This error has been mindfucking me for long, I don't know what to do. I get the same error in other codes, but this one is a simple one, so maybe it's easier to find out what's the problem.
It's a frequency selector, if the switch (clau) is on, the frequency changes.
library IEEE;
use IEEE.numeric_bit.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity selector_frequencia is
Port ( unHz : in bit ;
centHz : in bit ;
Clock : out bit;
clau: in bit);
end selector_frequencia;
architecture Behavioral of selector_frequencia is
begin
if (clau = "0") then Clock <= unHz;
else Clock <= centHz;
end if;
end Behavioral;
And the error I get is this one:
ERROR:HDLParsers:164 - "C:/Documents and Settings/Administrador/Escritorio/practica_digital/practica_digital/selector_frequencia.vhdl" Line 23. parse error, unexpected IF
Thank you.
I'm not really an expert in VHDL but I believe you should use the if statement inside a process:
architecture Behavioral of selector_frequencia is
begin
fqsel:PROCESS(unHz , centHz , Clock , clau)
BEGIN
if (clau = '0') then
Clock <= unHz;
else
Clock <= centHz;
end if;
END PROCESS fqsel;
end Behavioral;
As Alex pointed out, your if statement needs to be inside a process block. In addition, VHDL is not C...you are not supposed to put parens () around the conditional or it looks like a procedure/function call or a signal range ie: my_bus(7 downto 0) but it's a syntax error because if is a reserved word. Try:
process (clau, unHz, centHz)
begin
if clau = '0' then
Clock <= unHz;
else
Clock <= centHz;
end if;
end process;
Finally, outside of a process, you can just use a conditional signal assignment, which is a short-hand way of implementing the equivalent process and if statements:
Clock <= unHz when clau='0' else centHz;
You are using an assignment statement in your IF clause:
// This is assignment, you are assigning 'clau' to 0 and then checking it in 'if'
if (clau = "0") then Clock <= unHz;
// Try this, note the double '='
if (clau == "0") then Clock <= unHz;
Assignment statements should be within a PROCESS block.
Hope this helps.
Related
I have a for loop in process, which works fine with std_logic arrays, but not with record arrays. I use Xilinx ISE along with ISIM and the code is vhdl-93. The target will be a Spartan 3.
Here is the record definition:
TYPE spi_rx_t IS RECORD
CS : std_logic;
MOSI : std_logic;
CLK : std_logic;
END RECORD;
constant SYNC_LATCHES : integer := 2;
Here is the array definition and declaration:
type spi_rx_array_t is array (0 to SYNC_LATCHES) of spi_rx_t;
signal spi_in_array : spi_rx_array_t;
Below is the process:
spi_in_array(0).MOSI <= SPI_MOSI;
spi_in_array(0).CLK <= SPI_CLK;
spi_in_array(0).CS <= SPI_CS;
sync_p: process (clk_100)
begin
if rising_edge(clk_100) then
-- for I in 1 to SYNC_LATCHES loop
-- spi_in_array(I) <= spi_in_array(I - 1);
-- end loop;
spi_in_array(1) <= spi_in_array(0);
spi_in_array(2) <= spi_in_array(1);
end if;
end process;
The 2 lines below the commented code works exactly as expected (allowing me to synchronize external signals to clk_100), but I'd rather implement them as a for loop (such the commented one).
However, these commented lines does not produce the same result in my ISIM test bench (spi_in_array stays in unknown state when using the for loop). Why?
Please kindly help me with this.
As commented by Morten Zilmer, this is due to the VHDL concept "longest static prefix". This SO answer is similar to my issue.
