
}
return false;
}
bool isDeficient(int divisorSum, int n) {
return divisorSum < n;
}
bool isAbundant(int divisorSum, int n) {
return divisorSum > n;
}
bool isSemiPerfect(std::vector<int> &divisors, int sum) {
int size = divisors.size();
// The value of subset[i][j] will be true if there is a subset of divisors[0..j-1] with sum equal to i
//bool subset[sum+1][size+1];
std::vector<std::vector<bool>> subset(sum+1, std::vector<bool> (size+1));
// If sum is 0, then answer is true
for (int i = 0; i <= size; i++) {
subset[0][i] = true;
}
// If sum is not 0 and set is empty, then answer is false
for (int i = 1; i <= sum; i++) {
subset[i][0] = false;
}
// Fill the subset table in bottom up manner
for ( int i = 1 ; i <= sum ; i++ ) {
for ( int j = 1 ; j <= size ; j++ ) {
subset[i][j] = subset[i][j-1];
int test = divisors[j-1];
if ( i >= test ) {
subset[i][j] = subset[i][j] || subset[i - test][j-1];
}
}
}
return subset[sum][size];
}
bool isWeird(int n, std::vector<int> &divisors, int divisorSum) {
//return isAbundant(divisorSum, n) && !isSemiPerfect(divisors, n);
return isAbundant(divisorSum, n) && !test_sum(divisors, n);
}
std::vector<int> getProperDivisors(int number) {
std::vector<int> divisors;
long sqrtn = sqrt(number);
divisors.push_back(1);
for ( int i = 2 ; i <= sqrtn ; i++ ) {
if (number % i == 0) {
divisors.push_back(i);
int div = number/i;
if (div != i) divisors.push_back(div);
}
}
return divisors;
}
int main() {
decompo <int> decomposition;
decomposition.complete (1e3); // not relly useful
int n = 2, count;
std::vector<int> weird;
int Nweird = 15000;
for (count = 0; count < Nweird; n += 2) {
if (n % 6 == 0) continue;
//auto properDivisors = getProperDivisors(n);
auto properDivisors = decomposition.GetDivisors(n);
int divisorSum = std::accumulate (properDivisors.begin(), properDivisors.end(), 0);
if (isDeficient(divisorSum, n) ) {
continue;
}
if (isWeird(n, properDivisors, divisorSum)) {
//std::cout << count << " " << n << "\n";
weird.push_back (n);
count++;
}
}
for (int i = Nweird - 10; i < Nweird; ++i) {
std::cout << weird.at(i) << " ";
}
std::cout << "\n";
}

Tell me please how to find a solution to the challenge from the ICPC programming Contest [closed]

