intersection of two circular sectors - algorithm

I am trying to solve simple task, but I am not finding any elegant solution.
I basically solving intersection of two circular sectors.
Each sector is given by 2 angles (from atan2 func) within (-pi, pi] range.
Each selector occupy maximum angle of 179.999. So it can be tell for every two angles where the circular sector is.
The return value should describe mutual intersection based on following:
value <1 if one angle is contained by second one (value represents how much space occupy percentually)
value >1 if first angle (the dotted one) is outside the other one, value represents how much of dotted angle is out of the other one
basic cases and some examples are on image bellow
the problem is that there are so many cases which should be handled and I am looking for some elegant way to solve it.
I can compare two angles only when they are on the right side of unit circle (cos>0) because on the left side, angle numerically bigger is graphically lower. I tried use some projection on the right half:
if(x not in <-pi/2, pi/2>)
{
c = getSign(x)*pi/2;
x = c - (x - c);
}
but there is a problem with sectors which occupy part of both halves of unit circle...
There are so many cases... Does somebody know how to solve this elegantly?
(I use c++, but any hint or pseudocode is fine)

You can do the following:
normalize each sector to the form (s_start, s_end) where s_start is in (-pi,pi] and s_end in [s_start,s_start+pi).
sort (swap) the sectors such that s0_start < s1_start
now we have only 3 cases (a, b1, b2):
a) s1_start <= s0_end: intersection, s1_start inside s0
b) s1_start > s0_end:
b1) s0_start + 2*pi <= s1_end: intersection, (s0_start + 2*pi) inside s1
b2) s0_start + 2*pi > s1_end: no intersection
Thus we get the following code:
const double PI = 2.*acos(0.);
struct TSector { double a0, a1; };
// normalized range for angle
bool isNormalized(double a)
{ return -PI < a && a <= PI; }
// special normal form for sector
bool isNormalized(TSector const& s)
{ return isNormalized(s.a0) && s.a0 <= s.a1 && s.a1 < s.a0+PI; }
// normalize a sector to the special form:
// * -PI < a0 <= PI
// * a0 < a1 < a0+PI
void normalize(TSector& s)
{
assert(isNormalized(s.a0) && isNormalized(s.a1));
// choose a representation of s.a1 s.t. s.a0 < s.a1 < s.a0+2*PI
double a1_bigger = (s.a0 <= s.a1) ? s.a1 : s.a1+2*PI;
if (a1_bigger >= s.a0+PI)
std::swap(s.a0, s.a1);
if (s.a1 < s.a0)
s.a1 += 2*PI;
assert(isNormalized(s));
}
bool intersectionNormalized(TSector const& s0, TSector const& s1,
TSector& intersection)
{
assert(isNormalized(s0) && isNormalized(s1) && s0.a0 <= s1.a0);
bool isIntersecting = false;
if (s1.a0 <= s0.a1) // s1.a0 inside s0 ?
{
isIntersecting = true;
intersection.a0 = s1.a0;
intersection.a1 = std::min(s0.a1, s1.a1);
}
else if (s0.a0+2*PI <= s1.a1) // (s0.a0+2*PI) inside s1 ?
{
isIntersecting = true;
intersection.a0 = s0.a0;
intersection.a1 = std::min(s0.a1, s1.a1-2*PI);
}
assert(!isIntersecting || isNormalized(intersection));
return isIntersecting;
}
main()
{
TSector s0, s1;
s0.a0 = ...
normalize(s0);
normalize(s1);
if (s1.a0 < s0.a0)
std::swap(s0, s1);
TSection intersection;
bool isIntersection = intersectionNormalized(s0, s1, intersection);
}

Related

How can I check wether a point is inside the circumcircle of 3 points?

Is there any easy solution? Or has anybody an example of an implementation?
Thanks, Jonas
Lets call
a, b, c our three points,
C the circumcircle of (a, b, c)
and d an other point.
A fast way to determine if d is in C is to compute this determinant:
| ax-dx, ay-dy, (ax-dx)² + (ay-dy)² |
det = | bx-dx, by-dy, (bx-dx)² + (by-dy)² |
| cx-dx, cy-dy, (cx-dx)² + (cy-dy)² |
if a, b, c are in counter clockwise order then:
if det equal 0 then d is on C
if det > 0 then d is inside C
if det < 0 then d is outside C
here is a javascript function that does just that:
function inCircle (ax, ay, bx, by, cx, cy, dx, dy) {
let ax_ = ax-dx;
let ay_ = ay-dy;
let bx_ = bx-dx;
let by_ = by-dy;
let cx_ = cx-dx;
let cy_ = cy-dy;
return (
(ax_*ax_ + ay_*ay_) * (bx_*cy_-cx_*by_) -
(bx_*bx_ + by_*by_) * (ax_*cy_-cx_*ay_) +
(cx_*cx_ + cy_*cy_) * (ax_*by_-bx_*ay_)
) > 0;
}
You might also need to check if your points are in counter clockwise order:
function ccw (ax, ay, bx, by, cx, cy) {
return (bx - ax)*(cy - ay)-(cx - ax)*(by - ay) > 0;
}
I didn't place the ccw check inside the inCircle function because you shouldn't check it every time.
This process doesn't take any divisions or square root operation.
You can see the code in action there: https://titouant.github.io/testTriangle/
And the source there: https://github.com/TitouanT/testTriangle
(In case you are interested in a non-obvious/"crazy" kind of solution.)
