How do you run Code Analysis against a subset of files? - visual-studio-2010

Currently I'm working on/in a project that doesn't have code analysis turned on.
What I'd like to do is just run CA against the files that I work with/touch before I check them in but there's some limitations:
I don't have the option to turn it on for the project. Even if I did...
The project is huge; CA takes an age to run, and the warnings are numerous. Picking out the files I touched from the list would be a needle in a haystack.
Anyone have any ideas?

An idea would be to run code rules through the tool NDepend (Disclaimer: I am one of the developer of the tool).
What I'd like to do is just run CA against the files that I work with/touch
Concerning this first point, NDepend let's write code rules through LINQ queries, and one facility proposed is to query the code diff between the current code version, and a previous version of the code (the baseline). Hence the user can write a code rule that focuses only on what has been changed between now and the baseline.
Around 200 default code rules are proposed, for example Avoid making complex methods even more complex. If we look at the LINQ code of this rule, we can see that first, it filters only methods where CodeWasChanged, to then detect the ones that were complex enough, and that became more complex. Method complexity is defined here through the popular code metric Cyclomatic Complexity.
// <Name>Avoid making complex methods even more complex (Source CC)</Name>
warnif count > 0
from m in JustMyCode.Methods where
m.CodeWasChanged() // <-----
let oldCC = m.OlderVersion().CyclomaticComplexity
where oldCC > 6 && m.CyclomaticComplexity > oldCC
select new { m,
oldCC ,
newCC = m.CyclomaticComplexity ,
oldLoc = m.OlderVersion().NbLinesOfCode,
newLoc = m.NbLinesOfCode,
}
All default or custom rules can be adapted to be restricted to code that has been refactored or code that has been introduced, since the baseline. The group of code rules Code Quality Regression or API Breaking Changes contains these adapted code rules out-of-the-box.
Concerning the point CA takes an age to run, and the warnings are numerous. you can try NDepend now, and see that it won't make you wait. It'll take a few seconds to analyze your large code base and execute the 200 default rules (that can be customized easily since they are just C# LINQ queries).

Related

Visual Studio - Is there any way to search a subset of code that can be executed?

Not sure if this is possible but given the way we can easily navigate to implementations of method calls (or at least a choice of possible implementations) and can even syntax highlight code coverage - is there any way to perform a 'search' or have an overview of all the code that CAN be run in a given highlighted section?
I.E if I highlight code
CallThirdParty(); // this function calls five other functions from classes X Y and Z
WriteToDatabase(); // no child function calls
PerformReconciliation(); // this function calls fourteen other functions from class A
Could I run a search on code that would be in classes X Y Z and A? Or at least get a view of all the code that would / could be run for that snippet?
Forgive me if it doesn't make much sense, but I think this would be absolutely awesome, especially when jumping into a project you aren't familiar with!
For Visual Studio for the question purposes but I'd be interested in any IDE / plugin that accomplishes this.
The Code Map might do what you're looking for. As the article says it can help you
Understand the overall architecture of a .NET application.
Analyze dependencies surfaced in that architecture by progressively drilling into the details.
Understand and analyze the impact of a proposed change to the code by building a dependency map from a specific code element.
The Call Hierarchy may help too. As the article says the
Call Hierarchy enables you to navigate through your code by displaying all calls to and from a selected method, property, or constructor. This enables you to better understand how code flows and to evaluate the effects of changes to code. You can examine several levels of code to view complex chains of method calls and additional entry points to the code, which enables you to explore all possible execution paths.
Additionally, you could always debug and step through the code to see what it does under different circumstances and then look at the call stack etc. to follow your calls and variables through.

Visual Studio - Discover if method is called by another method at some point

I was wondering, does visual studio have a feature such that I gave it a 2 method names and it then works out if at somewhere along the call stack the first method is called by the second (statically, without having to debug).
e.g.
Say I have a method FireBullet, and I want to see if IsOutsideWestBoundary can be invoked at some point
FireBullet()->HitTest()->CheckBoundaries()->IsOutsiteWestBoundary()
You can see that FireBullet can eventually cause IsOutsideWestBoundary to be invoked at some point.
