Speed up assembling matrix by interleaving vectors? - performance

I have two vectors of arbitrary and equal length
a <- c(0.8,0.8,0.8)
b <- c(0.4,0.4,0.4)
n <- length(a)
From these I need to assemble an 2n by 2n matrix of the form:
x = [1-a1 b1 1-a2 b2 1-a3 b3
a1 1-b1 a2 1-b2 a3 1-b3
1-a1 b1 1-a2 b2 1-a3 b3
a1 1-b1 a2 1-b2 a3 1-b3
1-a1 b1 1-a2 b2 1-a3 b3
a1 1-b1 a2 1-b2 a3 1-b3]
I currently do this using
x <- matrix(rep(as.vector(rbind(
c(1-a,a),
c(b, 1-b))),
n),
ncol=n*2, byrow=TRUE)
How can I speed up this operation? Profiling indicates that matrix is taking the most time:
Rprof("out.prof")
for (i in 1:100000) {
x <- matrix(rep(as.vector(rbind(
c(1-a,a),
c(b, 1-b))),
n),
ncol=n*2, byrow=TRUE)
}
Rprof(NULL)
summaryRprof("out.prof")
##$by.self
## self.time self.pct total.time total.pct
##"matrix" 1.02 63.75 1.60 100.00
##"rbind" 0.24 15.00 0.36 22.50
##"as.vector" 0.18 11.25 0.54 33.75
##"c" 0.10 6.25 0.10 6.25
##"*" 0.04 2.50 0.04 2.50
##"-" 0.02 1.25 0.02 1.25
##
##$by.total
## total.time total.pct self.time self.pct
##"matrix" 1.60 100.00 1.02 63.75
##"as.vector" 0.54 33.75 0.18 11.25
##"rbind" 0.36 22.50 0.24 15.00
##"c" 0.10 6.25 0.10 6.25
##"*" 0.04 2.50 0.04 2.50
##"-" 0.02 1.25 0.02 1.25
##
##$sample.interval
##[1] 0.02
##
##$sampling.time
##[1] 1.6

I don't think there is an alternative to matrix being the slowest part of your profile, but you can definitely save a little time by optimizing the rest. For example:
x <- matrix(rbind(c(1-a,a), c(b, 1-b)), 2*n, 2*n, byrow=TRUE)
Also, although I would not recommend it, you can save a little extra time by using the Internal matrix function:
x <- .Internal(matrix(rbind(c(1-a,a), c(b, 1-b)),
n*2, n*2, TRUE, NULL, FALSE, FALSE))
Here are some benchmarks:
benchmark(
method0 = matrix(rep(as.vector(rbind(c(1-a,a), c(b, 1-b))), n),
ncol=n*2, byrow=TRUE),
method1 = matrix(rbind(c(1-a,a), c(b, 1-b)), 2*n, 2*n, byrow=TRUE),
method2 = .Internal(matrix(rbind(c(1-a,a), c(b, 1-b)),
n*2, n*2, TRUE, NULL, FALSE, FALSE)),
replications = 100000,
order = "relative")
# test replications elapsed relative user.self sys.self user.child sys.child
# 3 method2 100000 1.00 1.00 0.99 0 NA NA
# 2 method1 100000 1.13 1.13 1.12 0 NA NA
# 1 method0 100000 1.46 1.46 1.46 0 NA NA

I get a small speedup with the following:
f = function(a, b, n){
z = rbind(
c(rbind(1 - a, b)),
c(rbind(a, 1 - b))
)
do.call(rbind, lapply(1:n, function(i) z))
}
I'll keep looking.
Edit I'm stumped. If this isn't good enough, I'd recommend inlining some rcpp.

Related

Fi score -Sklearn

What is the F1-score of the model in the following? I used scikit learn package.
print(classification_report(y_true, y_pred, target_names=target_names))
precision recall f1-score support
<BLANKLINE>
class 0 0.50 1.00 0.67 1
class 1 0.00 0.00 0.00 1
class 2 1.00 0.67 0.80 3
<BLANKLINE>
accuracy 0.60 5
macro avg 0.50 0.56 0.49 5
weighted avg 0.70 0.60 0.61 5
This article explains it pretty well
Basically it's
F1 = 2 * precision * recall / (precision + recall)