One equivalent property of Delaunay triangulation is as follows: if you build a circumcircle of any triangle in the triangulation, it is guaranteed not to contain any other vertices of the triangulation.
Another equivalent property of Delaunay triangulation is: it maximizes the minimal triangle angle (i.e. maximizes it among all triangulations on the same set of points).
This suggests an algorithm for your test:
Consider triangle ABC built on the original 3 points.
If the test point P lies inside the triangle it is definitely inside the circle
If the test point P belongs to one of the "corner" regions (see the shaded regions in the picture below), it is definitely outside the circle
Otherwise (let's say P lies in region 1) consider two triangulations of quadrilateral ABCP: the original one contains the original triangle (red diagonal), and the alternate one with "flipped" diagonal (blue diagonal)
Determine which one if this triangulations is a Delaunay triangulation by testing the "flip" condition, e.g. by comparing α = min(∠1,∠4,∠5,∠8) vs. β = min(∠2,∠3,∠6,∠7).
If the original triangulation is a Delaunay triangulation (α > β), P lies outside the circle. If the alternate triangulation is a Delaunay triangulation (α < β), P lies inside the circle.
Done.
(Revisiting this answer after a while.)
This solution might not be as "crazy" as it might appear at the first sight. Note that in order to compare angles at steps 5 and 6 there's no need to calculate the actual angle values. It is sufficient to know their cosines (i.e. there's no need to involve trigonometric functions).
A C++ version of the code
#include <cmath>
#include <array>
#include <algorithm>
struct pnt_t
{
int x, y;
pnt_t ccw90() const
{ return { -y, x }; }
double length() const
{ return std::hypot(x, y); }
pnt_t &operator -=(const pnt_t &rhs)
{
x -= rhs.x;
y -= rhs.y;
return *this;
}
friend pnt_t operator -(const pnt_t &lhs, const pnt_t &rhs)
{ return pnt_t(lhs) -= rhs; }
friend int operator *(const pnt_t &lhs, const pnt_t &rhs)
{ return lhs.x * rhs.x + lhs.y * rhs.y; }
};
int side(const pnt_t &a, const pnt_t &b, const pnt_t &p)
{
int cp = (b - a).ccw90() * (p - a);
return (cp > 0) - (cp < 0);
}
void make_ccw(std::array<pnt_t, 3> &t)
{
if (side(t[0], t[1], t[2]) < 0)
std::swap(t[0], t[1]);
}
double ncos(pnt_t a, const pnt_t &o, pnt_t b)
{
a -= o;
b -= o;
return -(a * b) / (a.length() * b.length());
}
bool inside_circle(std::array<pnt_t, 3> t, const pnt_t &p)
{
make_ccw(t);
std::array<int, 3> s =
{ side(t[0], t[1], p), side(t[1], t[2], p), side(t[2], t[0], p) };
unsigned outside = std::count(std::begin(s), std::end(s), -1);
if (outside != 1)
return outside == 0;
while (s[0] >= 0)
{
std::rotate(std::begin(t), std::begin(t) + 1, std::end(t));
std::rotate(std::begin(s), std::begin(s) + 1, std::end(s));
}
double
min_org = std::min({
ncos(t[0], t[1], t[2]), ncos(t[2], t[0], t[1]),
ncos(t[1], t[0], p), ncos(p, t[1], t[0]) }),
min_alt = std::min({
ncos(t[1], t[2], p), ncos(p, t[2], t[0]),
ncos(t[0], p, t[2]), ncos(t[2], p, t[1]) });
return min_org <= min_alt;
}
and a couple of tests with arbitrarily chosen triangles and a large number of random points
Of course, the whole thing can be easily reformulated without even mentioning Delaunay triangulations. Starting from step 4 this solution is based in the property of the opposite angles of cyclic quadrilateral, which must sum to 180°.
In this Math SE post of mine I included an equation which checks if four points are cocircular by computing a 4×4 determinant. By turning that equation into an inequality you can check for insideness.
If you want to know which direction the inequality has to go, conisder the case of a point very far away. In this case, the x²+y² term will dominate all other terms. So you can simply assume that for the point in question, this term is one while the three others are zero. Then pick the sign of your inequality so this value does not satisfy it, since this point is definitely outside but you want to characterize inside.
If numeric precision is an issue, this page by Prof. Shewchuk describes how to obtain consistent predicates for points expressed using regular double precision floating point numbers.
Given 3 points (x1,y1),(x2,y2),(x3,y3) and the point you want to check is inside the circle defined by the above 3 points (x,y) you can do something like
/**
*
* #param x coordinate of point want to check if inside
* #param y coordinate of point want to check if inside
* #param cx center x
* #param cy center y
* #param r radius of circle
* #return whether (x,y) is inside circle
*/
static boolean g(double x,double y,double cx,double cy,double r){
return Math.sqrt((x-cx)*(x-cx)+(y-cy)*(y-cy))<r;
}
// check if (x,y) is inside circle defined by (x1,y1),(x2,y2),(x3,y3)
static boolean isInside(double x,double y,double x1,double y1,double x2,double y2,double x3,double y3){
double m1 = (x1-x2)/(y2-y1);
double m2 = (x1-x3)/(y3-y1);
double b1 = ((y1+y2)/2) - m1*(x1+x2)/2;
double b2 = ((y1+y3)/2) - m2*(x1+x3)/2;
double xx = (b2-b1)/(m1-m2);
double yy = m1*xx + b1;
return g(x,y,xx,yy,Math.sqrt((xx-x1)*(xx-x1)+(yy-y1)*(yy-y1)));
}
public static void main(String[] args) {
// if (0,1) is inside the circle defined by (0,0),(0,2),(1,1)
System.out.println(isInside(0,1,0,0,0,2,1,1));
}
The method for getting an expression for the center of circle from 3 points goes from finding the intersection of the 2 perpendicular bisectors of 2 line segments, above I chose (x1,y1)-(x2,y2) and (x1,y1)-(x3,y3). Since you know a point on each perpendicular bisector, namely (x1+x2)/2 and (x1+x3)/2, and since you also know the slope of each perpendicular bisector, namely (x1-x2)/(y2-y1) and (x1-x3)/(y3-y1) from the above 2 line segments respectively, you can solve for the (x,y) where they intersect.