I understand this can potentially become a very large problem, especially with deep call stacks and multiple methods called at each level, but still, for relatively small call stacks depths, this could be very useful.
Surely something like this must exist?
Thanks
Thomas
The Visual Studio extension NDepend can do that. It lets write code rules and code queries through C# LINQ queries. The following LINQ code query, executed live in Visual Studio, answers your need:
from m in Methods
where m.Name == "FireBullet()"
let depth0 = m.DepthOfIsUsing("MyNamespace.Program.IsOutsiteWestBoundary()")
where depth0 >= 0 orderby depth0
select new { m, depth0 }
Notice that the code query result also provides the depth of call. It can be stored in your NDepend project, and it can be transformed into a rule by adding the prefix warnif count > 0.
This query gets inspired from the query generated by NDepend when right clicking a method and Select Methods ... that call me (directly or indirectly).
If you click the button Export to Graph you get such call graph (more info on this here):
A 14-day full featured trial is available here.
Disclaimer: I work for NDepend.

Would you abstract your LINQ queries into extension methods

On my current project we set ourselves some goals for the code metrics "Maintainability Index" and "Cyclometic Complexity". Maintainability Index should be 60 or higher and Cyclometic Complexity 25 or less. We know that the Maintainability Index of 60 and higher is a pretty high one.
We also use a lot of linq to filter/group/select entities. I found out that these linq queries aren't scoring that high on Maintainability Index.
Abstracting this queries into extension methods is giving me a higher Maintainability Index, which is good. But in most of the cases the extension methods are not generic anymore because I use them with my Types instead of generic types.
For example the following linq-query vs extension method:
Linq query
List.Where(m => m.BeginTime >= selectionFrom && m.EndTime <= selectionTo)
Extension method:
public static IEnumerable<MyType> FilterBy(this IEnumerable<MyType> source, DateTime selectionFrom, DateTime selectionTo)
{
return (IEnumerable<MyType>)source.Where(m => m.BeginTime >= selectionFrom && m.EndTime <= selectionTo);
}
List.FilterBy(selectionFrom, selectionTo);
The extension method gives me a Maintainability Index improvement of 6 points, and gives a nice fluent syntax.
On the other hand I have to add a static class, it's not generic.
Any ideas on what approach would have your favor? Or maybe have different ideas about how to refactor the linq queries to improve Maintainability Index?
You shouldn't add classes for the sake of metrics. Any metrics are meant to make your code better but following rules blindly, even the best rules, may in fact harm your code.
I don't think it's a good idea to stick to certain Maintainability and Complexity indexes. I believe they are useful for evaluating old code, i.e. when you inherited a project and need to estimate its complexity. However, it's absurd to extract a method because you haven't scored enough points.
Only refactor if such refactoring adds value to the code. Such value is a complex human metric inexpressible in numbers, and estimating it is exactly what programming experience is about—finding balance between optimization vs readability vs clean API vs cool code vs simple code vs fast shipping vs generalization vs specification, etc.
This is the only metric you should follow but it's not always the metric everyone agrees upon...
As for your example, if the same LINQ query is used over and over, it makes perfect sense to create an EnumerableExtensions in Extensions folder and extract it there. However, if it used once or twice, or is subject to change, verbose query is so much better.
I also don't understand why you say they are not generic with somewhat negative connotations. You don't need generics everywhere! In fact, when writing extension methods, you should consider the most specific types you can choose as to not pollute other classes' method set. If you want your helper to only work with IEnumerable<MyType>, there is absolutely no shame in declaring an extension method exactly for this IEnumerable<MyType>. By the way, there's redundant casting in your example. Get rid of it.
And don't forget, tools are stupid. So are we, humans.
My advice to you would be ... don't be a slave to your metrics! They are machine generated and only intended to be used as guidance. They are never going to be a replacement for a skilled experienced programmer.
Which do you think is right for your application?
I for one agree with the extension method strategy. I've used it without a problem in a handful of real-world apps.
To me, it is not only about the metrics, but also the re-usability of the code there. See the following psuedo-examples:
var x = _repository.Customers().WhichAreGoldCustomers();
var y = _repository.Customers().WhichAreBehindInPayments();
Having those two extension methods accomplishes your goal for metrics, and it also provides "one place for the definition of what it is to be a gold customer." You don't have different queries being created in different places by different developers when they need to work with "gold customers."