Julia pmap speed - parallel processing - dynamic programming

I am trying to speed up filling in a matrix for a dynamic programming problem in Julia (v0.6.0), and I can't seem to get much extra speed from using pmap. This is related to this question I posted almost a year ago: Filling a matrix using parallel processing in Julia. I was able to speed up serial processing with some great help then, and I'm now trying to get extra speed from parallel processing tools in Julia.
For the serial processing case, I was using a 3-dimensional matrix (essentially a set of equally-sized matrices, indexed by the 1st-dimension) and iterating over the 1st-dimension. I wanted to give pmap a try, though, to more efficiently iterate over the set of matrices.
Here is the code setup. To use pmap with the v_iter function below, I converted the three dimensional matrix into a dictionary object, with the dictionary keys equal to the index values in the 1st dimension (v_dict in the code below, with gcc equal to the 1st-dimension size). The v_iter function takes other dictionary objects (E_opt_dict and gridpoint_m_dict below) as additional inputs:
function v_iter(a,b,c)
diff_v = 1
while diff_v>convcrit
diff_v = -Inf
#These lines efficiently multiply the value function by the Markov transition matrix, using the A_mul_B function
exp_v = zeros(Float64,gkpc,1)
A_mul_B!(exp_v,a[1:gkpc,:],Zprob[1,:])
for j=2:gz
temp=Array{Float64}(gkpc,1)
A_mul_B!(temp,a[(j-1)*gkpc+1:(j-1)*gkpc+gkpc,:],Zprob[j,:])
exp_v=hcat(exp_v,temp)
end
#This tries to find the optimal value of v
for h=1:gm
for j=1:gz
oldv = a[h,j]
newv = (1-tau)*b[h,j]+beta*exp_v[c[h,j],j]
a[h,j] = newv
diff_v = max(diff_v, oldv-newv, newv-oldv)
end
end
end
end
gz = 9
gp = 13
gk = 17
gcc = 5
gm = gk * gp * gcc * gz
gkpc = gk * gp * gcc
gkp = gk*gp
beta = ((1+0.015)^(-1))
tau = 0.35
Zprob = [0.43 0.38 0.15 0.03 0.00 0.00 0.00 0.00 0.00; 0.05 0.47 0.35 0.11 0.02 0.00 0.00 0.00 0.00; 0.01 0.10 0.50 0.30 0.08 0.01 0.00 0.00 0.00; 0.00 0.02 0.15 0.51 0.26 0.06 0.01 0.00 0.00; 0.00 0.00 0.03 0.21 0.52 0.21 0.03 0.00 0.00 ; 0.00 0.00 0.01 0.06 0.26 0.51 0.15 0.02 0.00 ; 0.00 0.00 0.00 0.01 0.08 0.30 0.50 0.10 0.01 ; 0.00 0.00 0.00 0.00 0.02 0.11 0.35 0.47 0.05; 0.00 0.00 0.00 0.00 0.00 0.03 0.15 0.38 0.43]
convcrit = 0.001 # chosen convergence criterion
E_opt = Array{Float64}(gcc,gm,gz)
fill!(E_opt,10.0)
gridpoint_m = Array{Int64}(gcc,gm,gz)
fill!(gridpoint_m,fld(gkp,2))
v_dict=Dict(i => zeros(Float64,gm,gz) for i=1:gcc)
E_opt_dict=Dict(i => E_opt[i,:,:] for i=1:gcc)
gridpoint_m_dict=Dict(i => gridpoint_m[i,:,:] for i=1:gcc)
For parallel processing, I executed the following two commands:
wp = CachingPool(workers())
addprocs(3)
pmap(wp,v_iter,values(v_dict),values(E_opt_dict),values(gridpoint_m_dict))
...which produced this performance:
135.626417 seconds (3.29 G allocations: 57.152 GiB, 3.74% gc time)
I then tried to serial process instead:
for i=1:gcc
v_iter(v_dict[i],E_opt_dict[i],gridpoint_m_dict[i])
end
...and received better performance.
128.263852 seconds (3.29 G allocations: 57.101 GiB, 4.53% gc time)
This also gives me about the same performance as running v_iter on the original 3-dimensional objects:
v=zeros(Float64,gcc,gm,gz)
for i=1:gcc
v_iter(v[i,:,:],E_opt[i,:,:],gridpoint_m[i,:,:])
end
I know that parallel processing involves setup time, but when I increase the value of gcc, I still get about equal processing time for serial and parallel. This seems like a good candidate for parallel processing, since there is no need for messaging between the workers! But I can't seem to make it work efficiently.