Rotated rectangle rasterisation algorithm

In a nutshell: I want to do a non-approximate version of Bresenham's line algorithm, but for a rectangle rather than a line, and whose points aren't necessarily aligned to the grid.
Given a square grid, and a rectangle comprising four non-grid-aligned points, I want to find a list of all grid squares that are covered, partially or completely, by the rectangle.
Bresenham's line algorithm is approximate – not all partially covered squares are identified. I'm looking for a "perfect" algorithm, that has no false positives or negatives.
It's an old question, but I have solved this issue (C++)
https://github.com/feelinfine/tracer
Maybe it will be usefull for someone
(sorry for my poor english)
Single line tracing
template <typename PointType>
std::set<V2i> trace_line(const PointType& _start_point, const PointType& _end_point, size_t _cell_size)
{
auto point_to_grid_fnc = [_cell_size](const auto& _point)
{
return V2i(std::floor((double)_point.x / _cell_size), std::floor((double)_point.y / _cell_size));
};
V2i start_cell = point_to_grid_fnc(_start_point);
V2i last_cell = point_to_grid_fnc(_end_point);
PointType direction = _end_point - _start_point;
//Moving direction (cells)
int step_x = (direction.x >= 0) ? 1 : -1;
int step_y = (direction.y >= 0) ? 1 : -1;
//Normalize vector
double hypot = std::hypot(direction.x, direction.y);
V2d norm_direction(direction.x / hypot, direction.y / hypot);
//Distance to the nearest square side
double near_x = (step_x >= 0) ? (start_cell.x + 1)*_cell_size - _start_point.x : _start_point.x - (start_cell.x*_cell_size);
double near_y = (step_y >= 0) ? (start_cell.y + 1)*_cell_size - _start_point.y : _start_point.y - (start_cell.y*_cell_size);
//How far along the ray we must move to cross the first vertical (ray_step_to_vside) / or horizontal (ray_step_to_hside) grid line
double ray_step_to_vside = (norm_direction.x != 0) ? near_x / norm_direction.x : std::numeric_limits<double>::max();
double ray_step_to_hside = (norm_direction.y != 0) ? near_y / norm_direction.y : std::numeric_limits<double>::max();
//How far along the ray we must move for horizontal (dx)/ or vertical (dy) component of such movement to equal the cell size
double dx = (norm_direction.x != 0) ? _cell_size / norm_direction.x : std::numeric_limits<double>::max();
double dy = (norm_direction.y != 0) ? _cell_size / norm_direction.y : std::numeric_limits<double>::max();
//Tracing loop
std::set<V2i> cells;
cells.insert(start_cell);
V2i current_cell = start_cell;
size_t grid_bound_x = std::abs(last_cell.x - start_cell.x);
size_t grid_bound_y = std::abs(last_cell.y - start_cell.y);
size_t counter = 0;
while (counter != (grid_bound_x + grid_bound_y))
{
if (std::abs(ray_step_to_vside) < std::abs(ray_step_to_hside))
{
ray_step_to_vside = ray_step_to_vside + dx; //to the next vertical grid line
current_cell.x = current_cell.x + step_x;
}
else
{
ray_step_to_hside = ray_step_to_hside + dy;//to the next horizontal grid line
current_cell.y = current_cell.y + step_y;
}
++counter;
cells.insert(current_cell);
};
return cells;
}
Get all cells
template <typename Container>
std::set<V2i> pick_cells(Container&& _points, size_t _cell_size)
{
if (_points.size() < 2 || _cell_size <= 0)
return std::set<V2i>();
Container points = std::forward<Container>(_points);
auto add_to_set = [](auto& _set, const auto& _to_append)
{
_set.insert(std::cbegin(_to_append), std::cend(_to_append));
};
//Outline
std::set<V2i> cells;
/*
for (auto it = std::begin(_points); it != std::prev(std::end(_points)); ++it)
add_to_set(cells, trace_line(*it, *std::next(it), _cell_size));
add_to_set(cells, trace_line(_points.back(), _points.front(), _cell_size));
*/
//Maybe this code works faster
std::vector<std::future<std::set<V2i> > > results;
using PointType = decltype(points.cbegin())::value_type;
for (auto it = points.cbegin(); it != std::prev(points.cend()); ++it)
results.push_back(std::async(trace_line<PointType>, *it, *std::next(it), _cell_size));
results.push_back(std::async(trace_line<PointType>, points.back(), points.front(), _cell_size));
for (auto& it : results)
add_to_set(cells, it.get());
//Inner
std::set<V2i> to_add;
int last_x = cells.begin()->x;
int counter = cells.begin()->y;
for (auto& it : cells)
{
if (last_x != it.x)
{
counter = it.y;
last_x = it.x;
}
if (it.y > counter)
{
for (int i = counter; i < it.y; ++i)
to_add.insert(V2i(it.x, i));
}
++counter;
}
add_to_set(cells, to_add);
return cells;
}
Types
template <typename _T>
struct V2
{
_T x, y;
V2(_T _x = 0, _T _y = 0) : x(_x), y(_y)
{
};
V2 operator-(const V2& _rhs) const
{
return V2(x - _rhs.x, y - _rhs.y);
}
bool operator==(const V2& _rhs) const
{
return (x == _rhs.x) && (y == _rhs.y);
}
//for std::set sorting
bool operator<(const V2& _rhs) const
{
return (x == _rhs.x) ? (y < _rhs.y) : (x < _rhs.x);
}
};
using V2d = V2<double>;
using V2i = V2<int>;
Usage
std::vector<V2d> points = { {200, 200}, {400, 400}, {500,100} };
size_t cell_size = 30;
auto cells = pick_cells(points, cell_size);
for (auto& it : cells)
... //do something with cells
You can use a scanline approach. The rectangle is a closed convex polygon, so it is sufficient to store the leftmost and rightmost pixel for each horizontal scanline. (And the top and bottom scanlines, too.)