Closed. This question needs debugging details. It is not currently accepting answers.
Edit the question to include desired behavior, a specific problem or error, and the shortest code necessary to reproduce the problem. This will help others answer the question.
Closed 2 years ago.
Improve this question
I’ve been trying to find a solution to the problem described below for several days.
Nuts
Today, Sema and Yura attended the closing ceremony of one Olympiad. On the holiday tables there were n plates of nuts. The i-th plate contains ai nuts.
In one minute Sema can choose some plates and a certain number x, after which from each selected plate he picks up exactly x nuts (of course, each selected plate should have at least x nuts).
Determine in what minimum number of minutes all the nuts will be in Sema's pocket.
Input
The first line contains one integer n (1 ≤ n ≤ 50) - the number of plates with nuts.
Second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 50) - the number of the nuts in the i-th plate.
Output
Print a single number - the required minimum number of minutes.
Input example #1
4
7 4 11 7
Output example #1
2
Here is the link to the task: https://www.e-olymp.com/en/problems/8769 Here you can check the solutions.
I would be very grateful if someone would at least tell me which way to go in order to find a solution algorithm. Thanks.
My best solutions were
#include <iostream>
#include <set>
using namespace std;
int main() {
int n, inputNumber;
cin>>n;
set<int> combinations, newCombinations, inputNumbers, existValuesList;
for(int i = 0; i < n; i++) {
cin>>inputNumber;
inputNumbers.insert(inputNumber);
}
for(auto inputValue = inputNumbers.begin(); inputValue != inputNumbers.end(); ++inputValue) {
for(auto combination = combinations.begin(); combination != combinations.end(); ++combination) {
if (existValuesList.find(*inputValue) != existValuesList.end())
break;
newCombinations.insert(*combination + *inputValue);
if (inputNumbers.find(*combination + *inputValue) != inputNumbers.end()) {
existValuesList.insert(*combination + *inputValue);
}
}
combinations.insert(*inputValue);
combinations.insert(newCombinations.begin(), newCombinations.end());
newCombinations.clear();
}
cout<<inputNumbers.size() - existValuesList.size();
return 0;
}
71% of tests
and
#include <iostream>
#include <set>
#include <map>
#include <algorithm>
#include <iterator>
using namespace std;
class Nuts {
public:
int n;
set<int> inputNumbers;
set<int> combinations;
set<int> elementary;
set<int> brokenNumbers;
map<int, set<int>> numbersBreakDown;
set<int> temporaryCombinations;
void setN() {
cin>>n;
}
void setInputNumbers() {
int number;
for(int i = 0; i < n; i++) {
cin>>number;
inputNumbers.insert(number);
}
}
void calculateCombinations() {
for(int inputNumber : inputNumbers) {
temporaryCombinations.insert(inputNumber);
for(int combination : combinations) {
calculateCombination(inputNumber, combination);
}
combinations.insert(temporaryCombinations.begin(), temporaryCombinations.end());
temporaryCombinations.clear();
}
}
void calculateCombination(int inputNumber, int combination) {
if (brokenNumbers.find(inputNumber + combination) != brokenNumbers.end()) {
return;
}
if (inputNumbers.find(combination + inputNumber) != inputNumbers.end()) {
elementary.insert(inputNumber);
brokenNumbers.insert(inputNumber + combination);
addNumbersBreakDown(inputNumber, combination, breakDownNumber(combination));
}
temporaryCombinations.insert(combination + inputNumber);
}
void addNumbersBreakDown(int inputNumber, int combination, set<int> numberBreakDown) {
set<int> temporaryNumberBreakDown;
temporaryNumberBreakDown.insert(inputNumber);
temporaryNumberBreakDown.insert(numberBreakDown.begin(), numberBreakDown.end());
numbersBreakDown.insert(pair<int, set<int>>(inputNumber + combination, temporaryNumberBreakDown));
}
set<int> breakDownNumber(int combination, int count = 5) {
set<int> numberBreakDown;
for (int i = 0; i < count; i++) {
for(int it : inputNumbers) {
if (it > combination) {
continue;
}
if (it == combination) {
numberBreakDown.insert(combination);
return numberBreakDown;
}
if (combinations.find(combination - it) != combinations.end()) {
combination = combination - it;
break;
}
}
}
}
void throwOutElementaryBrokenNumbers() {
for(pair<int, set<int>> num : numbersBreakDown) {
if (brokenNumbers.find(num.first) == brokenNumbers.end()) {
continue;
}
throwOutElementaryBrokenNumber(num);
}
}
void throwOutElementaryBrokenNumber(pair<int, set<int>> num) {
int count = 0;
for(pair<int, set<int>> num1 : numbersBreakDown) {
if (num1.first != num.first && num1.second.find(num.first) != num1.second.end()) {
count++;
if (count > 1) {
brokenNumbers.erase(num.first);
break;
}
}
}
}
void throwOutBrokenNumbers() {
for(pair<int, set<int>> num : numbersBreakDown) {
if (brokenNumbers.find(num.first) == brokenNumbers.end()) {
continue;
}
int count = 0;
for(int number : num.second) {
if (brokenNumbers.find(number) != brokenNumbers.end()) {
count++;
if (count > 1) {
brokenNumbers.erase(number);
break;
}
}
}
}
}
void getResult() {
cout<<inputNumbers.size() - brokenNumbers.size();
}
void showSet(set<int> mn) {
for (int i : mn)
cout<<i<<" ";
cout<<endl;
}
};
int main() {
Nuts task = Nuts();
task.setN();
task.setInputNumbers();
task.calculateCombinations();
task.throwOutElementaryBrokenNumbers();
task.throwOutBrokenNumbers();
task.getResult();
return 0;
}
56% of tests
and
#include <iostream>
#include <set>
#include <map>
#include <algorithm>
#include <iterator>
using namespace std;
set<int> getSumSet(set<int> inputValue, int sum, set<int> combinations, set<int> output = {}) {
set<int> tempComb;
bool ex = false;
for(int i = 0; i < 5; i++) {
for (int val : inputValue) {
tempComb.insert(val);
if (sum == val) {
output.insert(val);
combinations.clear();
return output;
}
for (int comb : combinations) {
if (combinations.find(comb - val) != combinations.end()) {
output.insert(val);
val = comb;
ex = true;
break;
}
}
if (ex) {
ex = false;
break;
}
}
}
return output;
}
int findLoc(set<int> numbers, int val) {
int result = 0;
for (int i : numbers) {
result++;
if (i == val) {
break;
}
}
return numbers.size() - result;
}
int main() {
int n, inputNumber;
cin>>n;
set<int> combinations, inputNumbers, copyInputNumbers, numbersForBreakdown, tempCombinations, elementaryNumbers, test;
for (int i = 0; i < n; i++) {
cin>>inputNumber;
inputNumbers.insert(inputNumber);
copyInputNumbers.insert(inputNumber);
}
elementaryNumbers.insert( *inputNumbers.begin() );
for (int number : inputNumbers) {
tempCombinations.insert(number);
if (copyInputNumbers.find(number) != copyInputNumbers.end()) {
copyInputNumbers.erase(number);
elementaryNumbers.insert(number);
}
for (int combination : combinations) {
if (copyInputNumbers.find(combination + number) != copyInputNumbers.end()) {
set<int> brN = getSumSet(inputNumbers, combination, combinations);
brN.insert(number);
copyInputNumbers.erase(combination + number);
set_difference(brN.begin(), brN.end(), elementaryNumbers.begin(), elementaryNumbers.end(), inserter(test, test.begin()));
if (findLoc(inputNumbers, combination + number) > test.size() && test.size() < 3) {
elementaryNumbers.insert(brN.begin(), brN.end());
}
brN.clear();
test.clear();
}
tempCombinations.insert(combination + number);
}
combinations.insert(tempCombinations.begin(), tempCombinations.end());
tempCombinations.clear();
}
cout<<elementaryNumbers.size();
return 0;
}
57% of tests
Had a go at it and got accepted, although i doubt that my solution is the intended approach.
There are a two observations that helped me:
No number is chosen more than once.
6 minutes is sufficient in all cases. (There is a subset S of {1,2,4,8,11,24} for all numbers k from 1 to 50 such that the numbers in S add up to k).
We can therefore test all subsets of {1,...,50} with at most 5 elements, and if we don't find a solution with less than 6 elements, just output 6.
There are ~2.4 million such subsets, so testing them is feasible if you are able to do this test efficiently (i got it down to linear time complexity in the number of elements in the set using bit manipulation).