Additionally, they are composable:
var z = _repository.Customers().WhichAreGoldCustomers().WhichAreBehindInPayments();
IMHO this is a winning approach.
The only problem we've faced is that there is a ReSharper bug that sometimes the Intellisense for the extension methods goes crazy. You type ".Whic" and it lets you pick the extension method you want, but when you "tab" on it, it puts something completely different into the code, not the extension method that you selected. I've considered switching from ReSharper for this, but... nah :)
NO: in this case I would ignore the cyclomatic complexity - what you had originally was better.
Ask yourself what is more explanatory. This:
List.Where(m => m.BeginTime >= selectionFrom && m.EndTime <= selectionTo)
or this:
List.FilterBy(selectionFrom, selectionTo);
The first clearly expresses what you want, whereas the second does not. The only way to know what "FilterBy" means is to go into the source code and look at its implementation.
Abstracting query fragments into extension methods makes sense with more complex scenarios, where it's not easy to judge at a glance what the query fragment is doing.
I have used this technique in places, for example a class Payment has a corresponding class PaymentLinqExtensions which provides domain specific extensions for Payments.
In the example you give I'd choose a more descriptive method name. There is also the question of whether the range is inclusive or exclusive, Otherwise it looks OK.
If you have multiple objects in your system for which the concept of having a date is common then consider an interface, maybe IHaveADate (or something better :-)
public static IQueryable<T> WithinDateRange(this IQueryable<T> source, DateTime from, DateTime to) where T:IHaveADate
(IQueryable is interesting. I don't think IEnumerable can cast to it which is a shame. If you're working with database queries then it can allow your logic to appear in the final SQL that is sent to the server which is good. There is the potential gotcha with all LINQ that your code is not executed when you expect it to be)
If date ranges are an important concept in your application, and you need to be consistent about whether the range starts at midnight on the end of "EndDate" or midnight at the start of it, then a DateRange class may be useful. Then
public static IQueryable<T> WithinDateRange(this IQueryable<T> source, DateRange range) where T:IHaveADate
You could also, if you feel like it, provide
public static IEnumerable<T> WithinDateRange(this IEnumerable<T> source, DateRange range, Func<DateTime,T> getDate)
but this to me feels more something to do with DateRange. I don't know how much it would be used, though your situation may vary. I've found that getting too generic can make things hard to understand, and LINQ can be hard to debug.
var filtered = myThingCollection.WithinDateRange(myDateRange, x => x.Date)

What is the most obfuscated code you've had to fix?

Most programmers will have had the experience of debugging/fixing someone else's code. Sometimes that "someone else's code" is so obfuscated it's bad enough trying to understand what it's doing.
What's the worst (most obfuscated) code you've had to debug/fix?
If you didn't throw it away and recode it from scratch, well why didn't you?
PHP OSCommerce is enough to say, it is obfuscated code...
a Java class
only static methods that manipulates DOM
8000 LOCs
long chain of methods that return null on "error": a.b().c().d().e()
very long methods (400/500 LOC each)
nested if, while, like:
if (...) {
for (...) {
if (...) {
if (...) {
while (...) {
if (...) {
cut-and-paste oriented programming
no exceptions, all exceptions are catched and "handled" using printStackTrace()
no unit tests
no documentation
I was tempted to throw away and recode... but, after 3 days of hard debugging,
I've added the magic if :-)
Spaghetti code PHP CMS system.
by default, programmers think someone else's code is obfuscated.
The worse I probably had to do was interpreting what variables i1, i2 j, k, t were in a simple method and they were not counters in 'for' loops.
In all other circumstances I guess the problem area was difficult which made the code look difficult.
I found this line in our codebase today and thought it was a nice example of sneaky obfuscation:
if (MULTICLICK_ENABLED.equals(propService.getProperty(PropertyNames.MULTICLICK_ENABLED))) {} else {
return false;
}
Just making sure I read the whole line. NO SKIMREADING.
When working on a GWT project, I would reach parts of GWT-compiled obfuscated JS code which wasn't mine.
Now good luck debugging real obfuscated code.