You create the CachingPool before adding the worker processes. Hence your caching pool passed to pmap tells it to use just a single worker.
You can simply check it by running wp.workers you will see something like Set([1]).
Hence it should be:
addprocs(3)
wp = CachingPool(workers())
You could also consider running Julia -p command line parameter e.g. julia -p 3 and then you can skip the addprocs(3) command.
On top of that your for and pmap loops are not equivalent. The Julia Dict object is a hashmap and similar to other languages does not offer anything like element order. Hence in your for loop you are guaranteed to get the same matching i-th element while with the values the ordering of values does not need to match the original ordering (and you can have different order for each of those three variables in the pmap loop).
Since the keys for your Dicts are just numbers from 1 up to gcc you should simply use arrays instead. You can use generators very similar to Python. For an example instead of
v_dict=Dict(i => zeros(Float64,gm,gz) for i=1:gcc)
use
v_dict_a = [zeros(Float64,gm,gz) for i=1:gcc]
Hope that helps.
Based on #Przemyslaw Szufeul's helpful advice, I've placed below the code that properly executes parallel processing. After running it once, I achieved substantial improvement in running time:
77.728264 seconds (181.20 k allocations: 12.548 MiB)
In addition to reordering the wp command and using the generator Przemyslaw recommended, I also recast v_iter as an anonymous function, in order to avoid having to sprinkle #everywhere around the code to feed functions and data to the workers.
I also added return a to the v_iter function, and set v_a below equal to the output of pmap, since you cannot pass by reference to a remote object.
addprocs(3)
v_iter = function(a,b,c)
diff_v = 1
while diff_v>convcrit
diff_v = -Inf
#These lines efficiently multiply the value function by the Markov transition matrix, using the A_mul_B function
exp_v = zeros(Float64,gkpc,1)
A_mul_B!(exp_v,a[1:gkpc,:],Zprob[1,:])
for j=2:gz
temp=Array{Float64}(gkpc,1)
A_mul_B!(temp,a[(j-1)*gkpc+1:(j-1)*gkpc+gkpc,:],Zprob[j,:])
exp_v=hcat(exp_v,temp)
end
#This tries to find the optimal value of v
for h=1:gm
for j=1:gz
oldv = a[h,j]
newv = (1-tau)*b[h,j]+beta*exp_v[c[h,j],j]
a[h,j] = newv
diff_v = max(diff_v, oldv-newv, newv-oldv)
end
end
end
return a
end
gz = 9
gp = 13
gk = 17
gcc = 5
gm = gk * gp * gcc * gz
gkpc = gk * gp * gcc
gkp =gk*gp
beta = ((1+0.015)^(-1))
tau = 0.35
Zprob = [0.43 0.38 0.15 0.03 0.00 0.00 0.00 0.00 0.00; 0.05 0.47 0.35 0.11 0.02 0.00 0.00 0.00 0.00; 0.01 0.10 0.50 0.30 0.08 0.01 0.00 0.00 0.00; 0.00 0.02 0.15 0.51 0.26 0.06 0.01 0.00 0.00; 0.00 0.00 0.03 0.21 0.52 0.21 0.03 0.00 0.00 ; 0.00 0.00 0.01 0.06 0.26 0.51 0.15 0.02 0.00 ; 0.00 0.00 0.00 0.01 0.08 0.30 0.50 0.10 0.01 ; 0.00 0.00 0.00 0.00 0.02 0.11 0.35 0.47 0.05; 0.00 0.00 0.00 0.00 0.00 0.03 0.15 0.38 0.43]
convcrit = 0.001 # chosen convergence criterion
E_opt = Array{Float64}(gcc,gm,gz)
fill!(E_opt,10.0)
gridpoint_m = Array{Int64}(gcc,gm,gz)
fill!(gridpoint_m,fld(gkp,2))
v_a=[zeros(Float64,gm,gz) for i=1:gcc]
E_opt_a=[E_opt[i,:,:] for i=1:gcc]
gridpoint_m_a=[gridpoint_m[i,:,:] for i=1:gcc]
wp = CachingPool(workers())
v_a = pmap(wp,v_iter,v_a,E_opt_a,gridpoint_m_a)