Shoot balloons and Collect Maximum Points

There are 10 balloons and each balloon has some point written onto it. If a customer shoots a balloon, he will get points equal to points on left balloon multiplied by points on the right balloon. A Customer has to collect maximum points in order to win this game. What will be maximum points and in which order should he shoot balloons to get maximum points ?
Please note that if there is only one balloon then you return the points on that balloon.
I am trying to check all 10! permutations in order to find out maximum points. Is there any other way to solve this in efficient way ?
As i said in the comments a Dynamic programming solution with bitmasking is possible, what we can do is keep a bitmask where a 1 at a bit indexed at i means that the ith baloon has been shot, and a 0 tells that it has not been shot.
So a Dynamic Programming state of only mask is required, where at each state we can transition to the next state by iterating over all the ballons that have not been shot and try to shoot them to find the maximum.
The time complexity of such a solution would be : O((2^n) * n * n) and the space complexity would be O(2^n).
Code in c++, it is not debugged you may need to debug it :
int n = 10, val[10], dp[1024]; //set all the values of dp table to -1 initially
int solve(int mask){
if(__builtin_popcount(mask) == n){
return 0;
}
if(dp[mask] != -1) return dp[mask];
int prev = 1, ans = 0;
for(int i = 0;i < n;i++){
if(((mask >> i) & 1) == 0){ //bit is not set
//try to shoot current baloon
int newMask = mask | (1 << i);
int fwd = 1;
for(int j = i+1;j < n;j++){
if(((mask >> j) & 1) == 0){
fwd = val[j];
break;
}
}
ans = max(ans, solve(newMask) + (prev * fwd));
prev = val[i];
}
}
return dp[mask] = ans;
}
#include<iostream>
using namespace std;
int findleft(int arr[],int n,int j ,bool isBurst[],bool &found)
{
if(j<=0)
{
found=false;
return 1;
}
for(int i=j-1;i>=0;i--)
{
if(!isBurst[i])
{
return arr[i];
}
}
found = false;
return 1;
}
int findright(int arr[],int n,int j,bool isBurst[],bool &found)
{
if(j>=n)
{
found = false;
return 1;
}
for(int i= j+1;i<=n;i++)
{
if(!isBurst[i])
{
return arr[i];
}
}
found=false;
return 1;
}
int calc(int arr[],int n,int j,bool isBurst[])
{
int points =0;
bool leftfound=true;
bool rightfound=true;
int left= findleft( arr, n-1, j,isBurst , leftfound);
int right = findright( arr,n-1, j,isBurst, rightfound);
if(!leftfound && !rightfound)
{
points+=arr[j];
}
else
{
points+=left*right*arr[j];
}
return points;
}
void maxpoints(int arr[],int n,int cp,int curr_ans,int &ans,int count,bool isBurst[])
{
if(count==n)
{
if(curr_ans>ans)
{
ans=curr_ans;
return;
}
}
for(int i=0;i<n;i++)
{
if(!isBurst[i])
{
isBurst[i]=true;
maxpoints(arr,n,i,curr_ans+calc(arr,n,i,isBurst),ans,count+1,isBurst);
isBurst[i]=false;
}
}
}
int main()
{
int n;
cin>>n;
int ans=0;
int arr[n];
bool isBurst[n];
for(int i=0;i<n;i++)
{
cin>>arr[i];
isBurst[i]=false;
}
maxpoints(arr,n,0,0,ans,0,isBurst);
cout<<ans;
return 0;
}