The Bresenham algorithm tries to draw a thin, visually pleasing line without adjacent cells in the smaller dimension. We need an algorithm that visits each cell that the edges of the polygon pass through. The basic idea is to find the starting cell (x, y) for each edge and then to adjust x whenever the edge intersects a vertical border and to adjust y when it intersects a horizontal border.
We can represent the intersections by means of a normalised coordinate s that travels along the edge and that is 0.0 at the first node n1 and 1.0 at the second node n2.
var x = Math.floor(n1.x / cellsize);
var y = Math.floor(n1.y / cellsize);
var s = 0;
The vertical insersections can the be represented as equidistant steps of with dsx from an initial sx.
var dx = n2.x - n1.x;
var sx = 10; // default value > 1.0
// first intersection
if (dx < 0) sx = (cellsize * x - n1.x) / dx;
if (dx > 0) sx = (cellsize * (x + 1) - n1.x) / dx;
var dsx = (dx != 0) ? grid / Math.abs(dx) : 0;
Likewise for the horizontal intersecions. A default value greater than 1.0 catches the cases of horizontal and vertical lines. Add the first point to the scanline data:
add(scan, x, y);
Then we can visit the next adjacent cell by looking at the next intersection with the smallest s.
while (sx <= 1 || sy <= 1) {
if (sx < sy) {
sx += dsx;
if (dx > 0) x++; else x--;
} else {
sy += dsy;
if (dy > 0) y++; else y--;
}
add(scan, x, y);
}
Do this for all four edges and with the same scanline data. Then fill all cells:
for (var y in scan) {
var x = scan[y].min;
var xend = scan[y].max + 1;
while (x < xend) {
// do something with cell (x, y)
x++;
}
}
(I have only skimmed the links MBo provided. It seems that the approach presented in that paper is essentially the same as mine. If so, please excuse the redundant answer, but after working this out I thought I could as well post it.)
This is sub-optimal but might give a general idea.
First off treat the special case of the rectangle being aligned horizontally or vertically separately. This is pretty easy to test for and make the rest simpler.
You can represent the rectangle as a set of 4 inequalities a1 x + b1 y >= c1 a1 x + b1 y <= c2 a3 x + b3 y >= c3 a3 x + b3 y <= c4 as the edges of the rectangles are parallel some of the constants are the same. You also have (up to a multiple) a3=b1 and b3=-a1. You can multiply each inequality by a common factor so you are working with integers.
Now consider each scan line with a fixed value of y.
For each value of y find the four points where the lines intersect the scan line. That is find the solution with each line above. A little bit of logic will find the minimum and maximum values of x. Plot all pixels between these values.
You condition that you want all partially covered squares makes things a little trickier. You can solve this by considering two adjacent scan lines. You want to plot the points between the minimum x for both lines and the maximum for the both lines. If say
a1 x+b1 y>=c is the inequality for the bottom left line in the figure. You want the find the largest x such that a1 x + b1 y < c this will be floor((c-b1 y)/a1) call this minx(y) also find minx(y+1) and the left hand point will be the minimum of these two values.
There is many easy optimisation you can find the y-values of the top and bottom corners reducing the range of y-values to test. You should only need to test two side. For each end point of each line there is one multiplication, one subtraction and one division. The division is the slowest part I think about 4 time slower than other ops. You might be able to remove this with a Bresenham or DDA algorithms others have mentioned.
There is method of Amanatides and Woo to enumerate all intersected cells
A Fast Voxel Traversal Algorithm for Ray Tracing.
Here is practical implementation.
As side effect for you - you'll get points of intersection with grid lines - it may be useful if you need areas of partially covered cells (for antialiasing etc).