Solving a system of equations to find expected residence time of a Markov Chain

I have been told that in order to calculate the expected residence time for a set of states I can use the following approach:
Construct a Markov Chain with index i,j being the probability of transition from state i to state j.
Transpose the matrix, so that each column contains the inbound probabilities for that state.
Invert the diagonal so that a value p becomes (1-p).
Add a row at the bottom, containing 1's
Construct a coefficient vector with 0's and the last element 1
Solve it. The resulting vector should contain the expected residence time for the various states
Let me give an example:
I have the initial Markov Chain:
0.25 ; 0.25 ; 0.25 ; 0.25
0.00 ; 0.50 ; 0.50 ; 0.00
0.33 ; 0.33 ; 0.33 ; 0.00
0.00 ; 0.00 ; 0.50 ; 0.50
After step 1-3 it looks like this:
0.75 ; 0.00 ; 0.33 ; 0.00
0.25 ; 0.50 ; 0.33 ; 0.00
0.25 ; 0.50 ; 0.67 ; 0.50
0.25 ; 0.00 ; 0.00 ; 0.50
I add the last line:
0.75 ; 0.00 ; 0.33 ; 0.00
0.25 ; 0.50 ; 0.33 ; 0.00
0.25 ; 0.50 ; 0.67 ; 0.50
0.25 ; 0.00 ; 0.00 ; 0.50
1.00 ; 1.00 ; 1.00 ; 1.00
The coefficient will be the following vector:
0 ; 0 ; 0 ; 0 ; 1
The added line of 1's should enforce, that the solution sums to 1. However, my solution is the set:
{0.42; 0.84; -0.79; 0.32}
Which sums to 0.79, so clearly something is wrong.
I also note, that the expected residence time of state 3 is negative, which in my mind should not be possible.
I have it implemented in Java and I use Commons.Math to handle the matrix calculations. I have tried the various algorithms described in the documentation, but I get the same result.
I have also tried to substitute one of the rows with the line of 1's in order to make the matrix square. When I do that, I get the following set of solutions:
{0.79; 0.79; -1.79; 1.2}
Even though the probabilities sum to 1 they must still be wrong as they should be in the range 0..1 AND sum to 1.
Is this an entirely wrong approach to the problem? Where am I off?
Unfortunately I am not very mathematical, but I hope I have given enough information for you to see the problem.
I found the answer:
Let all probabilities p but the diagonal be -p in step 3:
0.75 ; -0.00 ; -0.33 ; -0.00
-0.25 ; 0.50 ; -0.33 ; -0.00
-0.25 ; -0.50 ; 0.67 ; -0.50
-0.25 ; -0.00 ; -0.00 ; 0.50

Why is it slower to prespecify type in a data.frame?