Optimizing quick sort

I am implementing quick sort algorithm in java and here is the code :
public class quickSort {
private int array[];
private int length;
public void sort(int[] inputArr) {
if (inputArr == null || inputArr.length == 0) {
return;
}
this.array = inputArr;
length = inputArr.length;
quickSorter(0, length - 1);
}
private void quickSorter(int lowerIndex, int higherIndex) {
int i = lowerIndex;
int j = higherIndex;
// calculate pivot number, I am taking pivot as middle index number
int pivot = array[lowerIndex+(higherIndex-lowerIndex)/2];
// Divide into two arrays
while (i <= j) {
while (array[i] < pivot) {
i++;
}
while (array[j] > pivot) {
j--;
}
if (i <= j) {
exchangeNumbers(i, j);
//move index to next position on both sides
i++;
j--;
}
}
// call quickSort() method recursively
if (lowerIndex < j)
quickSorter(lowerIndex, j);
if (i < higherIndex)
quickSorter(i, higherIndex);
}
private void exchangeNumbers(int i, int j) {
int temp = array[i];
array[i] = array[j];
array[j] = temp;
}
}
Then I implement it with (median of three)
public class quickSort {
private int array[];
private int length;
public void sort(int[] inputArr) {
if (inputArr == null || inputArr.length == 0) {
return;
}
this.array = inputArr;
length = inputArr.length;
quickSorter(0, length - 1);
}
private void quickSorter(int lowerIndex, int higherIndex) {
int i = lowerIndex;
int j = higherIndex;
int mid = lowerIndex+(higherIndex-lowerIndex)/2;
if (array[i]>array[mid]){
exchangeNumbers( i, mid);
}
if (array[i]>array[j]){
exchangeNumbers( i, j);
}
if (array[j]<array[mid]){
exchangeNumbers( j, mid);
}
int pivot = array[mid];
// Divide into two arrays
while (i <= j) {
while (array[i] < pivot) {
i++;
}
while (array[j] > pivot) {
j--;
}
if (i <= j) {
exchangeNumbers(i, j);
//move index to next position on both sides
i++;
j--;
}
}
// call quickSort() method recursively
if (lowerIndex < j)
quickSorter(lowerIndex, j);
if (i < higherIndex)
quickSorter(i, higherIndex);
}
private void exchangeNumbers(int i, int j) {
int temp = array[i];
array[i] = array[j];
array[j] = temp;
}
}
and the testing main :
public static void main(String[] args) {
File number = new File ("f.txt");
final int size = 10000000;
try{
quickSortOptimize opti = new quickSortOptimize();
quickSort s = new quickSort();
PrintWriter printWriter = new PrintWriter(number);
for (int i=0;i<size;i++){
printWriter.println((int)(Math.random()*100000));
}
printWriter.close();
Scanner in = new Scanner (number);
int [] arr1 = new int [size];
for (int i=0;i<size;i++){
arr1[i]=Integer.parseInt(in.nextLine());
}
long a=System.currentTimeMillis();
opti.sort(arr1);
long b=System.currentTimeMillis();
System.out.println("Optimaized quicksort: "+(double)(b-a)/1000);
in.close();
int [] arr2 = new int [size];
Scanner in2= new Scanner(number);
for (int i=0;i<size;i++){
arr2[i]=Integer.parseInt(in2.nextLine());
}
long c=System.currentTimeMillis();
s.sort(arr2);
long d=System.currentTimeMillis();
System.out.println("normal Quicksort: "+(double)(d-c)/1000);
}catch (Exception ex){ex.printStackTrace();}
}
The problem is that this method of optimization should improve performance by 5%
but, what happens actually is that I have done this test many times and almost always getting better result on normal quicksort that optimized one
so what is wrong with the second implementation
A median of three (or more) will usually be slower for input that's randomly ordered.
A median of three is intended to help prevent a really bad case from being quite as horrible. There are ways of making it pretty bad anyway, but at least avoids the problem for a few common orderings--e.g., selecting the first element as the pivot can produce terrible results if/when (most of) the input is already ordered.

Resources