Improve the solution to monkey grid puzzle

I was trying to solve the following problem:
There is a monkey which can walk around on a planar grid. The monkey
can move one space at a time left, right, up or down. That is, from
(x, y) the monkey can go to (x+1, y), (x-1, y), (x, y+1), and (x,
y-1). Points where the sum of the digits of the absolute value of the
x coordinate plus the sum of the digits of the absolute value of the y
coordinate are lesser than or equal to 19 are accessible to the
monkey. For example, the point (59, 79) is inaccessible because 5 + 9
+ 7 + 9 = 30, which is greater than 19. Another example: the point (-5, -7) is accessible because abs(-5) + abs(-7) = 5 + 7 = 12, which
is less than 19. How many points can the monkey access if it starts at
(0, 0), including (0, 0) itself?
I came up with the following brute force solution (pseudo code):
/*
legitPoints = {}; // all the allowed points that monkey can goto
list.push( Point(0,0) ); // start exploring from origin
while(!list.empty()){
Point p = list.pop_front(); // remove point
// if p has been seen before; ignore p => continue;
// else mark it and proceed further
if(legit(p){
// since we are only exploring points in one quadrant,
// we don't need to check for -x direction and -y direction
// hence explore the following: this is like Breadth First Search
list.push(Point(p.x+1, p.y)); // explore x+1, y
list.push(Point(p.x, p.y+1)); // explore x, y+1
legitPoints.insert(p); // during insertion, ignore duplicates
// (although no duplicates should come through after above check)
// count properly using multipliers
// Origin => count once x = 0 && y == 0 => mul : 1
// X axis => count twice x = 0 && y != 0 => mul : 2
// Y axis => count twice x != 0 && y = 0 => mul : 2
// All others => mul : 4
}
return legitPoints.count();
}
*/
This is a very brute force solution. One of the optimizations I used was to one scan one quadrant instead of looking at four. Another one was to ignore the points that we've already seen before.
However, looking at the final points, I was trying to find a pattern, perhaps a mathematical solution or a different approach that would be better than what I came up.
Any thoughts ?
PS: If you want, I can post the data somewhere. It is interesting to look at it with any one of the axis sorted.
First quadrant visual:
Here's what the whole grid looks like as an image:
The black squares are inaccessible, white accessible, gray accessible and reachable by movement from the center. There's a 600x600 bounding box of black because the digits of 299 add to 20, so we only have to consider that.
This exercise is basically a "flood fill", with a shape which is just about the worst case possible for a flood fill. You can do the symmetry speedup if you like, though that's not really where the meat of the issue is--my solution runs in 160 ms without it (under 50ms with it).
The big speed wins are (1) do a line-filling flood so you don't have to put every point on the stack, and (2) manage your own stack instead of doing recursion. I built my stack as two dynamically-allocated vectors of ints (for x and y), and they grow to about 16k, so building whole stack frames that deep would definitely be a huge loss.
Without looking for the ideal solution I had something similar. For each point the monkey is, I added the next 4 possibilities to a list and did the same for the next four recursively only if they had not been visited. This can be also done with multiprocessing to speed up the process.
Here is my solution, more like a BFS:
int DigitSum(int num)
{
int sum = 0;
num = (num >= 0) ? num : -num;
while(num) {
sum += num % 10;
num /= 10;
}
return sum;
}
struct Point {
int x,y;
Point(): x(0), y(0) {}
Point(int x1, int y1): x(x1), y(y1) {}
friend bool operator<(const Point& p1, const Point& p2)
{
if (p1.x < p2.x) {
return true;
} else if (p1.x == p2.x) {
return (p1.y < p2.y);
} else {
return false;
}
}
};
void neighbor(vector<Point>& n, const Point& p)
{
if (n.size() < 4) n.resize(4);
n[0] = Point(p.x-1, p.y);
n[1] = Point(p.x+1, p.y);
n[2] = Point(p.x, p.y-1);
n[3] = Point(p.x, p.y+1);
}
int numMoves(const Point& start)
{
map<Point, bool> m;
queue<Point> q;
int count = 0;
vector<Point> neigh;
q.push(start);
m[start] = true;
while (! q.empty()) {
Point c = q.front();
neighbor(neigh, c);
for (auto p: neigh) {
if ((!m[p]) && (DigitSum(p.x) + DigitSum(p.y) <= 19)) {
count++;
m[p] = true;
q.push(p);
}
}
q.pop();
}
return count;
}
I'm not sure how different this may be from brainydexter's idea... roaming the one quadrant, I instituted a single array hash (index = 299 * y + x) and built the result with another array, each index storing only the points that expand from its previous index, for example:
first iteration, result = [[(0,0)]]
second iteration, result = [[(0,0)],[(0,1),(1,0)]]
...
On an old IBM Thinkpad in JavaScript, the speed seemed to vary from 35-120 milliseconds (fiddle here).

line segment using four point intersection

I have four point p0 , p1 ,p1' , p2' , each defined by x,y,z component and all lay on one line as in the figure
I want to get the line segment (the dashed part) result from the intersection between the four points
any suggestion , or sample code using C#
This is more or less the same answer as Howard gave but pressed into C# ... I hope this helps with your code-base.
This code snippet should do the trick (finding the mid-points from your 4, but only if all are colinear) - also note I don't check for real intersection, you can do this easily youself by inspecting the answer and your points.
I did not take the time and implement the Vector3D struct in a sensible manner (operators, ...) - you can do this easily too.