I was preallocating a big data.frame to fill in later, which I normally do with NA's like this:
n <- 1e6
a <- data.frame(c1 = 1:n, c2 = NA, c3 = NA)
and I wondered if it would make things any faster later if I specified data types up front, so I tested
f1 <- function() {
a <- data.frame(c1 = 1:n, c2 = NA, c3 = NA)
a$c2 <- 1:n
a$c3 <- sample(LETTERS, size= n, replace = TRUE)
}
f2 <- function() {
b <- data.frame(c1 = 1:n, c2 = numeric(n), c3 = character(n))
b$c2 <- 1:n
b$c3 <- sample(LETTERS, size= n, replace = TRUE)
}
> system.time(f1())
user system elapsed
0.219 0.042 0.260
> system.time(f2())
user system elapsed
1.018 0.052 1.072
So it was actually much slower! I tried again with a factor column too, and the difference wasn't closer to 2x than 4x, but I'm curious about why this is slower, and wonder if it is ever appropriate to initialize with data types rather than NA's.
--
Edit: Flodel pointed out that 1:n is integer, not numeric. With that correction the runtimes are nearly identical; of course it hurts to incorrectly specify a data type and change it later!
Assigning any data to a large data frame takes time. If you're going to assign your data all at once in a vector (as you should), it's much faster not to assign the c2 and c3 columns in the original definition at all. For example:
f3 <- function() {
c <- data.frame(c1 = 1:n)
c$c2 <- 1:n
c$c3 <- sample(LETTERS, size= n, replace = TRUE)
}
print(system.time(f1()))
# user system elapsed
# 0.194 0.023 0.216
print(system.time(f2()))
# user system elapsed
# 0.336 0.037 0.374
print(system.time(f3()))
# user system elapsed
# 0.057 0.007 0.063
The reason for this is that when you preassign, a column of length n is created. eg
str(data.frame(x=1:2, y = character(2)))
## 'data.frame': 2 obs. of 2 variables:
## $ x: int 1 2
## $ y: Factor w/ 1 level "": 1 1
Note that the character column has been converted to factor which will be slower than setting stringsAsFactors = F.
#David Robinson's answer is correct, but I will add some profiling here to show how to investigate why some thngs are slower than you might expect.
The best thing to do here is to do some profiling to see what is being called, that can give a clue as to why some things calls are slower than others
library(profr)
profr(f1())
## Read 9 items
## f level time start end leaf source
## 8 f1 1 0.16 0.00 0.16 FALSE <NA>
## 9 data.frame 2 0.04 0.00 0.04 TRUE base
## 10 $<- 2 0.02 0.04 0.06 FALSE base
## 11 sample 2 0.04 0.06 0.10 TRUE base
## 12 $<- 2 0.06 0.10 0.16 FALSE base
## 13 $<-.data.frame 3 0.12 0.04 0.16 TRUE base
profr(f2())
## Read 15 items
## f level time start end leaf source
## 8 f2 1 0.28 0.00 0.28 FALSE <NA>
## 9 data.frame 2 0.12 0.00 0.12 TRUE base
## 10 : 2 0.02 0.12 0.14 TRUE base
## 11 $<- 2 0.02 0.18 0.20 FALSE base
## 12 sample 2 0.02 0.20 0.22 TRUE base
## 13 $<- 2 0.06 0.22 0.28 FALSE base
## 14 as.data.frame 3 0.08 0.04 0.12 FALSE base
## 15 $<-.data.frame 3 0.10 0.18 0.28 TRUE base
## 16 as.data.frame.character 4 0.08 0.04 0.12 FALSE base
## 17 factor 5 0.08 0.04 0.12 FALSE base
## 18 unique 6 0.06 0.04 0.10 FALSE base
## 19 match 6 0.02 0.10 0.12 TRUE base
## 20 unique.default 7 0.06 0.04 0.10 TRUE base
profr(f3())
## Read 4 items
## f level time start end leaf source
## 8 f3 1 0.06 0.00 0.06 FALSE <NA>
## 9 $<- 2 0.02 0.00 0.02 FALSE base
## 10 sample 2 0.04 0.02 0.06 TRUE base
## 11 $<-.data.frame 3 0.02 0.00 0.02 TRUE base
clearly f2() is slower than f1() as there is a lot of character to factor conversions, and recreating levels etc.
For efficient use of memory I would suggest the data.table package. This avoids (as much as possible) the internal copying of objects
library(data.table)
f4 <- function(){
f <- data.table(c1 = 1:n)