I can't remember the full code, but a single part of it remains burned into my memory as something I spend hours trying to understand:
do{
$tmp = shift unless shift;
$tmp;
}while($tmp);
I couldn't understand it at first, it looks so useless, then I printed out #_ for a list of arguments, a series of alternating boolean and function names, the code was used in conjunction with a library detection module that changed behaviour if a function was broken, but the code was so badly documented and made of things like that which made no sense without a complete understanding of the full code I gave up and rewrote the whole thing.
UPDATE from DVK:
And, lest someone claims this was because Perl is unreadable as opposed to coder being a golf master instead of good software developer, here's the same code in a slightly less obfuscated form (the really correct code wouldn't even HAVE alternating sub names and booleans in the first place :)
# This subroutine take a list of alternating true/false flags
# and subroutine names; and executes the named subroutines for which flag is true.
# I am also weird, otherwise I'd have simply have passed list of subroutines to execute :)
my #flags_and_sub_names_list = #_;
while ( #flags_and_sub_names_list ) {
my $flag = shift #flags_and_sub_names_list;
my $subName = shift #flags_and_sub_names_list;
next unless $flag && $subName;
&{ $subName }; # Call the named subroutine
}
I've had a case of a 300lines function performing input sanitization which missed a certain corner case. It was parsing certain situations manually using IndexOf and Substring plus a lot of inlined variables and constants (looks like the original coder didn't know anything about good practices), and no comment was provided. Throwing it away wasn't feasible due to time constraints and the fact that I didn't have the specification required so rewriting it would've meant understanding the original, but after understanding it fixing it was just quicker. I also added lots of comments, so whoever shall come after me won't feel the same pain taking a look at it...
The Perl statement:
select((select(s),$|=1)[0])
which, at the suggestion of the original author (Randal Schwartz himself, who said he disliked it but nothing else was available at the time), was replaced with something a little more understandable:
IO::Handle->autoflush
Beyond that one-liner, some of the Java JDBC libraries from IBM are obfuscated and all variables and functions are either combinations of the letter 'l' and '1' or single/double characters - very hard to track anything down until you get them all renamed. Needed to do this to track down why they worked fine in IBM's JRE but not Sun's.
If you're talking about HLL codes, once I was updating project written by a chinese and all comments were chinese (stored in ansii) and it was a horror to understand some code fragments, if you're talking about low level code there were MANY of them (obfuscated, mutated, vm-ed...).
I once had to reverse engineer a Java 1.1 framework that:
Extended event-driven SAX parser classes for every class, even those that didn't parse XML (the overridden methods were simply invoked ad hoc by other code)
Custom runtime exceptions were thrown in lieu of method invocations wherever possible. As a result, most of the business logic landed in a nested series of catch blocks.
If I had to guess, it was probably someone's "smart" idea that method invocations were expensive in Java 1.1, so throwing exceptions for non-exceptional flow control was somehow considered an optimization.
Went through about three bottles of eye drops.
I once found a time bomb that had been intentionally obfuscated.
When I had finally decoded what it was doing I mentioned it to the manager who said they knew about the time bomb but had left it in place because it was so ineffective and was interwoven with other code.
The time bomb was (presumably) supposed to go off after a certain date.
Instead, it had a bug in it so it only activated if someone was working after lunchtime on Dec 31st.
It had taken three years for that circumstance to occur since the guy who wrote the time bomb left the company.

What was the strangest coding standard rule that you were forced to follow? [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 11 years ago.
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
When I asked this question I got almost always a definite yes you should have coding standards.
What was the strangest coding standard rule that you were ever forced to follow?
And by strangest I mean funniest, or worst, or just plain odd.
In each answer, please mention which language, what your team size was, and which ill effects it caused you and your team.
I hate it when the use of multiple returns is banned.
reverse indentation. For example:
for(int i = 0; i < 10; i++)
{
myFunc();
}
and:
if(something)
{
// do A
}
else
{
// do B
}
Maybe not the most outlandish one you'll get, but I really really hate when I have to preface database table names with 'tbl'
Almost any kind of hungarian notation.
The problem with hungarian notation is that it is very often misunderstood. The original idea was to prefix the variable so that the meaning was clear. For example:
int appCount = 0; // Number of apples.
int pearCount = 0; // Number of pears.