Also note that this will work for not only 4 points but keep your diagram in mind.
private struct Vector3D
{
public double X { get; set; }
public double Y { get; set; }
public double Z { get; set; }
}
static class Vectors
{
static public double ScalProd(Vector3D v1, Vector3D v2)
{
return v1.X*v2.X + v1.Y*v2.Y + v1.Z*v2.Z;
}
static public Vector3D Minus(Vector3D v1, Vector3D v2)
{
return new Vector3D {X = v1.X - v2.X, Y = v1.Y - v2.Y, Z = v1.Z - v2.Z};
}
static public Vector3D Normalize(Vector3D v)
{
var len = Math.Sqrt(ScalProd(v, v));
return new Vector3D {X = v.X/len, Y = v.Y/len, Z = v.Z/len};
}
}
private Vector3D[] FindIntersectionOnCoLinearVectors(params Vector3D[] input)
{
if (input.Length < 2) throw new Exception("you need a minimum of two vectors");
var v0 = input[0];
var direction = Vectors.Normalize(Vectors.Minus(input[1], v0));
Func<Vector3D, double> projectOntoLineStartingAtv0 =
v => Vectors.ScalProd(direction, Vectors.Minus(v, v0));
var mapped = input.OrderBy(projectOntoLineStartingAtv0).ToArray();
return new Vector3D[] {mapped[1], mapped[2] };
}
You may proceed as follows:
Step 1: Transformation into a 1D-problem
define t(P) = (P-P0).(P1-P0) / (P1-P0).(P1-P0) where the dot denotes the scalar product
t is a linear measure on the line through P1 and P0
thus we have t(P0)=0, t(P1)=1
Step 2: Solve the problem in 1D
We assume t(P0') <= t(P1') (otherwise swap P0' and P1' in the following lines)
Now the following cases are possible
t(P1') < 0 => no intersection
1 < t(P0') => no intersection
t(P0') <= 0 <= t(P1') <= 1 => intersection is segment (P0,P1')
t(P0') <= 0 < 1 < t(P1') => intersection is segment (P0,P1)
0 <= t(P0') <= t(P1') <= 1 => intersection is segment (P0',P1')
0 <= t(P0') <= 1 < t(P1') => intersection is segment (P0',P1)
alternatively if you are only interested in the t-values, the intersection is given by the line segment between t0 = max(0, t(P0')) and t1 = min(1, t(P1')) iff t0 <= t1

Geo Fencing - point inside/outside polygon

I would like to determine a polygon and implement an algorithm which would check if a point is inside or outside the polygon.
Does anyone know if there is any example available of any similar algorithm?
If i remember correctly, the algorithm is to draw a horizontal line through your test point. Count how many lines of of the polygon you intersect to reach your point.
If the answer is odd, you're inside. If the answer is even, you're outside.
Edit: Yeah, what he said (Wikipedia):
C# code
bool IsPointInPolygon(List<Loc> poly, Loc point)
{
int i, j;
bool c = false;
for (i = 0, j = poly.Count - 1; i < poly.Count; j = i++)
{
if ((((poly[i].Lt <= point.Lt) && (point.Lt < poly[j].Lt))
|| ((poly[j].Lt <= point.Lt) && (point.Lt < poly[i].Lt)))
&& (point.Lg < (poly[j].Lg - poly[i].Lg) * (point.Lt - poly[i].Lt)
/ (poly[j].Lt - poly[i].Lt) + poly[i].Lg))
{
c = !c;
}
}
return c;
}
Location class
public class Loc
{
private double lt;
private double lg;
public double Lg
{
get { return lg; }
set { lg = value; }
}
public double Lt
{
get { return lt; }
set { lt = value; }
}
public Loc(double lt, double lg)
{
this.lt = lt;
this.lg = lg;
}
}
After searching the web and trying various implementations and porting them from C++ to C# I finally got my code straight:
public static bool PointInPolygon(LatLong p, List<LatLong> poly)
{
int n = poly.Count();
poly.Add(new LatLong { Lat = poly[0].Lat, Lon = poly[0].Lon });
LatLong[] v = poly.ToArray();
int wn = 0; // the winding number counter
// loop through all edges of the polygon
for (int i = 0; i < n; i++)
{ // edge from V[i] to V[i+1]
if (v[i].Lat <= p.Lat)
{ // start y <= P.y
if (v[i + 1].Lat > p.Lat) // an upward crossing
if (isLeft(v[i], v[i + 1], p) > 0) // P left of edge
++wn; // have a valid up intersect
}
else
{ // start y > P.y (no test needed)
if (v[i + 1].Lat <= p.Lat) // a downward crossing
if (isLeft(v[i], v[i + 1], p) < 0) // P right of edge
--wn; // have a valid down intersect
}
}
if (wn != 0)
return true;
else
return false;
}
private static int isLeft(LatLong P0, LatLong P1, LatLong P2)
{
double calc = ((P1.Lon - P0.Lon) * (P2.Lat - P0.Lat)
- (P2.Lon - P0.Lon) * (P1.Lat - P0.Lat));
if (calc > 0)
return 1;
else if (calc < 0)
return -1;
else
return 0;
}
The isLeft function was giving me rounding problems and I spent hours without realizing that I was doing the conversion wrong, so forgive me for the lame if block at the end of that function.
BTW, this is the original code and article:
http://softsurfer.com/Archive/algorithm_0103/algorithm_0103.htm
By far the best explanation and implementation can be found at
Point In Polygon Winding Number Inclusion
There is even a C++ implementation at the end of the well explained article. This site also contains some great algorithms/solutions for other geometry based problems.