f[,c2:=1L:n]
f[,c3:=sample(LETTERS, size= n, replace = TRUE)]
}
system.time(f1())
## user system elapsed
## 0.15 0.02 0.18
system.time(f2())
## user system elapsed
## 0.19 0.00 0.19
system.time(f3())
## user system elapsed
## 0.09 0.00 0.09
system.time(f4())
## user system elapsed
## 0.04 0.00 0.04
Note, that using data.table you could add two columns at once (and by reference)
# Thanks to #Thell for pointing this out.
f[,`:=`(c('c2','c3'), list(1L:n, sample(LETTERS,n, T))), with = F]
EDIT -- functions that will return the required object (Well picked up #Dwin)
n= 1e7
f1 <- function() {
a <- data.frame(c1 = 1:n, c2 = NA, c3 = NA)
a$c2 <- 1:n
a$c3 <- sample(LETTERS, size = n, replace = TRUE)
a
}
f2 <- function() {
b <- data.frame(c1 = 1:n, c2 = numeric(n), c3 = character(n))
b$c2 <- 1:n
b$c3 <- sample(LETTERS, size = n, replace = TRUE)
b
}
f3 <- function() {
c <- data.frame(c1 = 1:n)
c$c2 <- 1:n
c$c3 <- sample(LETTERS, size = n, replace = TRUE)
c
}
f4 <- function() {
f <- data.table(c1 = 1:n)
f[, `:=`(c2, 1L:n)]
f[, `:=`(c3, sample(LETTERS, size = n, replace = TRUE))]
}
system.time(f1())
## user system elapsed
## 1.62 0.34 2.13
system.time(f2())
## user system elapsed
## 2.14 0.66 2.79
system.time(f3())
## user system elapsed
## 0.78 0.25 1.03
system.time(f4())
## user system elapsed
## 0.37 0.08 0.46
profr(f1())
## Read 105 items
## f level time start end leaf source
## 8 f1 1 2.08 0.00 2.08 FALSE <NA>
## 9 data.frame 2 0.66 0.00 0.66 FALSE base
## 10 : 2 0.02 0.66 0.68 TRUE base
## 11 $<- 2 0.32 0.84 1.16 FALSE base
## 12 sample 2 0.40 1.16 1.56 TRUE base
## 13 $<- 2 0.32 1.76 2.08 FALSE base
## 14 : 3 0.02 0.00 0.02 TRUE base
## 15 as.data.frame 3 0.04 0.02 0.06 FALSE base
## 16 unlist 3 0.12 0.54 0.66 TRUE base
## 17 $<-.data.frame 3 1.24 0.84 2.08 TRUE base
## 18 as.data.frame.integer 4 0.04 0.02 0.06 TRUE base
profr(f2())
## Read 145 items
## f level time start end leaf source
## 8 f2 1 2.88 0.00 2.88 FALSE <NA>
## 9 data.frame 2 1.40 0.00 1.40 FALSE base
## 10 : 2 0.04 1.40 1.44 TRUE base
## 11 $<- 2 0.36 1.64 2.00 FALSE base
## 12 sample 2 0.40 2.00 2.40 TRUE base
## 13 $<- 2 0.36 2.52 2.88 FALSE base
## 14 : 3 0.02 0.00 0.02 TRUE base
## 15 numeric 3 0.06 0.02 0.08 TRUE base
## 16 character 3 0.04 0.08 0.12 TRUE base
## 17 as.data.frame 3 1.06 0.12 1.18 FALSE base
## 18 unlist 3 0.20 1.20 1.40 TRUE base
## 19 $<-.data.frame 3 1.24 1.64 2.88 TRUE base
## 20 as.data.frame.integer 4 0.04 0.12 0.16 TRUE base
## 21 as.data.frame.numeric 4 0.16 0.18 0.34 TRUE base
## 22 as.data.frame.character 4 0.78 0.40 1.18 FALSE base
## 23 factor 5 0.74 0.40 1.14 FALSE base
## 24 as.data.frame.vector 5 0.04 1.14 1.18 TRUE base
## 25 unique 6 0.38 0.40 0.78 FALSE base
## 26 match 6 0.32 0.78 1.10 TRUE base
## 27 unique.default 7 0.38 0.40 0.78 TRUE base
profr(f3())
## Read 37 items
## f level time start end leaf source
## 8 f3 1 0.72 0.00 0.72 FALSE <NA>
## 9 data.frame 2 0.10 0.00 0.10 FALSE base
## 10 : 2 0.02 0.10 0.12 TRUE base
## 11 $<- 2 0.08 0.14 0.22 FALSE base
## 12 sample 2 0.26 0.22 0.48 TRUE base
## 13 $<- 2 0.16 0.56 0.72 FALSE base
## 14 : 3 0.02 0.00 0.02 TRUE base
## 15 as.data.frame 3 0.04 0.02 0.06 FALSE base
## 16 unlist 3 0.02 0.08 0.10 TRUE base
## 17 $<-.data.frame 3 0.58 0.14 0.72 TRUE base
## 18 as.data.frame.integer 4 0.04 0.02 0.06 TRUE base
profr(f4())
## Read 15 items
## f level time start end leaf source
## 8 f4 1 0.28 0.00 0.28 FALSE <NA>
## 9 data.table 2 0.02 0.00 0.02 FALSE data.table
## 10 [ 2 0.26 0.02 0.28 FALSE base
## 11 : 3 0.02 0.00 0.02 TRUE base
## 12 [.data.table 3 0.26 0.02 0.28 FALSE <NA>
## 13 eval 4 0.26 0.02 0.28 FALSE base
## 14 eval 5 0.26 0.02 0.28 FALSE base
## 15 : 6 0.02 0.02 0.04 TRUE base
## 16 sample 6 0.24 0.04 0.28 TRUE base