But most people use it to determine the type.
int iAppleCount = 0; // Number of apples.
int iPearCount = 0; // Number of pears.
This is confusing, because although both numbers are integers, everybody knows, you can't compare apples with pears.
No ternary operator allowed where I currently work:
int value = (a < b) ? a : b;
... because not everyone "gets it". If you told me, "Don't use it because we've had to rewrite them when the structures get too complicated" (nested ternary operators, anyone?), then I'd understand. But when you tell me that some developers don't understand them... um... Sure.
To NEVER remove any code when making changes. We were told to comment all changes. Bear in mind we use source control. This policy didn't last long because developers were in an uproar about it and how it would make the code unreadable.
I once worked under the tyranny of the Mighty VB King.
The VB King was the pure master of MS Excel and VBA, as well as databases (Hence his surname : He played with Excel while the developers worked with compilers, and challenging him on databases could have detrimental effects on your career...).
Of course, his immense skills gave him an unique vision of development problems and project management solutions: While not exactly coding standards in the strictest sense, the VB King regularly had new ideas about "coding standards" and "best practices" he tried (and oftentimes succeeded) to impose on us. For example:
All C/C++ arrays shall start at index 1, instead of 0. Indeed, the use of 0 as first index of an array is obsolete, and has been superseded by Visual Basic 6's insightful array index management.
All functions shall return an error code: There are no exceptions in VB6, so why would we need them at all? (i.e. in C++)
Since "All functions shall return an error code" is not practical for functions returning meaningful types, all functions shall have an error code as first [in/out] parameter.
All our code will check the error codes (this led to the worst case of VBScript if-indentation I ever saw in my career... Of course, as the "else" clauses were never handled, no error was actually found until too late).
Since we're working with C++/COM, starting this very day, we will code all our DOM utility functions in Visual Basic.
ASP 115 errors are evil. For this reason, we will use On Error Resume Next in our VBScript/ASP code to avoid them.
XSL-T is an object oriented language. Use inheritance to resolve your problems (dumb surprise almost broke my jaw open this one day).
Exceptions are not used, and thus should be removed. For this reason, we will uncheck the checkbox asking for destructor call in case of exception unwinding (it took days for an expert to find the cause of all those memory leaks, and he almost went berserk when he found out they had willingly ignored (and hidden) his technical note about checking the option again, sent handfuls of weeks before).
catch all exceptions in the COM interface of our COM modules, and dispose them silently (this way, instead of crashing, a module would only appear to be faster... Shiny!... As we used the über error handling described above, it even took us some time to understand what was really happening... You can't have both speed and correct results, can you?).
Starting today, our code base will split into four branches. We will manage their synchronization and integrate all bug corrections/evolutions by hand.
All but the C/C++ arrays, VB DOM utility functions and XSL-T as OOP language were implemented despite our protests. Of course, over the time, some were discovered, ahem, broken, and abandoned altogether.
Of course, the VB King credibility never suffered for that: Among the higher management, he remained a "top gun" technical expert...
This produced some amusing side effects, as you can see by following the link What is the best comment in source code you have ever encountered?
Back in the 80's/90's, I worked for an aircraft simulator company that used FORTRAN. Our FORTRAN compiler had a limit of 8 characters for variable names. The company's coding standards reserved the first three of them for Hungarian-notation style info. So we had to try and create meaningful variable names with just 5 characters!
I worked at a place that had a merger between 2 companies. The 'dominant' one had a major server written in K&R C (i.e. pre-ANSI). They forced the Java teams (from both offices -- probably 20 devs total) to use this format, which gleefully ignored the 2 pillars of the "brace debate" and goes straight to crazy:
if ( x == y )
{
System.out.println("this is painful");
x = 0;
y++;
}
Forbidden:
while (true) {
Allowed:
for (;;) {
a friend of mine - we'll call him CodeMonkey - got his first job out of college [many years ago] doing in-house development in COBOL. His first program was rejected as 'not complying with our standards' because it used... [shudder!] nested IF statements
the coding standards banned the use of nested IF statements
now, CodeMonkey was not shy and was certain of his abilities, so he persisted in asking everyone up the chain and down the aisle why this rule existed. Most claimed they did not know, some made up stuff about 'readability', and finally one person remembered the original reason: the first version of the COBOL compiler they used had a bug and didn't handle nested IF statements correctly.