I have modified and used the C++ implementation and also created a C# implementation. You definitely want to use the Winding Number algorithm as it is more accurate than the edge crossing algorithm and it is very fast.
I think there is a simpler and more efficient solution.
Here is the code in C++. I should be simple to convert it to C#.
int pnpoly(int npol, float *xp, float *yp, float x, float y)
{
int i, j, c = 0;
for (i = 0, j = npol-1; i < npol; j = i++) {
if ((((yp[i] <= y) && (y < yp[j])) ||
((yp[j] <= y) && (y < yp[i]))) &&
(x < (xp[j] - xp[i]) * (y - yp[i]) / (yp[j] - yp[i]) + xp[i]))
c = !c;
}
return c;
}
The complete solution in asp.Net C#, you can see the complete detail here, you can see how to find point(lat,lon) whether its inside or Outside the Polygon using the latitude and longitudes ?
Article Reference Link
private static bool checkPointExistsInGeofencePolygon(string latlnglist, string lat, string lng)
{
List<Loc> objList = new List<Loc>();
// sample string should be like this strlatlng = "39.11495,-76.873259|39.114588,-76.872808|39.112921,-76.870373|";
string[] arr = latlnglist.Split('|');
for (int i = 0; i <= arr.Length - 1; i++)
{
string latlng = arr[i];
string[] arrlatlng = latlng.Split(',');
Loc er = new Loc(Convert.ToDouble(arrlatlng[0]), Convert.ToDouble(arrlatlng[1]));
objList.Add(er);
}
Loc pt = new Loc(Convert.ToDouble(lat), Convert.ToDouble(lng));
if (IsPointInPolygon(objList, pt) == true)
{
return true;
}
else
{
return false;
}
}
private static bool IsPointInPolygon(List<Loc> poly, Loc point)
{
int i, j;
bool c = false;
for (i = 0, j = poly.Count - 1; i < poly.Count; j = i++)
{
if ((((poly[i].Lt <= point.Lt) && (point.Lt < poly[j].Lt)) |
((poly[j].Lt <= point.Lt) && (point.Lt < poly[i].Lt))) &&
(point.Lg < (poly[j].Lg - poly[i].Lg) * (point.Lt - poly[i].Lt) / (poly[j].Lt - poly[i].Lt) + poly[i].Lg))
c = !c;
}
return c;
}
Just a heads up (using answer as I can't comment), if you want to use point-in-polygon for geo fencing, then you need to change your algorithm to work with spherical coordinates. -180 longitude is the same as 180 longitude and point-in-polygon will break in such situation.
Relating to kobers answer I worked it out with more readable clean code and changed the longitudes that crosses the date border:
public bool IsPointInPolygon(List<PointPosition> polygon, double latitude, double longitude)
{
bool isInIntersection = false;
int actualPointIndex = 0;
int pointIndexBeforeActual = polygon.Count - 1;
var offset = calculateLonOffsetFromDateLine(polygon);
longitude = longitude < 0.0 ? longitude + offset : longitude;
foreach (var actualPointPosition in polygon)
{
var p1Lat = actualPointPosition.Latitude;
var p1Lon = actualPointPosition.Longitude;
var p0Lat = polygon[pointIndexBeforeActual].Latitude;
var p0Lon = polygon[pointIndexBeforeActual].Longitude;
if (p1Lon < 0.0) p1Lon += offset;
if (p0Lon < 0.0) p0Lon += offset;
// Jordan curve theorem - odd even rule algorithm
if (isPointLatitudeBetweenPolyLine(p0Lat, p1Lat, latitude)
&& isPointRightFromPolyLine(p0Lat, p0Lon, p1Lat, p1Lon, latitude, longitude))
{
isInIntersection = !isInIntersection;
}
pointIndexBeforeActual = actualPointIndex;
actualPointIndex++;
}
return isInIntersection;
}
private double calculateLonOffsetFromDateLine(List<PointPosition> polygon)
{
double offset = 0.0;
var maxLonPoly = polygon.Max(x => x.Longitude);
var minLonPoly = polygon.Min(x => x.Longitude);
if (Math.Abs(minLonPoly - maxLonPoly) > 180)
{
offset = 360.0;
}
return offset;
}
private bool isPointLatitudeBetweenPolyLine(double polyLinePoint1Lat, double polyLinePoint2Lat, double poiLat)
{
return polyLinePoint2Lat <= poiLat && poiLat < polyLinePoint1Lat || polyLinePoint1Lat <= poiLat && poiLat < polyLinePoint2Lat;
}
private bool isPointRightFromPolyLine(double polyLinePoint1Lat, double polyLinePoint1Lon, double polyLinePoint2Lat, double polyLinePoint2Lon, double poiLat, double poiLon)
{
// lon <(lon1-lon2)*(latp-lat2)/(lat1-lat2)+lon2
return poiLon < (polyLinePoint1Lon - polyLinePoint2Lon) * (poiLat - polyLinePoint2Lat) / (polyLinePoint1Lat - polyLinePoint2Lat) + polyLinePoint2Lon;
}
I add one detail to help people who live in the... south of earth!!
If you're in Brazil (that's my case), our GPS coord are all negatives.
And all these algo give wrong results.
The easiest way if to use the absolute values of the Lat and Long of all point. And in that case Jan Kobersky's algo is perfect.
Check if a point is inside a polygon or not -
Consider the polygon which has vertices a1,a2,a3,a4,a5. The following set of steps should help in ascertaining whether point P lies inside the polygon or outside.