In my case, the simplest way to resolve the issue was to move the assignment of the first element of the array into the same process as the for loop. I also had to decrease SYNC_LATCHES constant from 2 to 1, because spi_in_array(0) is now latched with clk_100.
sync_p: process (clk_100)
begin
if rising_edge(clk_100) then
spi_in_array(0).MOSI <= SPI_MOSI;
spi_in_array(0).CLK <= SPI_CLK;
spi_in_array(0).CS <= SPI_CS;
for I in 1 to SYNC_LATCHES-1 loop
spi_in_array(I) <= spi_in_array(I - 1);
end loop;
end if;
end process;
In some testbench code I use a procedure to do something with a signal. I then use this procedure multiple times in sequence on different signals. This works fine as long as I explicitly define the signal; as soon as I index signals in a loop it fails with
(vcom-1450) Actual (indexed name) for formal "s" is not a static signal name.
Why is this not possible and how can I work around it?
Probably I could move this to a for ... generate, but then I want do_something to be called in a nicely defined sequence.
library ieee;
use ieee.std_logic_1164.all;
entity test is
end test;
architecture tb of test is
signal foo : std_logic_vector(1 downto 0);
begin
dummy: process is
procedure do_something (
signal s : out std_logic
) is begin
s <= '1';
report "tic";
wait for 1 ns;
-- actually we would do something more interesting here
s <= '0';
report "toc";
end procedure;
begin
-- This works well, but requires manual loop-unrolling
do_something(foo(0));
do_something(foo(1));
-- This should do the same
for i in foo'range loop
-- This is the offending line:
do_something(foo(i));
end loop;
wait; -- for ever
end process dummy;
end architecture tb;
I'm using ModelSim 10.4 PE.
Interestingly, if foo is a variable local to the process, (and s is adjusted to suit) ghdl compiles this. Which highlights the problem in the original version. The "for" loop is required to drive the whole of foo all the time because you can't make signal drivers appear or disappear at will - it can't be ambivalent about which bits it's driving, (and as you can see, the procedure tries to drive different bits at different times).
So if you can readjust your application to allow variable update semantics, and make foo a variable local to the process, that will work. (You would have to copy its value to a signal before every "wait" if you wanted to see the effect!)
Alternatively, pass the entire foo signal and the index to the subprogram, so that the latter always drives all of foo as follows...
(I've also added the missing bits and fixed the spurious concurrent "wait" : in future, PLEASE check your code example actually compiles before posting!)
library ieee;
use ieee.std_logic_1164.all;
entity test is
end test;
architecture tb of test is
signal foo : std_logic_vector(1 downto 0);
begin
dummy: process is
procedure do_something (
signal s : out std_logic_vector(1 downto 0);
constant i : in natural
) is begin
s <= (others => '0');
s(i) <= '1';
report "tic";
wait for 1 ns;
-- actually we would do something more interesting here
s(i) <= '0';
report "toc";
end procedure;
begin
-- This works well, but requires manual loop-unrolling
do_something(foo,0);
do_something(foo,1);
-- This should do the same
for i in foo'range loop
-- This is the offending line:
do_something(foo,i);
end loop;
wait; -- for ever
end process dummy;
end architecture tb;
I share your feelings about this being a silly limitation of the language. Minus the wait and report statements your example certainly has a valid hardware implementation, let alone well defined simulation behavior.
I think this situation can be avoided in most cases. For example, in your simple example you could just copy the contents of the procedure into the process body, or pass the whole vector as Brian proposed. If you really need to do it, this is one workaround:
architecture tb of test is
signal foo : std_logic_vector(1 downto 0);
signal t : std_logic;
signal p : integer := 0;
begin
foo(p) <= t;
dummy: process is
procedure do_something (
signal s : out std_logic
) is begin
s <= '1';
wait for 1 ns;
s <= '0';
end procedure;
begin
for i in foo'range loop
p <= idx;
do_something(t);
wait for 0 ns;
end loop;
wait;
end process dummy;
end architecture tb;
This only works in simulation and will result in one delta cycle delay per iteration, compared to unrolling the loop which finishes in zero time when the procedure contains no wait statements.