This compiler bug, of course, had been fixed for at least a decade, but no one had challenged the standards. [baaa!]
CodeMonkey was successful in getting the standards changed - eventually!
Once worked on a project where underscores were banned. And I mean totally banned. So in a c# winforms app, whenever we added a new event handler (e.g. for a button) we'd have to rename the default method name from buttonName_Click() to something else, just to satisfy the ego of the guy that wrote the coding standards. To this day I don't know what he had against the humble underscore
Totally useless database naming conventions.
Every table name has to start with a number. The numbers show which kind of data is in the table.
0: data that is used everywhere
1: data that is used by a certain module only
2: lookup table
3: calendar, chat and mail
4: logging
This makes it hard to find a table if you only know the first letter of its name.
Also - as this is a mssql database - we have to surround tablenames with square brackets everywhere.
-- doesn't work
select * from 0examples;
-- does work
select * from [0examples];
We were doing a C++ project and the team lead was a Pascal guy.
So we had a coding standard include file to redefine all that pesky C and C++ syntax:
#define BEGIN {
#define END }
but wait there's more!
#define ENDIF }
#define CASE switch
etc. It's hard to remember after all this time.
This took what would have been perfectly readable C++ code and made it illegible to anyone except the team lead.
We also had to use reverse Hungarian notation, i.e.
MyClass *class_pt // pt = pointer to type
UINT32 maxHops_u // u = uint32
although oddly I grew to like this.
At a former job:
"Normal" tables begin with T_
"System" tables (usually lookups) begin with TS_ (except when they don't because somebody didn't feel like it that day)
Cross-reference tables begin with TSX_
All field names begin with F_
Yes, that's right. All of the fields, in every single table. So that we can tell it's a field.
A buddy of mine encountered this rule while working at a government job. The use of ++ (pre or post) was completely banned. The reason: Different compilers might interpret it differently.
Half of the team favored four-space indentation; the other half favored two-space indentation.
As you can guess, the coding standard mandated three, so as to "offend all equally" (a direct quote).
Not being able to use Reflection as the manager claimed it involved too much 'magic'.
The very strangest one I had, and one which took me quite some time to overthrow, was when the owner of our company demanded that our new product be IE only. If it could work on FireFox, that was OK, but it had to be IE only.
This might not sound too strange, except for one little flaw. All of the software was for a bespoke server software package, running on Linux, and all client boxes that our customer was buying were Linux. Short of trying to figure out how to get Wine (in those days, very unreliable) up and running on all of these boxes and seeing if we could get IE running and training their admins how to debug Wine problems, it simply wasn't possible to meet the owner's request. The problem was that he was doing the Web design and simply didn't know how to make Web sites compliant with FireFox.
It probably won't shock you to know that that our company went bankrupt.
Using generic numbered identifier names
At my current work we have two rules which are really mean:
Rule 1: Every time we create a new field in a database table we have to add additional reserve fields for future use. These reserve fields are numbered (because no one knows which data they will hold some day) The next time we need a new field we first look for an unused reserve field.
So we end up with with customer.reserve_field_14 containing the e-mail address of the customer.
At one day our boss thought about introducing reserve tables, but fortunatly we could convince him not to do it.
Rule 2: One of our products is written in VB6 and VB6 has a limit of the total count of different identifier names and since the code is very large, we constantly run into this limit. As a "solution" all local variable names are numbered:
Lvarlong1
Lvarlong2
Lvarstr1
...
Although that effectively circumvents the identifier limit, these two rules combined lead to beautiful code like this:
...
If Lvarbool1 Then
Lvarbool2 = True
End If
If Lvarbool2 Or Lvarstr1 <> Lvarstr5 Then
db.Execute("DELETE FROM customer WHERE " _
& "reserve_field_12 = '" & Lvarstr1 & "'")
End If
...
You can imagine how hard it is to fix old or someone else's code...