Compute the vector area of the triangle formed by edge a1->a2 and the vectors connecting a2 to P and P to a1. Similarly, compute the vector area of the each of the possible triangles having one side as the side of the polygon and the other two connecting P to that side.
For a point to be inside a polygon, each of the triangles need to have positive area. Even if one of the triangles have a negative area then the point P stands out of the polygon.
In order to compute the area of a triangle given vectors representing its 3 edges, refer to http://www.jtaylor1142001.net/calcjat/Solutions/VCrossProduct/VCPATriangle.htm
The problem is easier if your polygon is convex. If so, you can do a simple test for each line to see if the point is on the inside or outside of that line (extending to infinity in both directions). Otherwise, for concave polygons, draw an imaginary ray from your point out to infinity (in any direction). Count how many times it crosses a boundary line. Odd means the point is inside, even means the point is outside.
This last algorithm is trickier than it looks. You will have to be very careful about what happens when your imaginary ray exactly hits one of the polygon's vertices.
If your imaginary ray goes in the -x direction, you can choose only to count lines that include at least one point whose y coordinate is strictly less than the y coordinate of your point. This is how you get most of the weird edge cases to work correctly.
If you have a simple polygon (none of the lines cross) and you don't have holes you can also triangulate the polygon, which you are probably going to do anyway in a GIS app to draw a TIN, then test for points in each triangle. If you have a small number of edges to the polygon but a large number of points this is fast.
For an interesting point in triangle see link text
Otherwise definately use the winding rule rather than edge crossing, edge crossing has real problems with points on edges, which if your data is generated form a GPS with limited precision is very likely.
the polygon is defined as a sequential list of point pairs A, B, C .... A.
no side A-B, B-C ... crosses any other side
Determine box Xmin, Xmax, Ymin, Ymax
case 1 the test point P lies outside the box
case 2 the test point P lies inside the box:
Determine the 'diameter' D of the box {[Xmin,Ymin] - [Xmax, Ymax]} ( and add a little extra to avoid possible confusion with D being on a side)
Determine the gradients M of all sides
Find a gradient Mt most different from all gradients M
The test line runs from P at gradient Mt a distance D.
Set the count of intersections to zero
For each of the sides A-B, B-C test for the intersection of P-D with a side
from its start up to but NOT INCLUDING its end. Increment the count of intersections
if required. Note that a zero distance from P to the intersection indicates that P is ON a side
An odd count indicates P is inside the polygon
I translated c# method in Php and I added many comments to understand code.Description of PolygonHelps:
Check if a point is inside or outside of a polygon. This procedure uses gps coordinates and it works when polygon has a little geographic area.
INPUT:$poly: array of Point: polygon vertices list; [{Point}, {Point}, ...];$point: point to check; Point: {"lat" => "x.xxx", "lng" => "y.yyy"}
When $c is false, the number of intersections with polygon is even, so the point is outside of polygon;When $c is true, the number of intersections with polygon is odd, so the point is inside of polygon;$n is the number of vertices in polygon;For each vertex in polygon, method calculates line through current vertex and previous vertex and check if the two lines have an intersection point.$c changes when intersection point exists.
So, method can return true if point is inside the polygon, else return false.
class PolygonHelps {
public static function isPointInPolygon(&$poly, $point){
$c = false;
$n = $j = count($poly);
for ($i = 0, $j = $n - 1; $i < $n; $j = $i++){
if ( ( ( ( $poly[$i]->lat <= $point->lat ) && ( $point->lat < $poly[$j]->lat ) )
|| ( ( $poly[$j]->lat <= $point->lat ) && ( $point->lat < $poly[$i]->lat ) ) )
&& ( $point->lng < ( $poly[$j]->lng - $poly[$i]->lng )
* ( $point->lat - $poly[$i]->lat )
/ ( $poly[$j]->lat - $poly[$i]->lat )
+ $poly[$i]->lng ) ){
$c = !$c;
}
}
return $c;
}
}
Jan's answer is great.
Here is the same code using the GeoCoordinate class instead.
using System.Device.Location;
...
public static bool IsPointInPolygon(List<GeoCoordinate> poly, GeoCoordinate point)
{
int i, j;
bool c = false;
for (i = 0, j = poly.Count - 1; i < poly.Count; j = i++)
{
if ((((poly[i].Latitude <= point.Latitude) && (point.Latitude < poly[j].Latitude))
|| ((poly[j].Latitude <= point.Latitude) && (point.Latitude < poly[i].Latitude)))
&& (point.Longitude < (poly[j].Longitude - poly[i].Longitude) * (point.Latitude - poly[i].Latitude)
/ (poly[j].Latitude - poly[i].Latitude) + poly[i].Longitude))
c = !c;
}
return c;
}
You can try this simple class https://github.com/xopbatgh/sb-polygon-pointer
It is easy to deal with it
You just insert polygon coordinates into array
Ask library is desired point with lat/lng inside the polygon
$polygonBox = [
[55.761515, 37.600375],
[55.759428, 37.651156],
[55.737112, 37.649566],
[55.737649, 37.597301],
];
$sbPolygonEngine = new sbPolygonEngine($polygonBox);
$isCrosses = $sbPolygonEngine->isCrossesWith(55.746768, 37.625605);
// $isCrosses is boolean
(answer was returned from deleted by myself because initially it was formatted wrong)

Resources