I've some problem with my synthesis tool. I'm writing a module and I'm tryng to make it parametric and scalable. In my design I've a FSM and some counters. The counters have a parametric width ( they are function of the width of the datapath ). The problem is that I'm using that counter to drive a case statements. The synthesizer gives me back this error :
2049990 ERROR - (VHDL-1544) array type case expression must be of a locally static subtype
I've also tried to use subtype, but it doesnt work. The declaration is :
constant LENGTH_COUNTER_WORD : integer := integer(ceil(log2(real(WIDTH_DATA/WIDTH_WORD))));
subtype type_counter_word is std_logic_vector( LENGTH_COUNTER_WORD - 1 downto 0);
signal counter_word : std_logic_vector( LENGTH_COUNTER_WORD - 1 downto 0);
The case :
case type_counter_word'(counter_word) is
when (others => '1') =>
do_stuff();
when others =>
do_other_stuff();
end case;
I cannot switch to VHDL-2008. I've read I can use variable, but I'd like to find a different solution, if it exists. I cannot imagine there isn't any way to give parameters to synthesizer before the synthesis.
This is fixed in VHDL-2008. You can only work around it in earlier standards by using cascaded if statements (with the attendant priority logic). Variables don't make a difference when determining if choices are locally static.
I'm not sure how complicated your do_stuff() and do_other_stuff() operations are, but if you are just doing simple signal assignments, you could look into the and_reduce() function in the ieee.std_logic_misc library.
As an example:
output <= '1' when and_reduce(type_counter_word'(counter_word)) = '1' else '0';
Otherwise, as Kevin's answer suggests, a process block using if statements might be your best option.
About the time of Kevin's good enough answer, I had written this to demonstrate:
library ieee;
use ieee.std_logic_1164.all;
use ieee.math_real.all;
entity counterword is
generic (
WIDTH_DATA: positive := 16;
WIDTH_WORD: positive := 8
);
end entity;
architecture foo of counterword is
constant LENGTH_COUNTER_WORD : integer :=
integer(ceil(log2(real(WIDTH_DATA/WIDTH_WORD))));
subtype type_counter_word is
std_logic_vector( LENGTH_COUNTER_WORD - 1 downto 0);
signal counter_word : std_logic_vector( LENGTH_COUNTER_WORD - 1 downto 0);
procedure do_stuff is
begin
end;
procedure do_other_stuff is
begin
end;
begin
UNLABELLED:
process (counter_word)
begin
-- case type_counter_word'(counter_word) is
-- when (others => '1') =>
-- do_stuff;
-- when others =>
-- do_other_stuff;
-- end case;
if counter_word = type_counter_word'(others => '1') then
do_stuff;
else
do_other_stuff;
end if;
end process;
end architecture;
Note because type_counter_word is a subtype you can provide the subtype constraints in a qualified expression for the aggregate:
if counter_word = type_counter_word'(others => '1') then
From IEEE Std 1076-2008:
9.3.5 Qualified expressions
A qualified expression is a basic operation (see 5.1) that is used to explicitly state the type, and possibly the subtype, of an operand that is an expression or an aggregate.
This example analyzes, elaborates and simulates while doing nothing in particular. It'll call the sequential procedure statement do_other_stuff, which does nothing.
(For do_stuff and do_other stuff, empty interface lists aren't allowed).
I have a problem with my vhdl code . In active-hdl it works perfectly , but when i tried to implement it on the FPGA board using ise design xilinx i have a problem with one component . The error i found is:
ERROR:Xst:827 - "E:/proiect_final/dispozitiv_impartitor/src/generator_square_wave.vhd" line 16: Signal numar_intermediar<0> cannot be synthesized, bad synchronous description. The description style you are using to describe a synchronous element (register, memory, etc.) is not supported in the current software release.