Latest update: Now we are also using "reserve procedures" for private members:
Private Sub LSub1(Lvarlong1 As Long, Lvarstr1 As String)
If Lvarlong1 >= 0 Then
Lvarbool1 = LFunc1(Lvarstr1)
Else
Lvarbool1 = LFunc6()
End If
If Lvarbool1 Then
LSub4 Lvarstr1
End If
End Sub
EDIT: It seems that this code pattern is becoming more and more popular. See this The Daily WTF post to learn more: Astigmatism :)
Back in my C++ days we were not allowed to use ==,>=, <=,&&, etc. there were macros for this ...
if (bob EQ 7 AND alice LEQ 10)
{
// blah
}
this was obviously to deal with the "old accidental assignment in conditional bug", however we also had the rule "put constants before variables", so
if (NULL EQ ptr); //ok
if (ptr EQ NULL); //not ok
Just remembered, the simplest coding standard I ever heard was "Write code as if the next maintainer is a vicious psychopath who knows where you live."
Hungarian notation in general.
I've had a lot of stupid rules, but not a lot that I considered downright strange.
The sillyiest was on a NASA job I worked back in the early 90's. This was a huge job, with well over 100 developers on it. The experienced developers who wrote the coding standards decided that every source file should begin with a four letter acronym, and the first letter had to stand for the group that was responsible for the file. This was probably a great idea for the old FORTRAN 77 projects they were used to.
However, this was an Ada project, with a nice hierarchal library structure, so it made no sense at all. Every directory was full of files starting with the same letter, followed by 3 more nonsense leters, an underscore, and then part of the file name that mattered. All the Ada packages had to start with this same five-character wart. Ada "use" clauses were not allowed either (arguably a good thing under normal circumstances), so that meant any reference to any identifier that wasn't local to that source file also had to include this useless wart. There probably should have been an insurrection over this, but the entire project was staffed by junior programmers and fresh from college new hires (myself being the latter).
A typical assignment statement (already verbose in Ada) would end up looking something like this:
NABC_The_Package_Name.X := NABC_The_Package_Name.X +
CXYZ_Some_Other_Package_Name.Delta_X;
Fortunately they were at least enlightened enough to allow us more than 80 columns! Still, the facility wart was hated enough that it became boilerplate code at the top of everyone's source files to use Ada "renames" to get rid of the wart. There'd be one rename for each imported ("withed") package. Like this:
package Package_Name renames NABC_Package_Name;
package Some_Other_Package_Name renames CXYZ_Some_Other_Package_Name;
--// Repeated in this vein for an average of 10 lines or so
What the more creative among us took to doing was trying to use the wart to make an acutally sensible (or silly) package name. (I know what you are thinking, but explitives were not allowed and shame on you! That's disgusting). For example, I was in the Common code group, and I needed to make a package to interface with the Workstation group. After a brainstorming session with the Workstation guy, we decided to name our packages so that someone needing both would have to write:
with CANT_Interface_Package;
with WONT_Interface_Package;
When I started working at one place, and started entering my code into the source control, my boss suddenly came up to me, and asked me to stop committing so much. He told me it is discouraged to do more than 1 commit per-day for a developer because it litters the source control. I simply gaped at him...
Later I understood that the reason he even came up to me about it is because the SVN server would send him (and 10 more high executives) a mail for each commit someone makes. And by littering the source control I guessed he ment his mailbox.
Doing all database queries via stored procedures in Sql Server 2000. From complex multi-table queries to simple ones like:
select id, name from people
The arguments in favor of procedures were:
Performance
Security
Maintainability
I know that the procedure topic is quite controversial, so feel free to score my answer negatively ;)
There must be 165 unit tests (not necessarily automated) per 1000 lines of code. That works out at one test for roughly every 8 lines.
Needless to say, some of the lines of code are quite long, and functions return this pointers to allow chaining.
We had to sort all the functions in classes alphabetically, to make them "easier to find".
Never mind the ide had a drop down. That was too many clicks.
(same tech lead wrote an app to remove all comments from our source code).
In 1987 or so, I took a job with a company that hired me because I was one of a small handful of people who knew how to use Revelation. Revelation, if you've never heard of it, was essentially a PC-based implementation of the Pick operating system - which, if you've never heard of it, got its name from its inventor, the fabulously-named Dick Pick. Much can be said about the Pick OS, most of it good. A number of supermini vendors (Prime and MIPS, at least) used Pick, or their own custom implementations of it.