Column-wise sort or top-n of matrix

I need to sort a matrix so that all elements stay in their columns and each column is in ascending order. Is there a vectorized column-wise sort for a matrix or a data frame in R? (My matrix is all-positive and bounded by B, so I can add j*B to each cell in column j and do a regular one-dimensional sort:
> set.seed(100523); m <- matrix(round(runif(30),2), nrow=6); m
[,1] [,2] [,3] [,4] [,5]
[1,] 0.47 0.32 0.29 0.54 0.38
[2,] 0.38 0.91 0.76 0.43 0.92
[3,] 0.71 0.32 0.48 0.16 0.85
[4,] 0.88 0.83 0.61 0.95 0.72
[5,] 0.16 0.57 0.70 0.82 0.05
[6,] 0.77 0.03 0.75 0.26 0.05
> offset <- rep(seq_len(5), rep(6, 5)); offset
[1] 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5
> m <- matrix(sort(m + offset), nrow=nrow(m)) - offset; m
[,1] [,2] [,3] [,4] [,5]
[1,] 0.16 0.03 0.29 0.16 0.05
[2,] 0.38 0.32 0.48 0.26 0.05
[3,] 0.47 0.32 0.61 0.43 0.38
[4,] 0.71 0.57 0.70 0.54 0.72
[5,] 0.77 0.83 0.75 0.82 0.85
[6,] 0.88 0.91 0.76 0.95 0.92
But is there something more beautiful already included?) Otherwise, what would be the fastest way if my matrix has around 1M (10M, 100M) entries (roughly a square matrix)? I'm worried about the performance penalty of apply and friends.
Actually, I don't need "sort", just "top n", with n being around 30 or 100, say. I am thinking about using apply and the partial parameter of sort, but I wonder if this is cheaper than just doing a vectorized sort. So, before doing benchmarks on my own, I'd like to ask for advice by experienced users.
If you want to use sort, ?sort indicates that method = "quick" can be twice as fast as the default method with on the order of 1 million elements.
Start with apply(m, 2, sort, method = "quick") and see if that provides sufficient speed.
Do note the comments on this in ?sort though; ties are sorted in a non-stable manner.
I have put down a quick testing framework for the solutions proposed so far.
library(rbenchmark)
sort.q <- function(m) {
sort(m, method='quick')
}
sort.p <- function(m) {
mm <- sort(m, partial=TOP)[1:TOP]
sort(mm)
}
sort.all.g <- function(f) {
function(m) {
o <- matrix(rep(seq_len(SIZE), rep(SIZE, SIZE)), nrow=SIZE)
matrix(f(m+o), nrow=SIZE)[1:TOP,]-o[1:TOP,]
}
}
sort.all <- sort.all.g(sort)
sort.all.q <- sort.all.g(sort.q)
apply.sort.g <- function(f) {
function(m) {
apply(m, 2, f)[1:TOP,]
}
}
apply.sort <- apply.sort.g(sort)
apply.sort.p <- apply.sort.g(sort.p)
apply.sort.q <- apply.sort.g(sort.q)
bb <- NULL
SIZE_LIMITS <- 3:9
TOP_LIMITS <- 2:5
for (SIZE in floor(sqrt(10)^SIZE_LIMITS)) {
for (TOP in floor(sqrt(10)^TOP_LIMITS)) {
print(c(SIZE, TOP))
TOP <- min(TOP, SIZE)
m <- matrix(runif(SIZE*SIZE), floor(SIZE))
if (SIZE < 1000) {
mr <- apply.sort(m)
stopifnot(apply.sort.q(m) == mr)
stopifnot(apply.sort.p(m) == mr)
stopifnot(sort.all(m) == mr)
stopifnot(sort.all.q(m) == mr)
}
b <- benchmark(apply.sort(m),
apply.sort.q(m),
apply.sort.p(m),
sort.all(m),
sort.all.q(m),
columns= c("test", "elapsed", "relative",
"user.self", "sys.self"),
replications=1,
order=NULL)
b$SIZE <- SIZE
b$TOP <- TOP
b$test <- factor(x=b$test, levels=b$test)
bb <- rbind(bb, b)
}
}
ftable(xtabs(user.self ~ SIZE+test+TOP, bb))
The results so far indicate that for all but the biggest matrices, apply really hurts performance unless doing a "top n". For "small" matrices < 1e6, just sorting the whole thing without apply is competitive. For "huge" matrices, sorting the whole array becomes slower than apply. Using partial works best for "huge" matrices and is only a slight loss for "small" matrices.
Please feel free to add your own sorting routine :-)
TOP 10 31 100 316
SIZE test
31 apply.sort(m) 0.004 0.012 0.000 0.000
apply.sort.q(m) 0.008 0.016 0.000 0.000
apply.sort.p(m) 0.008 0.020 0.000 0.000
sort.all(m) 0.000 0.008 0.000 0.000
sort.all.q(m) 0.000 0.004 0.000 0.000
100 apply.sort(m) 0.012 0.016 0.028 0.000
apply.sort.q(m) 0.016 0.016 0.036 0.000
apply.sort.p(m) 0.020 0.020 0.040 0.000
sort.all(m) 0.000 0.004 0.008 0.000
sort.all.q(m) 0.004 0.004 0.004 0.000
316 apply.sort(m) 0.060 0.060 0.056 0.060
apply.sort.q(m) 0.064 0.060 0.060 0.072
apply.sort.p(m) 0.064 0.068 0.108 0.076
sort.all(m) 0.016 0.016 0.020 0.024
sort.all.q(m) 0.020 0.016 0.024 0.024
1000 apply.sort(m) 0.356 0.276 0.276 0.292
apply.sort.q(m) 0.348 0.316 0.288 0.296
apply.sort.p(m) 0.256 0.264 0.276 0.320
sort.all(m) 0.268 0.244 0.213 0.244
sort.all.q(m) 0.260 0.232 0.200 0.208
3162 apply.sort(m) 1.997 1.948 2.012 2.108
apply.sort.q(m) 1.916 1.880 1.892 1.901
apply.sort.p(m) 1.300 1.316 1.376 1.544
sort.all(m) 2.424 2.452 2.432 2.480
sort.all.q(m) 2.188 2.184 2.265 2.244
10000 apply.sort(m) 18.193 18.466 18.781 18.965
apply.sort.q(m) 15.837 15.861 15.977 16.313
apply.sort.p(m) 9.005 9.108 9.304 9.925
sort.all(m) 26.030 25.710 25.722 26.686