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
entity generator_square_wave is
port(clock,reset :in bit;
controler:std_logic_vector(2 downto 0);
numar:out std_logic_vector(7 downto 0);
data_clock:out bit);
end generator_square_wave ;
architecture descriere of generator_square_wave is
signal reset1:std_logic;
begin
process (clock,reset) -- here it shows me the error
variable numar_intermediar:bit_vector(3 downto 0 ):="0000";
variable numar_intermediar2:std_logic_vector(3 downto 0);
variable bitul:bit;
begin
reset1<=to_stdulogic(reset);
if rising_edge(reset1) then
numar_intermediar:="0001";
numar_intermediar2:=To_StdLogicVector(numar_intermediar);
numar(0)<=numar_intermediar2(0);
numar(1)<=numar_intermediar2(1);
numar(2)<=numar_intermediar2(2);
numar(3)<=numar_intermediar2(3);
numar(4)<='0';
numar(5)<='0';
numar(6)<='0';
numar(7)<='0';
else if( clock'event and clock ='1' and controler="001")then
bitul:=numar_intermediar(0);
numar_intermediar:=numar_intermediar srl 1;
numar_intermediar(3):=bitul;
numar_intermediar2:=To_StdLogicVector(numar_intermediar);
numar(0)<=numar_intermediar2(0);
numar(1)<=numar_intermediar2(1);
numar(2)<=numar_intermediar2(2);
numar(3)<=numar_intermediar2(3);
numar(4)<='0';
numar(5)<='0';
numar(6)<='0';
numar(7)<='0';
if(reset/='1' and controler/="001")then
numar<="00000000";
end if;
end if;
end if;
data_clock<=clock;
end process;
end descriere;
You have a few problems. First, you shouldn't be treating reset as a clock (i.e. using rising_edge()). If it's asynchronous, you should just write:
if reset1 = '1' then
...
The following line also has a problem (not sure if this is strictly illegal, but it's not recommended):
if( clock'event and clock ='1' and controler="001")then
This should be:
if clock'event and clock = '1' then
if controler = "001" then
(with additional end if to match.)
That should at least allow it to synthesize.
You may also want to make the statement reset1<=to_stdulogic(reset) concurrent instead of including it in the process, and there are a couple other possible changes you could make, but they're not as critical (unless I've missed something).
I'm working on a FIR filter, specifically the delay line. x_delayed is initialized to all zeros.
type slv32_array is array(natural range <>) of std_logic_vector(31 downto 0);
...
signal x_delayed : slv32_array(0 to NTAPS-1) := (others => (others => '0'));
This does not work:
x_delayed(0) <= x; -- Continuous assignment
DELAYS : process(samp_clk)
begin
if rising_edge(samp_clk) then
for i in 1 to NTAPS-1 loop
x_delayed(i) <= x_delayed(i-1);
end loop;
end if; -- rising_edge(samp_clk)
end process;
But this does:
DELAYS : process(samp_clk)
begin
if rising_edge(samp_clk) then
x_delayed(0) <= x; -- Registering input
for i in 1 to NTAPS-1 loop
x_delayed(i) <= x_delayed(i-1);
end loop;
end if; -- rising_edge(samp_clk)
end process;
The problem with this "solution" is that the first element in x_delayed is delayed by one sample, which it should not be. (The rest of the code expects x_delayed(0) to be the current sample).
I'm using Xilinx ISE 13.2, simulating with ISim, but this was also confirmed simulating with ModelSim.
What gives?
Edit:
The problem was essentially that, even though x_delayed(0) didn't appear to be driven inside the process, it was.
After implementing Brian Drummond's idea it works perfectly:
x_delayed(0) <= x;
-- Synchronous delay cycles.
DELAYS : process(samp_clk)
begin
-- Disable the clocked driver, allowing the continuous driver above to function correctly.
-- https://stackoverflow.com/questions/18247955/#comment26779546_18248941
x_delayed(0) <= (others => 'Z');
if rising_edge(samp_clk) then
for i in 1 to NTAPS-1 loop
x_delayed(i) <= x_delayed(i-1);
end loop;
end if; -- rising_edge(samp_clk)
end process;
Edit 2:
I took OllieB's suggestion for getting rid of the for loop. I had to change it, since my x_delayed is indexed from (0 to NTAPS-1), but we end up with this nice looking little process:
x_delayed(0) <= x;
DELAYS : process(samp_clk)
begin
x_delayed(0) <= (others => 'Z');
if rising_edge(samp_clk) then
x_delayed(1 to x_delayed'high) <= x_delayed(0 to x_delayed'high-1);
end if; -- rising_edge(samp_clk)
end process;
Edit 3:
Following OllieB's next suggestion, it turns out the x_delayed(0) <= (others => 'Z') was unnecessary, following his previous change. The following works just fine:
x_delayed(0) <= x;
DELAYS : process(samp_clk)
begin
if rising_edge(samp_clk) then
x_delayed(1 to x_delayed'high) <= x_delayed(0 to x_delayed'high-1);
end if;
end process;
In the first case, the x_delayed(0) actually has two drivers, out outside the
process, being x_delayed(0) <= x, and an implicit one inside the DELAY
process.