This company was a Prime shop, and for their in-house systems they used Information. (No, that was really its name: it was Prime's implementation of Pick.) They had a contract with the state to build a PC-based system, and had put about a year into their Revelation project before the guy doing all the work, who was also their MIS director, decided he couldn't do both jobs anymore and hired me.
At any rate, he'd established a number of coding standards for their Prime-based software, many of which derived from two basic conditions: 1) the use of 80-column dumb terminals, and 2) the fact that since Prime didn't have a visual editor, he'd written his own. Because of the magic portability of Pick code, he'd brought his editor down into Revelation, and had built the entire project on the PC using it.
Revelation, of course, being PC-based, had a perfectly good full-screen editor, and didn't object when you went past column 80. However, for the first several months I was there, he insisted that I use his editor and his standards.
So, the first standard was that every line of code had to be commented. Every line. No exceptions. His rationale for that was that even if your comment said exactly what you had just written in the code, having to comment it meant you at least thought about the line twice. Also, as he cheerfully pointed out, he'd added a command to the editor that formatted each line of code so that you could put an end-of-line comment.
Oh, yes. When you commented every line of code, it was with end-of-line comments. In short, the first 64 characters of each line were for code, then there was a semicolon, and then you had 15 characters to describe what your 64 characters did. In short, we were using an assembly language convention to format our Pick/Basic code. This led to things that looked like this:
EVENT.LIST[DATE.INDEX][-1] = _ ;ADD THE MOST RECENT EVENT
EVENTS[LEN(EVENTS)] ;TO THE END OF EVENT LIST
(Actually, after 20 years I have finally forgotten R/Basic's line-continuation syntax, so it may have looked different. But you get the idea.)
Additionally, whenever you had to insert multiline comments, the rule was that you use a flower box:
************************************************************************
** IN CASE YOU NEVER HEARD OF ONE, OR COULDN'T GUESS FROM ITS NAME, **
** THIS IS A FLOWER BOX. **
************************************************************************
Yes, those closing asterisks on each line were required. After all, if you used his editor, it was just a simple editor command to insert a flower box.
Getting him to relent and let me use Revelation's built-in editor was quite a battle. At first he was insistent, simply because those were the rules. When I objected that a) I already knew the Revelation editor b) it was substantially more functional than his editor, c) other Revelation developers would have the same perspective, he retorted that if I didn't train on his editor I wouldn't ever be able to work on the Prime codebase, which, as we both knew, was not going to happen as long as hell remained unfrozen over. Finally he gave in.
But the coding standards were the last to go. The flower-box comments in particular were a stupid waste of time, and he fought me tooth and nail on them, saying that if I'd just use the right editor maintaining them would be perfectly easy. (The whole thing got pretty passive-aggressive.) Finally I quietly gave in, and from then on all of the code I brought to code reviews had his precious flower-box comments.
One day, several months into the job, when I'd pretty much proven myself more than competent (especially in comparison with the remarkable parade of other coders that passed through that office while I worked there), he was looking over my shoulder as I worked, and he noticed I wasn't using flower-box comments. Oh, I said, I wrote a source-code formatter that converts my comments into your style when I print them out. It's easier than maintaining them in the editor. He opened his mouth, thought for a moment, closed it, went away, and we never talked about coding standards again. Both of our jobs got easier after that.
At my first job, all C programs, no matter how simple or complex, had only four functions. You had the main, which called the other three functions in turn. I can't remember their names, but they were something along the lines of begin(), middle(), and end(). begin() opened files and database connections, end() closed them, and middle() did everything else. Needless to say, middle() was a very long function.
And just to make things even better, all variables had to be global.
One of my proudest memories of that job is having been part of the general revolt that led to the destruction of those standards.
An externally-written C coding standard that had the rule 'don't rely on built in operator precedence, always use brackets'
Fair enough, the obvious intent was to ban:
a = 3 + 6 * 2;
in favour of:
a = 3 + (6 * 2);
Thing was, this was enforced by a tool that followed the C syntax rules that '=', '==', '.' and array access are operators. So code like:
a[i].x += b[i].y + d - 7;
had to be written as:
((a[i]).x) += (((b[i]).y + d) - 7);

Resources