sort.all.q(m) 23.341 23.645 24.010 24.073
31622 apply.sort(m) 201.265 197.568 196.181 196.104
apply.sort.q(m) 163.190 160.810 158.757 160.050
apply.sort.p(m) 82.337 81.305 80.641 82.490
sort.all(m) 296.239 288.810 289.303 288.954
sort.all.q(m) 260.872 249.984 254.867 252.087
Does
apply(m, 2, sort)
do the job? :)
Or for top-10, say, use:
apply(m, 2 ,function(x) {sort(x,dec=TRUE)[1:10]})
Performance is strong - for 1e7 rows and 5 cols (5e7 numbers in total), my computer took around 9 or 10 seconds.
R is very fast at matrix calculations. A matrix with 1e7 elements in 1e4 columns gets sorted in under 3 seconds on my machine
set.seed(1)
m <- matrix(runif(1e7), ncol=1e4)
system.time(sm <- apply(m, 2, sort))
user system elapsed
2.62 0.14 2.79
The first 5 columns:
sm[1:15, 1:5]
[,1] [,2] [,3] [,4] [,5]
[1,] 2.607703e-05 0.0002085913 9.364448e-05 0.0001937598 1.157424e-05
[2,] 9.228056e-05 0.0003156713 4.948019e-04 0.0002542199 2.126186e-04
[3,] 1.607228e-04 0.0003988042 5.015987e-04 0.0004544661 5.855639e-04
[4,] 5.756689e-04 0.0004399747 5.762535e-04 0.0004621083 5.877446e-04
[5,] 6.932740e-04 0.0004676797 5.784736e-04 0.0004749235 6.470268e-04
[6,] 7.856274e-04 0.0005927107 8.244428e-04 0.0005443178 6.498618e-04
[7,] 8.489799e-04 0.0006210336 9.249109e-04 0.0005917936 6.548134e-04
[8,] 1.001975e-03 0.0006522120 9.424880e-04 0.0007702231 6.569310e-04
[9,] 1.042956e-03 0.0007237203 1.101990e-03 0.0009826915 6.810103e-04
[10,] 1.246256e-03 0.0007968422 1.117999e-03 0.0009873926 6.888523e-04
[11,] 1.337960e-03 0.0009294956 1.229132e-03 0.0009997757 8.671272e-04
[12,] 1.372295e-03 0.0012221676 1.329478e-03 0.0010375632 8.806398e-04
[13,] 1.583430e-03 0.0012781983 1.433513e-03 0.0010662393 8.886999e-04
[14,] 1.603961e-03 0.0013518191 1.458616e-03 0.0012068383 8.903167e-04
[15,] 1.673268e-03 0.0013697683 1.590524e-03 0.0013617468 1.024081e-03
They say there's a fine line between genius and madness... take a look at this and see what you think of the idea. As in the question, the goal is to find the top 30 elements of a vector vec that might be long (1e7, 1e8, or more elements).
topn = 30
sdmult = max(1,qnorm(1-(topn/length(vec))))
sdmin = 1e-5
acceptmult = 10
calcsd = max(sd(vec),sdmin)
calcmn = mean(vec)
thresh = calcmn + sdmult*calcsd
subs = which(vec > thresh)
while (length(subs) > topn * acceptmult) {
thresh = thresh + calcsd
subs = which(vec > thresh)
}
while (length(subs) < topn) {
thresh = thresh - calcsd
subs = which(vec > thresh)
}
topvals = sort(vec[subs],dec=TRUE)[1:topn]
The basic idea is that even if we don't know much about the distribution of vec, we'd certainly expect the highest values in vec to be several standard deviations above the mean. If vec were normally distributed, then the qnorm expression on line 2 gives a rough idea how many sd's above the mean we'd need to look to find the highest topn values (e.g. if vec contains 1e8 values, the top 30 values are likely to be located in the region starting 5 sd's above the mean.) Even if vec isn't normal, this assumption is unlikely to be massively far away from the truth.
Ok, so we compute the mean and sd of vec, and use these to propose a threshold to look above - a certain number of sd's above the mean. We're hoping to find in this upper tail a subset of slightly more than topn values. If we do, we can sort it and easily identify the highest topn values - which will be the highest topn values in vec overall.
Now the exact rules here can probably be tweaked a bit, but the idea is that we need to guard against the original threshold being "out" for some reason. We therefore exploit the fact that it's quick to check how many elements lie above a certain threshold. So, we first raise the threshold, in increments of calcsd, until there are fewer than 10 * topn elements above the threshold. Then, if needed. we reduce thresh (again in steps of calcsd) until we definitely have at least topn elements above the threshold. This bi-directional search should always lead to a "threshold set" whose size is fairly close to topn (hopefully within a factor of 10 or 100). As topn is relatively small (typical value 30), it will be really fast to sort this threshold set, which of course immediately gives us the highest topn elements in the original vector vec.
My claim is that the calculations involved in generating a decent threshold set are all quick in R, so if only the top 30 or so elements of a very large vector are required, this indirect approach will beat any approach that involves sorting the whole vector.
What do you think?! If you think it's an interesting idea, please like/vote up :) I'll look at doing some proper timings but my initial tests on randomly generated data were really promising - it'd be great to test it out on "real" data though...!
Cheers :)

Resources