The driver inside the process is a consequence of a VHDL standard concept
called "longest static prefix", described in VHDL-2002 standard (IEEE Std
1076-2002) section "6.1 Names", and the loop construction with a loop variable
i, whereby the longest static prefix for x_delayed(i) is x_delayed.
The VHDL standard then further describes drives for processes in section
"12.6.1 Drivers", which says "... There is a single driver for a given scalar
signal S in a process statement, provided that there is at least one signal
assignment statement in that process statement and that the longest static
prefix of the target signal of that signal assignment statement denotes S ...".
So as a (probably surprising) consequence the x_delayed(0) has a driver in
the DELAY process, which drives all std_logic elements to 'U' since unassigned,
whereby the std_logic resolution function causes the resulting value to be 'U',
no matter what value is driven by the external x_delayed(0) <= x.
But in the case of your code, there seems to be more to it, since there actually are some "0" values in the simulation output for x_delayed(0), for what I can see from the figures. However, it is hard to dig further into this when I do not have the entire code.
One way to see that the loop is the reason, is to manually roll out the loop by
replacing the for ... loop with:
x_delayed(1) <= x_delayed(1-1);
x_delayed(2) <= x_delayed(2-1);
...
x_delayed(NTAPS) <= x_delayed(NTAPS-1);
This is of course not a usable solution for configurable modules with NTAPS as
a generic, but it may be interesting to see that the operation then is as
intuitively expected.
EDIT: Multiple solutions are listed in "edit" sections after the question above, based on comments. A solution with variable, which allows for complex expressions if required, is shown below. If complex expression is not required, then as per OllieB's suggestion it is possible to reduce the assign to x_delayed(1 to x_delayed_dir'high) <= x_delayed(0 to x_delayed_dir'high-1):
x_delayed(0) <= x;
DELAYS : process(samp_clk)
variable x_delayed_v : slv32_array(1 to NTAPS-1);
begin
if rising_edge(samp_clk) then
for i in 1 to NTAPS-1 loop
x_delayed_v(i) := x_delayed(i-1); -- More complex operations are also possible
end loop;
x_delayed(1 to x_delayed_dir'high) <= x_delayed_v;
end if; -- rising_edge(samp_clk)
end process;
During elaboration, drivers are created for all elements in x_delayed, regardless of the range of loop iterator. Hence, x_delayed(0) has two drivers associated with it. Std_Logic and Std_Logic_Vector are resoved types(i.e., when multiple drivers are associated with the signal with these types, the resolved function will determine the value of the signal by looking up a table in std package. Please refer to VHDL Coding Styles and Methodologies for more details.
the reason you have a problem is that the logic thinks you have two things assigning into the same signal simultaneously - both the continues assignment and the register assignment loop.
keep with the register implementation.
edit
if you have modelsim, you can use the 'trace x' option and see where it comes from.
might be that the other simulator also have this feature, but for modelsim i'm certain it works
In you not working example
x_delayed(0) <= x;
is aquvalent to
process(x)
begin
x_delayed(0) <= x;
end process;
So the process will assign x_delayed(0) only when x changes. Because this is a signal asignment the x_delayed(0) will not change immediatly, it will change after a delta cycle. Therefore, when process DELAYS is called assignment for x_delayed(0) is not happened yet!
Use a variable for x_delayed in your process, if you could.
x_delayed(0) := x;